Files
lammps/doc/src/fix_bond_react.rst
Jacob Gissinger 01212881d2 clarify docs
2021-05-26 00:05:21 -04:00

697 lines
32 KiB
ReStructuredText

.. index:: fix bond/react
fix bond/react command
======================
Syntax
""""""
.. parsed-literal::
fix ID group-ID bond/react common_keyword values ...
react react-ID react-group-ID Nevery Rmin Rmax template-ID(pre-reacted) template-ID(post-reacted) map_file individual_keyword values ...
react react-ID react-group-ID Nevery Rmin Rmax template-ID(pre-reacted) template-ID(post-reacted) map_file individual_keyword values ...
react react-ID react-group-ID Nevery Rmin Rmax template-ID(pre-reacted) template-ID(post-reacted) map_file individual_keyword values ...
...
* ID, group-ID are documented in :doc:`fix <fix>` command.
* bond/react = style name of this fix command
* the common keyword/values may be appended directly after 'bond/react'
* common keywords apply to all reaction specifications
* common_keyword = *stabilization* or *reset_mol_ids*
.. parsed-literal::
*stabilization* values = *no* or *yes* *group-ID* *xmax*
*no* = no reaction site stabilization (default)
*yes* = perform reaction site stabilization
*group-ID* = user-assigned prefix for the dynamic group of atoms not currently involved in a reaction
*xmax* = xmax value that is used by an internally-created :doc:`nve/limit <fix_nve_limit>` integrator
*reset_mol_ids* values = *yes* or *no*
*yes* = update molecule IDs based on new global topology (default)
*no* = do not update molecule IDs
* react = mandatory argument indicating new reaction specification
* react-ID = user-assigned name for the reaction
* react-group-ID = only atoms in this group are considered for the reaction
* Nevery = attempt reaction every this many steps
* Rmin = initiator atoms must be separated by more than Rmin to initiate reaction (distance units)
* Rmax = initiator atoms must be separated by less than Rmax to initiate reaction (distance units)
* template-ID(pre-reacted) = ID of a molecule template containing pre-reaction topology
* template-ID(post-reacted) = ID of a molecule template containing post-reaction topology
* map_file = name of file specifying corresponding atom-IDs in the pre- and post-reacted templates
* zero or more individual keyword/value pairs may be appended to each react argument
* individual_keyword = *prob* or *max_rxn* or *stabilize_steps* or *custom_charges* or *molecule* or *modify_create*
.. parsed-literal::
*prob* values = fraction seed
fraction = initiate reaction with this probability if otherwise eligible
seed = random number seed (positive integer)
*max_rxn* value = N
N = maximum number of reactions allowed to occur
*stabilize_steps* value = timesteps
timesteps = number of timesteps to apply the internally-created :doc:`nve/limit <fix_nve_limit>` fix to reacting atoms
*custom_charges* value = *no* or *fragmentID*
no = update all atomic charges (default)
fragmentID = ID of molecule fragment whose charges are updated
*molecule* value = *off* or *inter* or *intra*
off = allow both inter- and intramolecular reactions (default)
inter = search for reactions between molecules with different IDs
intra = search for reactions within the same molecule
*modify_create* keyword values
*fit* value = *all* or *fragmentID*
all = use all eligible atoms for create-atoms fit (default)
fragmentID = ID of molecule fragment used for create-atoms fit
*overlap* value = R
R = only insert atom/molecule if further than R from existing particles (distance units)
Examples
""""""""
For unabridged example scripts and files, see examples/USER/reaction.
.. code-block:: LAMMPS
molecule mol1 pre_reacted_topology.txt
molecule mol2 post_reacted_topology.txt
fix 5 all bond/react react myrxn1 all 1 0 3.25 mol1 mol2 map_file.txt
molecule mol1 pre_reacted_rxn1.txt
molecule mol2 post_reacted_rxn1.txt
molecule mol3 pre_reacted_rxn2.txt
molecule mol4 post_reacted_rxn2.txt
fix 5 all bond/react stabilization yes nvt_grp .03 &
react myrxn1 all 1 0 3.25 mol1 mol2 map_file_rxn1.txt prob 0.50 12345 &
react myrxn2 all 1 0 2.75 mol3 mol4 map_file_rxn2.txt prob 0.25 12345
fix 6 nvt_grp_REACT nvt temp 300 300 100 # set thermostat after bond/react
Description
"""""""""""
Initiate complex covalent bonding (topology) changes. These topology
changes will be referred to as 'reactions' throughout this
documentation. Topology changes are defined in pre- and post-reaction
molecule templates and can include creation and deletion of bonds,
angles, dihedrals, impropers, bond types, angle types, dihedral types,
atom types, or atomic charges. In addition, reaction by-products or
other molecules can be identified and deleted. Finally, atoms can be
created and inserted at specific positions relative to the reaction
site.
Fix bond/react does not use quantum mechanical (eg. fix qmmm) or
pairwise bond-order potential (eg. Tersoff or AIREBO) methods to
determine bonding changes a priori. Rather, it uses a distance-based
probabilistic criteria to effect predetermined topology changes in
simulations using standard force fields.
This fix was created to facilitate the dynamic creation of polymeric,
amorphous or highly cross-linked systems. A suggested workflow for
using this fix is: 1) identify a reaction to be simulated 2) build a
molecule template of the reaction site before the reaction has
occurred 3) build a molecule template of the reaction site after the
reaction has occurred 4) create a map that relates the
template-atom-IDs of each atom between pre- and post-reaction molecule
templates 5) fill a simulation box with molecules and run a simulation
with fix bond/react.
Only one 'fix bond/react' command can be used at a time. Multiple
reactions can be simultaneously applied by specifying multiple *react*
arguments to a single 'fix bond/react' command. This syntax is
necessary because the 'common keywords' are applied to all reactions.
The *stabilization* keyword enables reaction site stabilization.
Reaction site stabilization is performed by including reacting atoms
in an internally-created fix :doc:`nve/limit <fix_nve_limit>` time
integrator for a set number of timesteps given by the
*stabilize_steps* keyword. While reacting atoms are being time
integrated by the internal nve/limit, they are prevented from being
involved in any new reactions. The *xmax* value keyword should
typically be set to the maximum distance that non-reacting atoms move
during the simulation.
Fix bond/react creates and maintains two important dynamic groups of
atoms when using the *stabilization* keyword. The first group contains
all atoms currently involved in a reaction; this group is
automatically thermostatted by an internally-created
:doc:`nve/limit <fix_nve_limit>` integrator. The second group contains
all atoms currently not involved in a reaction. This group should be
used by a thermostat in order to time integrate the system. The name
of this group of non-reacting atoms is created by appending '_REACT'
to the group-ID argument of the *stabilization* keyword, as shown in
the second example above.
.. note::
When using reaction stabilization, you should generally not have
a separate thermostat which acts on the 'all' group.
The group-ID set using the *stabilization* keyword can be an existing
static group or a previously-unused group-ID. It cannot be specified
as 'all'. If the group-ID is previously unused, the fix bond/react
command creates a :doc:`dynamic group <group>` that is initialized to
include all atoms. If the group-ID is that of an existing static
group, the group is used as the parent group of new,
internally-created dynamic group. In both cases, this new dynamic
group is named by appending '_REACT' to the group-ID, e.g.
nvt_grp_REACT. By specifying an existing group, you may thermostat
constant-topology parts of your system separately. The dynamic group
contains only atoms not involved in a reaction at a given timestep,
and therefore should be used by a subsequent system-wide time
integrator such as nvt, npt, or nve, as shown in the second example
above (full examples can be found at examples/USER/reaction). The time
integration command should be placed after the fix bond/react command
due to the internal dynamic grouping performed by fix bond/react.
.. note::
If the group-ID is an existing static group, react-group-IDs
should also be specified as this static group, or a subset.
The *reset_mol_ids* keyword invokes the :doc:`reset_mol_ids <reset_mol_ids>`
command after a reaction occurs, to ensure that molecule IDs are
consistent with the new bond topology. The group-ID used for
:doc:`reset_mol_ids <reset_mol_ids>` is the group-ID for this fix.
Resetting molecule IDs is necessarily a global operation, and so can
be slow for very large systems.
The following comments pertain to each *react* argument (in other
words, can be customized for each reaction, or reaction step):
A check for possible new reaction sites is performed every *Nevery*
timesteps. *Nevery* can be specified with an equal-style
:doc:`variable <variable>`, whose value is rounded up to the nearest
integer.
Three physical conditions must be met for a reaction to occur. First,
an initiator atom pair must be identified within the reaction distance
cutoffs. Second, the topology surrounding the initiator atom pair must
match the topology of the pre-reaction template. Only atom types and
bond connectivity are used to identify a valid reaction site (not bond
types, etc.). Finally, any reaction constraints listed in the map file
(see below) must be satisfied. If all of these conditions are met, the
reaction site is eligible to be modified to match the post-reaction
template.
An initiator atom pair will be identified if several conditions are
met. First, a pair of atoms I,J within the specified react-group-ID of
type itype and jtype must be separated by a distance between *Rmin*
and *Rmax*\ . *Rmin* and *Rmax* can be specified with equal-style
:doc:`variables <variable>`. For example, these reaction cutoffs can
be a function of the reaction conversion using the following commands:
.. code-block:: LAMMPS
variable rmax equal 0 # initialize variable before bond/react
fix myrxn all bond/react react myrxn1 all 1 0 v_rmax mol1 mol2 map_file.txt
variable rmax equal 3+f_myrxn[1]/100 # arbitrary function of reaction count
The following criteria are used if multiple candidate initiator atom
pairs are identified within the cutoff distance: 1) If the initiator
atoms in the pre-reaction template are not 1-2 neighbors (i.e. not
directly bonded) the closest potential partner is chosen. 2)
Otherwise, if the initiator atoms in the pre-reaction template are 1-2
neighbors (i.e. directly bonded) the farthest potential partner is
chosen. 3) Then, if both an atom I and atom J have each other as their
initiator partners, these two atoms are identified as the initiator
atom pair of the reaction site. Note that it can be helpful to select
unique atom types for the initiator atoms: if an initiator atom pair
is identified, as described in the previous steps, but does not
correspond to the same pair specified in the pre-reaction template, an
otherwise eligible reaction could be prevented from occurring. Once
this unique initiator atom pair is identified for each reaction, there
could be two or more reactions that involve the same atom on the same
timestep. If this is the case, only one such reaction is permitted to
occur. This reaction is chosen randomly from all potential reactions
involving the overlapping atom. This capability allows e.g. for
different reaction pathways to proceed from identical reaction sites
with user-specified probabilities.
The pre-reacted molecule template is specified by a molecule command.
This molecule template file contains a sample reaction site and its
surrounding topology. As described below, the initiator atom pairs of
the pre-reacted template are specified by atom ID in the map file. The
pre-reacted molecule template should contain as few atoms as possible
while still completely describing the topology of all atoms affected
by the reaction (which includes all atoms that change atom type or
connectivity, and all bonds that change bond type). For example, if
the force field contains dihedrals, the pre-reacted template should
contain any atom within three bonds of reacting atoms.
Some atoms in the pre-reacted template that are not reacting may have
missing topology with respect to the simulation. For example, the
pre-reacted template may contain an atom that, in the simulation, is
currently connected to the rest of a long polymer chain. These are
referred to as edge atoms, and are also specified in the map file. All
pre-reaction template atoms should be linked to an initiator atom, via
at least one path that does not involve edge atoms. When the
pre-reaction template contains edge atoms, not all atoms, bonds,
charges, etc. specified in the reaction templates will be updated.
Specifically, topology that involves only atoms that are 'too near' to
template edges will not be updated. The definition of 'too near the
edge' depends on which interactions are defined in the simulation. If
the simulation has defined dihedrals, atoms within two bonds of edge
atoms are considered 'too near the edge.' If the simulation defines
angles, but not dihedrals, atoms within one bond of edge atoms are
considered 'too near the edge.' If just bonds are defined, only edge
atoms are considered 'too near the edge.'
.. note::
Small molecules, i.e. ones that have all their atoms contained
within the reaction templates, never have edge atoms.
Note that some care must be taken when a building a molecule template
for a given simulation. All atom types in the pre-reacted template
must be the same as those of a potential reaction site in the
simulation. A detailed discussion of matching molecule template atom
types with the simulation is provided on the :doc:`molecule <molecule>`
command page.
The post-reacted molecule template contains a sample of the reaction
site and its surrounding topology after the reaction has occurred. It
must contain the same number of atoms as the pre-reacted template
(unless there are created atoms). A one-to-one correspondence between
the atom IDs in the pre- and post-reacted templates is specified in
the map file as described below. Note that during a reaction, an atom,
bond, etc. type may change to one that was previously not present in
the simulation. These new types must also be defined during the setup
of a given simulation. A discussion of correctly handling this is also
provided on the :doc:`molecule <molecule>` command page.
.. note::
When a reaction occurs, it is possible that the resulting
topology/atom (e.g. special bonds, dihedrals, etc.) exceeds that of
the existing system and reaction templates. As when inserting
molecules, enough space for this increased topology/atom must be
reserved by using the relevant "extra" keywords to the
:doc:`read_data <read_data>` or :doc:`create_box <create_box>` commands.
The map file is a text document with the following format:
A map file has a header and a body. The header of map file the
contains one mandatory keyword and five optional keywords. The
mandatory keyword is 'equivalences':
.. parsed-literal::
N *equivalences* = # of atoms N in the reaction molecule templates
The optional keywords are 'edgeIDs', 'deleteIDs', 'chiralIDs' and
'constraints':
.. parsed-literal::
N *edgeIDs* = # of edge atoms N in the pre-reacted molecule template
N *deleteIDs* = # of atoms N that are deleted
N *createIDs* = # of atoms N that are created
N *chiralIDs* = # of chiral centers N
N *constraints* = # of reaction constraints N
The body of the map file contains two mandatory sections and five
optional sections. The first mandatory section begins with the keyword
'InitiatorIDs' and lists the two atom IDs of the initiator atom pair
in the pre-reacted molecule template. The second mandatory section
begins with the keyword 'Equivalences' and lists a one-to-one
correspondence between atom IDs of the pre- and post-reacted
templates. The first column is an atom ID of the pre-reacted molecule
template, and the second column is the corresponding atom ID of the
post-reacted molecule template. The first optional section begins with
the keyword 'EdgeIDs' and lists the atom IDs of edge atoms in the
pre-reacted molecule template. The second optional section begins with
the keyword 'DeleteIDs' and lists the atom IDs of pre-reaction
template atoms to delete. The third optional section begins with the
keyword 'CreateIDs' and lists the atom IDs of the post-reaction
template atoms to create. The fourth optional section begins with the
keyword 'ChiralIDs' lists the atom IDs of chiral atoms whose
handedness should be enforced. The fifth optional section begins with
the keyword 'Constraints' and lists additional criteria that must be
satisfied in order for the reaction to occur. Currently, there are
six types of constraints available, as discussed below: 'distance',
'angle', 'dihedral', 'arrhenius', 'rmsd', and 'custom'.
A sample map file is given below:
----------
.. parsed-literal::
# this is a map file
7 equivalences
2 edgeIDs
InitiatorIDs
3
5
EdgeIDs
1
7
Equivalences
1 1
2 2
3 3
4 4
5 5
6 6
7 7
----------
A user-specified set of atoms can be deleted by listing their
pre-reaction template IDs in the DeleteIDs section. A deleted atom
must still be included in the post-reaction molecule template, in
which it cannot be bonded to an atom that is not deleted. In addition
to deleting unwanted reaction by-products, this feature can be used to
remove specific topologies, such as small rings, that may be otherwise
indistinguishable.
Atoms can be created by listing their post-reaction template IDs in
the CreateIDs section. A created atom should not be included in the
pre-reaction template. The inserted positions of created atoms are
determined by the coordinates of the post-reaction template, after
optimal translation and rotation of the post-reaction template to the
reaction site (using a fit with atoms that are neither created nor
deleted). The *modify_create* keyword can be used to modify the
default behavior when creating atoms. The *modify_create* keyword has
two sub-keywords, *fit* and *overlap*. One or more of the sub-keywords
may be used after the *modify_create* keyword. The *fit* sub-keyword
can be used to specify which post-reaction atoms are used for the
optimal translation and rotation of the post-reaction template. The
*fragmentID* value of the *fit* sub-keyword must be the name of a
molecule fragment defined in the post-reaction :doc:`molecule
<molecule>` template, and only atoms in this fragment are used for the
fit. Atoms are created only if no current atom in the simulation is
within a distance R of any created atom, including the effect of
periodic boundary conditions if applicable. R is defined by the
*overlap* sub-keyword. Note that the default value for R is 0.0, which
will allow atoms to strongly overlap if you are inserting where other
atoms are present. The velocity of each created atom is initialized in
a random direction with a magnitude calculated from the instantaneous
temperature of the reaction site.
The handedness of atoms that are chiral centers can be enforced by
listing their IDs in the ChiralIDs section. A chiral atom must be
bonded to four atoms with mutually different atom types. This feature
uses the coordinates and types of the involved atoms in the
pre-reaction template to determine handedness. Three atoms bonded to
the chiral center are arbitrarily chosen, to define an oriented plane,
and the relative position of the fourth bonded atom determines the
chiral center's handedness.
Any number of additional constraints may be specified in the
Constraints section of the map file. The constraint of type 'distance'
has syntax as follows:
.. parsed-literal::
distance *ID1* *ID2* *rmin* *rmax*
where 'distance' is the required keyword, *ID1* and *ID2* are
pre-reaction atom IDs (or molecule-fragment IDs, see below), and these
two atoms must be separated by a distance between *rmin* and *rmax*
for the reaction to occur.
The constraint of type 'angle' has the following syntax:
.. parsed-literal::
angle *ID1* *ID2* *ID3* *amin* *amax*
where 'angle' is the required keyword, *ID1*\ , *ID2* and *ID3* are
pre-reaction atom IDs (or molecule-fragment IDs, see below), and these
three atoms must form an angle between *amin* and *amax* for the
reaction to occur (where *ID2* is the central atom). Angles must be
specified in degrees. This constraint can be used to enforce a certain
orientation between reacting molecules.
The constraint of type 'dihedral' has the following syntax:
.. parsed-literal::
dihedral *ID1* *ID2* *ID3* *ID4* *amin* *amax* *amin2* *amax2*
where 'dihedral' is the required keyword, and *ID1*\ , *ID2*\ , *ID3*
and *ID4* are pre-reaction atom IDs (or molecule-fragment IDs, see
below). Dihedral angles are calculated in the interval (-180,180].
Refer to the :doc:`dihedral style <dihedral_style>` documentation for
further details on convention. If *amin* is less than *amax*, these
four atoms must form a dihedral angle greater than *amin* **and** less
than *amax* for the reaction to occur. If *amin* is greater than
*amax*, these four atoms must form a dihedral angle greater than
*amin* **or** less than *amax* for the reaction to occur. Angles must
be specified in degrees. Optionally, a second range of permissible
angles *amin2*-*amax2* can be specified.
For the 'distance', 'angle', and 'dihedral' constraints (explained
above), atom IDs can be replaced by pre-reaction molecule-fragment
IDs. The molecule-fragment ID must begin with a letter. The location
of the ID is the geometric center of all atom positions in the
fragment. The molecule fragment must have been defined in the
:doc:`molecule <molecule>` command for the pre-reaction template.
The constraint of type 'arrhenius' imposes an additional reaction
probability according to the temperature-dependent Arrhenius equation:
.. math::
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
The Arrhenius constraint has the following syntax:
.. parsed-literal::
arrhenius *A* *n* *E_a* *seed*
where 'arrhenius' is the required keyword, *A* is the pre-exponential
factor, *n* is the exponent of the temperature dependence, :math:`E_a`
is the activation energy (:doc:`units <units>` of energy), and *seed* is a
random number seed. The temperature is defined as the instantaneous
temperature averaged over all atoms in the reaction site, and is
calculated in the same manner as for example
:doc:`compute temp/chunk <compute_temp_chunk>`. Currently, there are no
options for additional temperature averaging or velocity-biased
temperature calculations. A uniform random number between 0 and 1 is
generated using *seed*\ ; if this number is less than the result of the
Arrhenius equation above, the reaction is permitted to occur.
The constraint of type 'rmsd' has the following syntax:
.. parsed-literal::
rmsd *RMSDmax* *molfragment*
where 'rmsd' is the required keyword, and *RMSDmax* is the maximum
root-mean-square deviation between atom positions of the pre-reaction
template and the local reaction site (distance units), after optimal
translation and rotation of the pre-reaction template. Optionally, the
name of a molecule fragment (of the pre-reaction template) can be
specified by *molfragment*\ . If a molecule fragment is specified,
only atoms that are part of this molecule fragment are used to
determine the RMSD. A molecule fragment must have been defined in the
:doc:`molecule <molecule>` command for the pre-reaction template. For
example, the molecule fragment could consist of only the backbone
atoms of a polymer chain. This constraint can be used to enforce a
specific relative position and orientation between reacting molecules.
The constraint of type 'custom' has the following syntax:
.. parsed-literal::
custom *varstring*
where 'custom' is the required keyword, and *varstring* is a
variable expression. The expression must be a valid equal-style
variable formula that can be read by the :doc:`variable <variable>` command,
after any special reaction functions are evaluated. If the resulting
expression is zero, the reaction is prevented from occurring;
otherwise, it is permitted to occur. There are two special reaction
functions available, 'rxnsum' and 'rxnave'. These functions operate
over the atoms in a given reaction site, and have one mandatory
argument and one optional argument. The mandatory argument is the
identifier for an atom-style variable. The second, optional argument
is the name of a molecule fragment in the pre-reaction template, and
can be used to operate over a subset of atoms in the reaction site.
The 'rxnsum' function sums the atom-style variable over the reaction
site, while the 'rxnave' returns the average value. For example, a
constraint on the total potential energy of atoms involved in the
reaction can be imposed as follows:
.. code-block:: LAMMPS
compute 1 all pe/atom # in LAMMPS input script
variable my_pe atom c_1 # in LAMMPS input script
.. code-block:: LAMMPS
custom "rxnsum(v_my_pe) > 100" # in Constraints section of map file
The above example prevents the reaction from occurring unless the
total potential energy of the reaction site is above 100. The variable
expression can be interpreted as the probability of the reaction
occurring by using an inequality and the 'random(x,y,z)' function
available as an equal-style variable input, similar to the 'arrhenius'
constraint above.
By default, all constraints must be satisfied for the reaction to
occur. In other words, constraints are evaluated as a series of
logical values using the logical AND operator "&&". More complex logic
can be achieved by explicitly adding the logical AND operator "&&" or
the logical OR operator "||" after a given constraint command. If a
logical operator is specified after a constraint, it must be placed
after all constraint parameters, on the same line as the constraint
(one per line). Similarly, parentheses can be used to group
constraints. The expression that results from concatenating all
constraints should be a valid logical expression that can be read by
the :doc:`variable <variable>` command after converting each
constraint to a logical value. Because exactly one constraint is
allowed per line, having a valid logical expression implies that left
parentheses "(" should only appear before a constraint, and right
parentheses ")" should only appear after a constraint and before any
logical operator.
Once a reaction site has been successfully identified, data structures
within LAMMPS that store bond topology are updated to reflect the
post-reacted molecule template. All force fields with fixed bonds,
angles, dihedrals or impropers are supported.
A few capabilities to note: 1) You may specify as many *react*
arguments as desired. For example, you could break down a complicated
reaction mechanism into several reaction steps, each defined by its
own *react* argument. 2) While typically a bond is formed or removed
between the initiator atoms specified in the pre-reacted molecule
template, this is not required. 3) By reversing the order of the pre-
and post- reacted molecule templates in another *react* argument, you
can allow for the possibility of one or more reverse reactions.
The optional keywords deal with the probability of a given reaction
occurring as well as the stable equilibration of each reaction site as
it occurs:
The *prob* keyword can affect whether or not an eligible reaction
actually occurs. The fraction setting must be a value between 0.0 and
1.0, and can be specified with an equal-style :doc:`variable <variable>`.
A uniform random number between 0.0 and 1.0 is generated and the
eligible reaction only occurs if the random number is less than the
fraction. Up to N reactions are permitted to occur, as optionally
specified by the *max_rxn* keyword.
The *stabilize_steps* keyword allows for the specification of how many
timesteps a reaction site is stabilized before being returned to the
overall system thermostat. In order to produce the most physical
behavior, this 'reaction site equilibration time' should be tuned to
be as small as possible while retaining stability for a given system
or reaction step. After a limited number of case studies, this number
has been set to a default of 60 timesteps. Ideally, it should be
individually tuned for each fix reaction step. Note that in some
situations, decreasing rather than increasing this parameter will
result in an increase in stability.
The *custom_charges* keyword can be used to specify which atoms'
atomic charges are updated. When the value is set to 'no', all atomic
charges are updated to those specified by the post-reaction template
(default). Otherwise, the value should be the name of a molecule
fragment defined in the pre-reaction molecule template. In this case,
only the atomic charges of atoms in the molecule fragment are updated.
The *molecule* keyword can be used to force the reaction to be
intermolecular, intramolecular or either. When the value is set to
'off', molecule IDs are not considered when searching for reactions
(default). When the value is set to 'inter', the initiator atoms must
have different molecule IDs in order to be considered for the
reaction. When the value is set to 'intra', only initiator atoms with
the same molecule ID are considered for the reaction.
A few other considerations:
Optionally, you can enforce additional behaviors on reacting atoms.
For example, it may be beneficial to force reacting atoms to remain at
a certain temperature. For this, you can use the internally-created
dynamic group named "bond_react_MASTER_group", which consists of all
atoms currently involved in a reaction. For example, adding the
following command would add an additional thermostat to the group of
all currently-reacting atoms:
.. code-block:: LAMMPS
fix 1 bond_react_MASTER_group temp/rescale 1 300 300 10 1
.. note::
This command must be added after the fix bond/react command, and
will apply to all reactions.
Computationally, each timestep this fix operates, it loops over
neighbor lists (for bond-forming reactions) and computes distances
between pairs of atoms in the list. It also communicates between
neighboring processors to coordinate which bonds are created and/or
removed. All of these operations increase the cost of a timestep. Thus
you should be cautious about invoking this fix too frequently.
You can dump out snapshots of the current bond topology via the dump
local command.
----------
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Cumulative reaction counts for each reaction are written to :doc:`binary restart files <restart>`.
These values are associated with the reaction name (react-ID).
Additionally, internally-created per-atom properties are stored to
allow for smooth restarts. None of the :doc:`fix_modify <fix_modify>`
options are relevant to this fix.
This fix computes one statistic for each *react* argument that it
stores in a global vector, of length 'number of react arguments', that
can be accessed by various :doc:`output commands <Howto_output>`. The
vector values calculated by this fix are "intensive".
These is 1 quantity for each react argument:
* (1) cumulative # of reactions occurred
No parameter of this fix can be used with the *start/stop* keywords
of the :doc:`run <run>` command. This fix is not invoked during :doc:`energy minimization <minimize>`.
When fix bond/react is 'unfixed', all internally-created groups are
deleted. Therefore, fix bond/react can only be unfixed after unfixing
all other fixes that use any group created by fix bond/react.
Restrictions
""""""""""""
This fix is part of the USER-REACTION package. It is only enabled if
LAMMPS was built with that package. See the
:doc:`Build package <Build_package>` doc page for more info.
Related commands
""""""""""""""""
:doc:`fix bond/create <fix_bond_create>`,
:doc:`fix bond/break <fix_bond_break>`,
:doc:`fix bond/swap <fix_bond_swap>`,
:doc:`dump local <dump>`, :doc:`special_bonds <special_bonds>`
Default
"""""""
The option defaults are stabilization = no, prob = 1.0, stabilize_steps = 60,
reset_mol_ids = yes, custom_charges = no, molecule = off, modify_create = no
----------
.. _Gissinger:
**(Gissinger2017)** Gissinger, Jensen and Wise, Polymer, 128, 211-217 (2017).
.. _Gissinger2020:
**(Gissinger2020)** Gissinger, Jensen and Wise, Macromolecules, 53, 22, 9953-9961 (2020).