Files
lammps/lib/kokkos/core/perf_test/PerfTestHexGrad.cpp
2018-03-08 10:57:08 -07:00

326 lines
9.6 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#include <Kokkos_Core.hpp>
#include <gtest/gtest.h>
#include <PerfTest_Category.hpp>
namespace Test {
template< class DeviceType ,
typename CoordScalarType = double ,
typename GradScalarType = float >
struct HexGrad
{
typedef DeviceType execution_space ;
typedef typename execution_space::size_type size_type ;
typedef HexGrad<DeviceType,CoordScalarType,GradScalarType> self_type;
// 3D array : ( ParallelWork , Space , Node )
enum { NSpace = 3 , NNode = 8 };
typedef Kokkos::View< CoordScalarType*[NSpace][NNode] , execution_space >
elem_coord_type ;
typedef Kokkos::View< GradScalarType*[NSpace][NNode] , execution_space >
elem_grad_type ;
elem_coord_type coords ;
elem_grad_type grad_op ;
enum { FLOPS = 318 }; // = 3 * ( 18 + 8 * 11 ) };
enum { READS = 18 };
enum { WRITES = 18 };
HexGrad( const elem_coord_type & arg_coords ,
const elem_grad_type & arg_grad_op )
: coords( arg_coords )
, grad_op( arg_grad_op )
{}
KOKKOS_INLINE_FUNCTION static
void grad( const CoordScalarType x[] ,
const CoordScalarType z[] ,
GradScalarType grad_y[] )
{
const GradScalarType R42=(x[3] - x[1]);
const GradScalarType R52=(x[4] - x[1]);
const GradScalarType R54=(x[4] - x[3]);
const GradScalarType R63=(x[5] - x[2]);
const GradScalarType R83=(x[7] - x[2]);
const GradScalarType R86=(x[7] - x[5]);
const GradScalarType R31=(x[2] - x[0]);
const GradScalarType R61=(x[5] - x[0]);
const GradScalarType R74=(x[6] - x[3]);
const GradScalarType R72=(x[6] - x[1]);
const GradScalarType R75=(x[6] - x[4]);
const GradScalarType R81=(x[7] - x[0]);
const GradScalarType t1=(R63 + R54);
const GradScalarType t2=(R61 + R74);
const GradScalarType t3=(R72 + R81);
const GradScalarType t4 =(R86 + R42);
const GradScalarType t5 =(R83 + R52);
const GradScalarType t6 =(R75 + R31);
// Calculate Y gradient from X and Z data
grad_y[0] = (z[1] * t1) - (z[2] * R42) - (z[3] * t5) + (z[4] * t4) + (z[5] * R52) - (z[7] * R54);
grad_y[1] = (z[2] * t2) + (z[3] * R31) - (z[0] * t1) - (z[5] * t6) + (z[6] * R63) - (z[4] * R61);
grad_y[2] = (z[3] * t3) + (z[0] * R42) - (z[1] * t2) - (z[6] * t4) + (z[7] * R74) - (z[5] * R72);
grad_y[3] = (z[0] * t5) - (z[1] * R31) - (z[2] * t3) + (z[7] * t6) + (z[4] * R81) - (z[6] * R83);
grad_y[4] = (z[5] * t3) + (z[6] * R86) - (z[7] * t2) - (z[0] * t4) - (z[3] * R81) + (z[1] * R61);
grad_y[5] = (z[6] * t5) - (z[4] * t3) - (z[7] * R75) + (z[1] * t6) - (z[0] * R52) + (z[2] * R72);
grad_y[6] = (z[7] * t1) - (z[5] * t5) - (z[4] * R86) + (z[2] * t4) - (z[1] * R63) + (z[3] * R83);
grad_y[7] = (z[4] * t2) - (z[6] * t1) + (z[5] * R75) - (z[3] * t6) - (z[2] * R74) + (z[0] * R54);
}
KOKKOS_INLINE_FUNCTION
void operator()( size_type ielem ) const
{
GradScalarType g[NNode] ;
const CoordScalarType x[NNode] = {
coords(ielem,0,0),
coords(ielem,0,1),
coords(ielem,0,2),
coords(ielem,0,3),
coords(ielem,0,4),
coords(ielem,0,5),
coords(ielem,0,6),
coords(ielem,0,7)
};
const CoordScalarType y[NNode] = {
coords(ielem,1,0),
coords(ielem,1,1),
coords(ielem,1,2),
coords(ielem,1,3),
coords(ielem,1,4),
coords(ielem,1,5),
coords(ielem,1,6),
coords(ielem,1,7)
};
const CoordScalarType z[NNode] = {
coords(ielem,2,0),
coords(ielem,2,1),
coords(ielem,2,2),
coords(ielem,2,3),
coords(ielem,2,4),
coords(ielem,2,5),
coords(ielem,2,6),
coords(ielem,2,7)
};
grad( z , y , g );
grad_op(ielem,0,0) = g[0];
grad_op(ielem,0,1) = g[1];
grad_op(ielem,0,2) = g[2];
grad_op(ielem,0,3) = g[3];
grad_op(ielem,0,4) = g[4];
grad_op(ielem,0,5) = g[5];
grad_op(ielem,0,6) = g[6];
grad_op(ielem,0,7) = g[7];
grad( x , z , g );
grad_op(ielem,1,0) = g[0];
grad_op(ielem,1,1) = g[1];
grad_op(ielem,1,2) = g[2];
grad_op(ielem,1,3) = g[3];
grad_op(ielem,1,4) = g[4];
grad_op(ielem,1,5) = g[5];
grad_op(ielem,1,6) = g[6];
grad_op(ielem,1,7) = g[7];
grad( y , x , g );
grad_op(ielem,2,0) = g[0];
grad_op(ielem,2,1) = g[1];
grad_op(ielem,2,2) = g[2];
grad_op(ielem,2,3) = g[3];
grad_op(ielem,2,4) = g[4];
grad_op(ielem,2,5) = g[5];
grad_op(ielem,2,6) = g[6];
grad_op(ielem,2,7) = g[7];
}
//--------------------------------------------------------------------------
struct Init {
typedef typename self_type::execution_space execution_space ;
elem_coord_type coords ;
Init( const elem_coord_type & arg_coords )
: coords( arg_coords ) {}
KOKKOS_INLINE_FUNCTION
void operator()( size_type ielem ) const
{
coords(ielem,0,0) = 0.;
coords(ielem,1,0) = 0.;
coords(ielem,2,0) = 0.;
coords(ielem,0,1) = 1.;
coords(ielem,1,1) = 0.;
coords(ielem,2,1) = 0.;
coords(ielem,0,2) = 1.;
coords(ielem,1,2) = 1.;
coords(ielem,2,2) = 0.;
coords(ielem,0,3) = 0.;
coords(ielem,1,3) = 1.;
coords(ielem,2,3) = 0.;
coords(ielem,0,4) = 0.;
coords(ielem,1,4) = 0.;
coords(ielem,2,4) = 1.;
coords(ielem,0,5) = 1.;
coords(ielem,1,5) = 0.;
coords(ielem,2,5) = 1.;
coords(ielem,0,6) = 1.;
coords(ielem,1,6) = 1.;
coords(ielem,2,6) = 1.;
coords(ielem,0,7) = 0.;
coords(ielem,1,7) = 1.;
coords(ielem,2,7) = 1.;
}
};
//--------------------------------------------------------------------------
static double test( const int count , const int iter = 1 )
{
elem_coord_type coord( "coord" , count );
elem_grad_type grad ( "grad" , count );
// Execute the parallel kernels on the arrays:
double dt_min = 0 ;
Kokkos::parallel_for( count , Init( coord ) );
execution_space::fence();
for ( int i = 0 ; i < iter ; ++i ) {
Kokkos::Timer timer ;
Kokkos::parallel_for( count , HexGrad<execution_space>( coord , grad ) );
execution_space::fence();
const double dt = timer.seconds();
if ( 0 == i ) dt_min = dt ;
else dt_min = dt < dt_min ? dt : dt_min ;
}
return dt_min ;
}
};
template< class DeviceType >
void run_test_hexgrad( int exp_beg , int exp_end, int num_trials, const char deviceTypeName[] )
{
std::string label_hexgrad ;
label_hexgrad.append( "\"HexGrad< double , " );
label_hexgrad.append( deviceTypeName );
label_hexgrad.append( " >\"" );
for (int i = exp_beg ; i < exp_end ; ++i) {
double min_seconds = 0.0 ;
double max_seconds = 0.0 ;
double avg_seconds = 0.0 ;
const int parallel_work_length = 1<<i;
for ( int j = 0 ; j < num_trials ; ++j ) {
const double seconds = HexGrad< DeviceType >::test(parallel_work_length) ;
if ( 0 == j ) {
min_seconds = seconds ;
max_seconds = seconds ;
}
else {
if ( seconds < min_seconds ) min_seconds = seconds ;
if ( seconds > max_seconds ) max_seconds = seconds ;
}
avg_seconds += seconds ;
}
avg_seconds /= num_trials ;
std::cout << label_hexgrad
<< " , " << parallel_work_length
<< " , " << min_seconds
<< " , " << ( min_seconds / parallel_work_length )
<< std::endl ;
}
}
TEST_F( default_exec, hexgrad ) {
int exp_beg = 10;
int exp_end = 20;
int num_trials = 5;
if(command_line_num_args()>1)
exp_beg = atoi(command_line_arg(1));
if(command_line_num_args()>2)
exp_end = atoi(command_line_arg(2));
if(command_line_num_args()>3)
num_trials = atoi(command_line_arg(3));
EXPECT_NO_THROW(run_test_hexgrad< Kokkos::DefaultExecutionSpace >( exp_beg, exp_end, num_trials, Kokkos::DefaultExecutionSpace::name() ));
}
}