Files
lammps/src/OPT/pair_eam_opt.cpp
2024-04-15 21:04:57 -04:00

381 lines
12 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors:
James Fischer, High Performance Technologies, Inc.
Charles Cornwell, High Performance Technologies, Inc.
David Richie, Stone Ridge Technology
Vincent Natoli, Stone Ridge Technology
------------------------------------------------------------------------- */
#include "pair_eam_opt.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include "update.h"
#include <cmath>
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairEAMOpt::PairEAMOpt(LAMMPS *lmp) : PairEAM(lmp) {}
/* ---------------------------------------------------------------------- */
void PairEAMOpt::compute(int eflag, int vflag)
{
ev_init(eflag, vflag);
if (evflag) {
if (eflag) {
if (force->newton_pair)
return eval<1, 1, 1>();
else
return eval<1, 1, 0>();
} else {
if (force->newton_pair)
return eval<1, 0, 1>();
else
return eval<1, 0, 0>();
}
} else {
if (force->newton_pair)
return eval<0, 0, 1>();
else
return eval<0, 0, 0>();
}
}
/* ---------------------------------------------------------------------- */
template <int EVFLAG, int EFLAG, int NEWTON_PAIR> void PairEAMOpt::eval()
{
typedef struct {
double x, y, z;
} vec3_t;
typedef struct {
double rhor0i, rhor1i, rhor2i, rhor3i;
double rhor0j, rhor1j, rhor2j, rhor3j;
} fast_alpha_t;
typedef struct {
double rhor4i, rhor5i, rhor6i;
double rhor4j, rhor5j, rhor6j;
double z2r0, z2r1, z2r2, z2r3, z2r4, z2r5, z2r6;
double _pad[3];
} fast_gamma_t;
int i, j, ii, jj, inum, jnum, itype, jtype;
double evdwl = 0.0;
double *_noalias coeff;
// grow energy array if necessary
if (atom->nmax > nmax) {
memory->destroy(rho);
memory->destroy(fp);
memory->destroy(numforce);
nmax = atom->nmax;
memory->create(rho, nmax, "pair:rho");
memory->create(fp, nmax, "pair:fp");
memory->create(numforce, nmax, "pair:numforce");
}
double **_noalias x = atom->x;
double **_noalias f = atom->f;
int *_noalias type = atom->type;
int nlocal = atom->nlocal;
auto *_noalias xx = (vec3_t *) x[0];
auto *_noalias ff = (vec3_t *) f[0];
double tmp_cutforcesq = cutforcesq;
double tmp_rdr = rdr;
int nr2 = nr - 2;
int nr1 = nr - 1;
inum = list->inum;
int *_noalias ilist = list->ilist;
int **_noalias firstneigh = list->firstneigh;
int *_noalias numneigh = list->numneigh;
int ntypes = atom->ntypes;
int ntypes2 = ntypes * ntypes;
int beyond_rhomax = 0;
auto *_noalias fast_alpha =
(fast_alpha_t *) malloc((size_t) ntypes2 * (nr + 1) * sizeof(fast_alpha_t));
for (i = 0; i < ntypes; i++)
for (j = 0; j < ntypes; j++) {
auto *_noalias tab = &fast_alpha[i * ntypes * nr + j * nr];
if (type2rhor[i + 1][j + 1] >= 0) {
for (int m = 1; m <= nr; m++) {
tab[m].rhor0i = rhor_spline[type2rhor[i + 1][j + 1]][m][6];
tab[m].rhor1i = rhor_spline[type2rhor[i + 1][j + 1]][m][5];
tab[m].rhor2i = rhor_spline[type2rhor[i + 1][j + 1]][m][4];
tab[m].rhor3i = rhor_spline[type2rhor[i + 1][j + 1]][m][3];
}
}
if (type2rhor[j + 1][i + 1] >= 0) {
for (int m = 1; m <= nr; m++) {
tab[m].rhor0j = rhor_spline[type2rhor[j + 1][i + 1]][m][6];
tab[m].rhor1j = rhor_spline[type2rhor[j + 1][i + 1]][m][5];
tab[m].rhor2j = rhor_spline[type2rhor[j + 1][i + 1]][m][4];
tab[m].rhor3j = rhor_spline[type2rhor[j + 1][i + 1]][m][3];
}
}
}
auto *_noalias tabeight = fast_alpha;
auto *_noalias fast_gamma =
(fast_gamma_t *) malloc((size_t) ntypes2 * (nr + 1) * sizeof(fast_gamma_t));
for (i = 0; i < ntypes; i++)
for (j = 0; j < ntypes; j++) {
auto *_noalias tab = &fast_gamma[i * ntypes * nr + j * nr];
if (type2rhor[i + 1][j + 1] >= 0) {
for (int m = 1; m <= nr; m++) {
tab[m].rhor4i = rhor_spline[type2rhor[i + 1][j + 1]][m][2];
tab[m].rhor5i = rhor_spline[type2rhor[i + 1][j + 1]][m][1];
tab[m].rhor6i = rhor_spline[type2rhor[i + 1][j + 1]][m][0];
}
}
if (type2rhor[j + 1][i + 1] >= 0) {
for (int m = 1; m <= nr; m++) {
tab[m].rhor4j = rhor_spline[type2rhor[j + 1][i + 1]][m][2];
tab[m].rhor5j = rhor_spline[type2rhor[j + 1][i + 1]][m][1];
tab[m].rhor6j = rhor_spline[type2rhor[j + 1][i + 1]][m][0];
tab[m].z2r6 = z2r_spline[type2z2r[i + 1][j + 1]][m][0];
}
}
if (type2z2r[i + 1][j + 1] >= 0) {
for (int m = 1; m <= nr; m++) {
tab[m].z2r0 = z2r_spline[type2z2r[i + 1][j + 1]][m][6];
tab[m].z2r1 = z2r_spline[type2z2r[i + 1][j + 1]][m][5];
tab[m].z2r2 = z2r_spline[type2z2r[i + 1][j + 1]][m][4];
tab[m].z2r3 = z2r_spline[type2z2r[i + 1][j + 1]][m][3];
tab[m].z2r4 = z2r_spline[type2z2r[i + 1][j + 1]][m][2];
tab[m].z2r5 = z2r_spline[type2z2r[i + 1][j + 1]][m][1];
tab[m].z2r6 = z2r_spline[type2z2r[i + 1][j + 1]][m][0];
}
}
}
auto *_noalias tabss = fast_gamma;
// zero out density
if (NEWTON_PAIR) {
int m = nlocal + atom->nghost;
for (i = 0; i < m; i++) rho[i] = 0.0;
} else
for (i = 0; i < nlocal; i++) rho[i] = 0.0;
// rho = density at each atom
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double xtmp = xx[i].x;
double ytmp = xx[i].y;
double ztmp = xx[i].z;
itype = type[i] - 1;
int *_noalias jlist = firstneigh[i];
jnum = numneigh[i];
double tmprho = rho[i];
auto *_noalias tabeighti = &tabeight[itype * ntypes * nr];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
double delx = xtmp - xx[j].x;
double dely = ytmp - xx[j].y;
double delz = ztmp - xx[j].z;
double rsq = delx * delx + dely * dely + delz * delz;
if (rsq < tmp_cutforcesq) {
jtype = type[j] - 1;
double p = sqrt(rsq) * tmp_rdr;
if ((int) p <= nr2) {
int m = (int) p + 1;
p -= (double) ((int) p);
fast_alpha_t &a = tabeighti[jtype * nr + m];
tmprho += ((a.rhor3j * p + a.rhor2j) * p + a.rhor1j) * p + a.rhor0j;
if (NEWTON_PAIR || j < nlocal) {
rho[j] += ((a.rhor3i * p + a.rhor2i) * p + a.rhor1i) * p + a.rhor0i;
}
} else {
fast_alpha_t &a = tabeighti[jtype * nr + nr1];
tmprho += a.rhor3j + a.rhor2j + a.rhor1j + a.rhor0j;
if (NEWTON_PAIR || j < nlocal) { rho[j] += a.rhor3i + a.rhor2i + a.rhor1i + a.rhor0i; }
}
}
}
rho[i] = tmprho;
}
// communicate and sum densities
if (NEWTON_PAIR) comm->reverse_comm(this);
// fp = derivative of embedding energy at each atom
// phi = embedding energy at each atom
// if rho > rhomax (e.g. due to close approach of two atoms),
// will exceed table, so add linear term to conserve energy
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double p = rho[i] * rdrho + 1.0;
int m = static_cast<int>(p);
m = MAX(1, MIN(m, nrho - 1));
p -= m;
p = MIN(p, 1.0);
coeff = frho_spline[type2frho[type[i]]][m];
fp[i] = (coeff[0] * p + coeff[1]) * p + coeff[2];
if (EFLAG) {
double phi = ((coeff[3] * p + coeff[4]) * p + coeff[5]) * p + coeff[6];
if (rho[i] > rhomax) {
phi += fp[i] * (rho[i] - rhomax);
beyond_rhomax = 1;
}
phi *= scale[type[i]][type[i]];
if (eflag_global) eng_vdwl += phi;
if (eflag_atom) eatom[i] += phi;
}
}
// communicate derivative of embedding function
comm->forward_comm(this);
embedstep = update->ntimestep;
// compute forces on each atom
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double xtmp = xx[i].x;
double ytmp = xx[i].y;
double ztmp = xx[i].z;
int itype1 = type[i] - 1;
int *_noalias jlist = firstneigh[i];
jnum = numneigh[i];
double tmpfx = 0.0;
double tmpfy = 0.0;
double tmpfz = 0.0;
auto *_noalias tabssi = &tabss[itype1 * ntypes * nr];
double *_noalias scale_i = scale[itype1 + 1] + 1;
numforce[i] = 0;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
double delx = xtmp - xx[j].x;
double dely = ytmp - xx[j].y;
double delz = ztmp - xx[j].z;
double rsq = delx * delx + dely * dely + delz * delz;
if (rsq < tmp_cutforcesq) {
++numforce[i];
jtype = type[j] - 1;
double r = sqrt(rsq);
double rhoip, rhojp, z2, z2p;
double p = r * tmp_rdr;
if ((int) p <= nr2) {
int m = (int) p + 1;
m = MIN(m, nr - 1);
p -= (double) ((int) p);
p = MIN(p, 1.0);
fast_gamma_t &a = tabssi[jtype * nr + m];
rhoip = (a.rhor6i * p + a.rhor5i) * p + a.rhor4i;
rhojp = (a.rhor6j * p + a.rhor5j) * p + a.rhor4j;
z2 = ((a.z2r3 * p + a.z2r2) * p + a.z2r1) * p + a.z2r0;
z2p = (a.z2r6 * p + a.z2r5) * p + a.z2r4;
} else {
fast_gamma_t &a = tabssi[jtype * nr + nr1];
rhoip = a.rhor6i + a.rhor5i + a.rhor4i;
rhojp = a.rhor6j + a.rhor5j + a.rhor4j;
z2 = a.z2r3 + a.z2r2 + a.z2r1 + a.z2r0;
z2p = a.z2r6 + a.z2r5 + a.z2r4;
}
// rhoip = derivative of (density at atom j due to atom i)
// rhojp = derivative of (density at atom i due to atom j)
// phi = pair potential energy
// phip = phi'
// z2 = phi * r
// z2p = (phi * r)' = (phi' r) + phi
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
// scale factor can be applied by thermodynamic integration
double recip = 1.0 / r;
double phi = z2 * recip;
double phip = z2p * recip - phi * recip;
double psip = fp[i] * rhojp + fp[j] * rhoip + phip;
double fpair = -scale_i[jtype] * psip * recip;
tmpfx += delx * fpair;
tmpfy += dely * fpair;
tmpfz += delz * fpair;
if (NEWTON_PAIR || j < nlocal) {
ff[j].x -= delx * fpair;
ff[j].y -= dely * fpair;
ff[j].z -= delz * fpair;
}
if (EFLAG) evdwl = scale_i[jtype] * phi;
if (EVFLAG) ev_tally(i, j, nlocal, NEWTON_PAIR, evdwl, 0.0, fpair, delx, dely, delz);
}
}
ff[i].x += tmpfx;
ff[i].y += tmpfy;
ff[i].z += tmpfz;
}
free(fast_alpha);
fast_alpha = nullptr;
free(fast_gamma);
fast_gamma = nullptr;
if (EFLAG && (!exceeded_rhomax)) {
MPI_Allreduce(&beyond_rhomax, &exceeded_rhomax, 1, MPI_INT, MPI_MAX, world);
if (exceeded_rhomax) {
if (comm->me == 0)
error->warning(FLERR,
"A per-atom density exceeded rhomax of EAM potential table - "
"a linear extrapolation to the energy was made");
}
}
if (vflag_fdotr) virial_fdotr_compute();
}