Files
lammps/lib/kokkos/core/unit_test/TestTaskScheduler.hpp
2019-06-28 11:23:24 -06:00

971 lines
29 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP
#define KOKKOS_UNITTEST_TASKSCHEDULER_HPP
#include <Kokkos_Macros.hpp>
#if defined( KOKKOS_ENABLE_TASKDAG )
#include <Kokkos_Core.hpp>
#include <impl/Kokkos_FixedBufferMemoryPool.hpp>
#include <cstdio>
#include <iostream>
#include <cmath>
//==============================================================================
// <editor-fold desc="TestFib"> {{{1
namespace TestTaskScheduler {
namespace {
inline
long eval_fib( long n )
{
constexpr long mask = 0x03;
long fib[4] = { 0, 1, 1, 2 };
for ( long i = 2; i <= n; ++i ) {
fib[ i & mask ] = fib[ ( i - 1 ) & mask ] + fib[ ( i - 2 ) & mask ];
}
return fib[ n & mask ];
}
}
template< typename Scheduler >
struct TestFib
{
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture< long, Scheduler >;
using value_type = long;
future_type fib_m1;
future_type fib_m2;
const value_type n;
KOKKOS_INLINE_FUNCTION
TestFib( const value_type arg_n )
: fib_m1(), fib_m2(), n( arg_n ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename sched_type::member_type & member, value_type & result )
{
#if 0
printf( "\nTestFib(%ld) %d %d\n", n, int( !fib_m1.is_null() ), int( !fib_m2.is_null() ) );
#endif
auto& sched = member.scheduler();
if ( n < 2 ) {
result = n;
}
else if ( !fib_m2.is_null() && !fib_m1.is_null() ) {
result = fib_m1.get() + fib_m2.get();
}
else {
// Spawn new children and respawn myself to sum their results.
// Spawn lower value at higher priority as it has a shorter
// path to completion.
fib_m2 = Kokkos::task_spawn( Kokkos::TaskSingle( sched, Kokkos::TaskPriority::High )
, TestFib( n - 2 ) );
fib_m1 = Kokkos::task_spawn( Kokkos::TaskSingle( sched )
, TestFib( n - 1 ) );
Kokkos::BasicFuture<void, Scheduler> dep[] = { fib_m1, fib_m2 };
Kokkos::BasicFuture<void, Scheduler> fib_all = sched.when_all( dep, 2 );
if ( !fib_m2.is_null() && !fib_m1.is_null() && !fib_all.is_null() ) {
// High priority to retire this branch.
Kokkos::respawn( this, fib_all, Kokkos::TaskPriority::High );
}
else {
#if 1
printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, n
, 0 //sched.allocation_capacity()
, 0 //sched.allocated_task_count_max()
, 0l //sched.allocated_task_count_accum()
);
#endif
Kokkos::abort( "TestFib insufficient memory" );
}
}
}
static void run( int i, size_t MemoryCapacity = 16000 )
{
typedef typename sched_type::memory_space memory_space;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched( memory_space()
, MemoryCapacity
, MinBlockSize
, std::min(size_t(MaxBlockSize),MemoryCapacity)
, std::min(size_t(SuperBlockSize),MemoryCapacity) );
{
future_type f = Kokkos::host_spawn( Kokkos::TaskSingle( root_sched )
, TestFib( i ) );
Kokkos::wait( root_sched );
ASSERT_EQ( eval_fib( i ), f.get() );
}
ASSERT_EQ(root_sched.queue().allocation_count(), 0);
#if 0
fprintf( stdout, "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, i
, int(root_sched.template spawn_allocation_size<TestFib>())
, int(root_sched.when_all_allocation_size(2))
, root_sched.allocation_capacity()
, root_sched.allocated_task_count_max()
, root_sched.allocated_task_count_accum()
);
fflush( stdout );
#endif
}
};
} // namespace TestTaskScheduler
// </editor-fold> end TestFib }}}1
//==============================================================================
//----------------------------------------------------------------------------
//==============================================================================
// <editor-fold desc="TestTaskDependence"> {{{1
namespace TestTaskScheduler {
template< class Scheduler >
struct TestTaskDependence {
typedef Scheduler sched_type;
typedef Kokkos::BasicFuture< void, Scheduler > future_type;
typedef Kokkos::View< long, typename sched_type::execution_space > accum_type;
typedef void value_type;
accum_type m_accum;
long m_count;
KOKKOS_INLINE_FUNCTION
TestTaskDependence( long n
, const accum_type & arg_accum )
: m_accum( arg_accum )
, m_count( n ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename sched_type::member_type & member )
{
auto& sched = member.scheduler();
enum { CHUNK = 8 };
const int n = CHUNK < m_count ? CHUNK : m_count;
if ( 1 < m_count ) {
const int increment = ( m_count + n - 1 ) / n;
future_type f =
sched.when_all( n , [this,&member,increment]( int i ) {
const long inc = increment ;
const long begin = i * inc ;
const long count = begin + inc < m_count ? inc : m_count - begin ;
return Kokkos::task_spawn
( Kokkos::TaskSingle( member.scheduler() )
, TestTaskDependence( count, m_accum ) );
});
m_count = 0;
Kokkos::respawn( this, f );
}
else if ( 1 == m_count ) {
Kokkos::atomic_increment( & m_accum() );
}
}
static void run( int n )
{
typedef typename sched_type::memory_space memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched( memory_space()
, MemoryCapacity
, MinBlockSize
, MaxBlockSize
, SuperBlockSize );
accum_type accum( "accum" );
typename accum_type::HostMirror host_accum = Kokkos::create_mirror_view( accum );
Kokkos::host_spawn( Kokkos::TaskSingle( sched ), TestTaskDependence( n, accum ) );
Kokkos::wait( sched );
Kokkos::deep_copy( host_accum, accum );
ASSERT_EQ( host_accum(), n );
}
};
} // namespace TestTaskScheduler
// </editor-fold> end TestTaskDependence }}}1
//==============================================================================
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template< class Scheduler >
struct TestTaskTeam {
//enum { SPAN = 8 };
enum { SPAN = 33 };
//enum { SPAN = 1 };
typedef void value_type;
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
using ExecSpace = typename sched_type::execution_space;
typedef Kokkos::View< long*, ExecSpace > view_type;
future_type future;
view_type parfor_result;
view_type parreduce_check;
view_type parscan_result;
view_type parscan_check;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeam( const view_type & arg_parfor_result
, const view_type & arg_parreduce_check
, const view_type & arg_parscan_result
, const view_type & arg_parscan_check
, const long arg_nvalue )
: future()
, parfor_result( arg_parfor_result )
, parreduce_check( arg_parreduce_check )
, parscan_result( arg_parscan_result )
, parscan_check( arg_parscan_check )
, nvalue( arg_nvalue ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename sched_type::member_type & member )
{
auto& sched = member.scheduler();
const long end = nvalue + 1;
// begin = max(end - SPAN, 0);
const long begin = 0 < end - SPAN ? end - SPAN : 0;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = Kokkos::task_spawn( Kokkos::TaskTeam( sched )
, TestTaskTeam( parfor_result
, parreduce_check
, parscan_result
, parscan_check
, begin - 1 )
);
#if !defined(__HCC_ACCELERATOR__) && !defined(__CUDA_ARCH__)
assert( !future.is_null() );
#endif
Kokkos::respawn( this, future );
}
return;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parfor_result[i] = i; }
);
// Test parallel_reduce without join.
long tot = 0;
long expected = ( begin + end - 1 ) * ( end - begin ) * 0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & res ) { res += parfor_result[i]; }
, tot
);
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parreduce_check[i] = expected - tot; }
);
// Test parallel_reduce with join.
tot = 0;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & res ) { res += parfor_result[i]; }
, Kokkos::Sum<long>( tot )
);
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { parreduce_check[i] += expected - tot; }
);
// Test parallel_scan.
// Exclusive scan.
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & val, const bool final )
{
if ( final ) { parscan_result[i] = val; }
val += i;
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if ( member.team_rank() == 0 ) {
for ( long i = begin; i < end; ++i ) {
parscan_check[i] = ( i * ( i - 1 ) - begin * ( begin - 1 ) ) * 0.5 - parscan_result[i];
}
}
// Don't overwrite 'parscan_result' until it has been tested.
member.team_barrier();
// Inclusive scan.
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i, long & val, const bool final )
{
val += i;
if ( final ) { parscan_result[i] = val; }
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if ( member.team_rank() == 0 ) {
for ( long i = begin; i < end; ++i ) {
parscan_check[i] += ( i * ( i + 1 ) - begin * ( begin - 1 ) ) * 0.5 - parscan_result[i];
}
}
// ThreadVectorRange check.
/*
long result = 0;
expected = ( begin + end - 1 ) * ( end - begin ) * 0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, 0, 1 )
, [&] ( const int i, long & outerUpdate )
{
long sum_j = 0.0;
Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member, end - begin )
, [&] ( const int j, long & innerUpdate )
{
innerUpdate += begin + j;
}, sum_j );
outerUpdate += sum_j;
}, result );
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i )
{
parreduce_check[i] += result - expected;
});
*/
}
static void run( long n )
{
const unsigned memory_capacity = 400000;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched( typename sched_type::memory_space()
, memory_capacity
, MinBlockSize
, MaxBlockSize
, SuperBlockSize );
view_type root_parfor_result( "parfor_result", n + 1 );
view_type root_parreduce_check( "parreduce_check", n + 1 );
view_type root_parscan_result( "parscan_result", n + 1 );
view_type root_parscan_check( "parscan_check", n + 1 );
typename view_type::HostMirror
host_parfor_result = Kokkos::create_mirror_view( root_parfor_result );
typename view_type::HostMirror
host_parreduce_check = Kokkos::create_mirror_view( root_parreduce_check );
typename view_type::HostMirror
host_parscan_result = Kokkos::create_mirror_view( root_parscan_result );
typename view_type::HostMirror
host_parscan_check = Kokkos::create_mirror_view( root_parscan_check );
future_type f = Kokkos::host_spawn( Kokkos::TaskTeam( root_sched )
, TestTaskTeam( root_parfor_result
, root_parreduce_check
, root_parscan_result
, root_parscan_check
, n )
);
Kokkos::wait( root_sched );
Kokkos::deep_copy( host_parfor_result, root_parfor_result );
Kokkos::deep_copy( host_parreduce_check, root_parreduce_check );
Kokkos::deep_copy( host_parscan_result, root_parscan_result );
Kokkos::deep_copy( host_parscan_check, root_parscan_check );
long error_count = 0 ;
for ( long i = 0; i <= n; ++i ) {
const long answer = i;
if ( host_parfor_result( i ) != answer ) {
++error_count ;
std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = "
<< host_parfor_result( i ) << " != " << answer << std::endl;
}
if ( host_parreduce_check( i ) != 0 ) {
++error_count ;
std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = "
<< host_parreduce_check( i ) << " != 0" << std::endl;
}
if ( host_parscan_check( i ) != 0 ) {
++error_count ;
std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = "
<< host_parscan_check( i ) << " != 0" << std::endl;
}
}
ASSERT_EQ( 0L , error_count );
}
};
template< class Scheduler >
struct TestTaskTeamValue {
enum { SPAN = 8 };
typedef long value_type;
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture< value_type, sched_type >;
using ExecSpace = typename sched_type::execution_space;
typedef Kokkos::View< long*, ExecSpace > view_type;
future_type future;
view_type result;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeamValue( const view_type & arg_result
, const long arg_nvalue )
: future()
, result( arg_result )
, nvalue( arg_nvalue ) {}
KOKKOS_INLINE_FUNCTION
void operator()( typename sched_type::member_type const & member
, value_type & final )
{
const long end = nvalue + 1;
const long begin = 0 < end - SPAN ? end - SPAN : 0;
auto& sched = member.scheduler();
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = sched.task_spawn( TestTaskTeamValue( result, begin - 1 )
, Kokkos::TaskTeam );
#if !defined(__HCC_ACCELERATOR__) && !defined(__CUDA_ARCH__)
assert( !future.is_null() );
#endif
sched.respawn( this , future );
}
return;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i ) { result[i] = i + 1; }
);
if ( member.team_rank() == 0 ) {
final = result[nvalue];
}
Kokkos::memory_fence();
}
static void run( long n )
{
const unsigned memory_capacity = 100000;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched( typename sched_type::memory_space()
, memory_capacity
, MinBlockSize
, MaxBlockSize
, SuperBlockSize );
view_type root_result( "result", n + 1 );
typename view_type::HostMirror host_result = Kokkos::create_mirror_view( root_result );
future_type fv = root_sched.host_spawn( TestTaskTeamValue( root_result, n )
, Kokkos::TaskTeam );
Kokkos::wait( root_sched );
Kokkos::deep_copy( host_result, root_result );
if ( fv.get() != n + 1 ) {
std::cerr << "TestTaskTeamValue ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl;
}
for ( long i = 0; i <= n; ++i ) {
const long answer = i + 1;
if ( host_result( i ) != answer ) {
std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = "
<< host_result( i ) << " != " << answer << std::endl;
}
}
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template< class Scheduler >
struct TestTaskSpawnWithPool {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
typedef void value_type;
using Space = typename sched_type::execution_space;
int m_count ;
Kokkos::MemoryPool<Space> m_pool ;
KOKKOS_INLINE_FUNCTION
TestTaskSpawnWithPool(
const int & arg_count,
const Kokkos::MemoryPool<Space> & arg_pool
)
: m_count( arg_count )
, m_pool( arg_pool )
{}
KOKKOS_INLINE_FUNCTION
void operator()( typename sched_type::member_type & member )
{
if ( m_count ) {
Kokkos::task_spawn( Kokkos::TaskSingle( member.scheduler() ) , TestTaskSpawnWithPool( m_count - 1, m_pool ) );
}
}
static void run()
{
typedef typename sched_type::memory_space memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched( memory_space()
, MemoryCapacity
, MinBlockSize
, MaxBlockSize
, SuperBlockSize );
using other_memory_space = typename Space::memory_space;
Kokkos::MemoryPool<Space> pool(other_memory_space(), 10000, 100, 200, 1000);
auto f = Kokkos::host_spawn( Kokkos::TaskSingle( sched ), TestTaskSpawnWithPool( 3, pool ) );
Kokkos::wait( sched );
}
};
}
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template< class Scheduler >
struct TestTaskCtorsDevice {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
using value_type = void;
using Space = typename sched_type::execution_space;
int m_count;
KOKKOS_INLINE_FUNCTION
TestTaskCtorsDevice(const int & arg_count) : m_count(arg_count) { }
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member )
{
// Note: Default construction on the device is not allowed
if(m_count == 4) {
Kokkos::task_spawn(
Kokkos::TaskSingle(member.scheduler()),
TestTaskCtorsDevice(m_count - 1)
);
}
else if(m_count == 3) {
sched_type s = member.scheduler(); // move construct
s = member.scheduler(); // move assignment
Kokkos::task_spawn(
Kokkos::TaskSingle(s),
TestTaskCtorsDevice(m_count - 1)
);
}
else if(m_count == 2) {
sched_type s3 = member.scheduler(); // move construct from member.scheduler();
Kokkos::task_spawn(
Kokkos::TaskSingle(s3),
TestTaskCtorsDevice(m_count - 1)
);
}
else if(m_count == 1) {
sched_type s = member.scheduler(); // move construct from member.scheduler();
sched_type s2 = s; // copy construct from s
Kokkos::task_spawn(
Kokkos::TaskSingle(s2),
TestTaskCtorsDevice(m_count - 1)
);
}
}
static void run()
{
using memory_space = typename sched_type::memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched(
memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize, SuperBlockSize
);
auto f = Kokkos::host_spawn(
Kokkos::TaskSingle(sched),
TestTaskCtorsDevice(4)
);
Kokkos::wait(sched);
// TODO assertions and sanity checks
}
};
}
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template<class Scheduler>
struct TestMultipleDependence {
using sched_type = Scheduler;
using future_bool = Kokkos::BasicFuture<bool, sched_type>;
using future_int = Kokkos::BasicFuture<int, sched_type>;
using value_type = bool;
using execution_space = typename sched_type::execution_space;
enum : int { NPerDepth = 6 };
enum : int { NFanout = 3 };
// xlC doesn't like incomplete aggregate constructors, so we have do do this manually:
KOKKOS_INLINE_FUNCTION
TestMultipleDependence(int depth, int max_depth)
: m_depth(depth),
m_max_depth(max_depth),
m_dep()
{
// gcc 4.8 has an internal compile error when I give the initializer in the class, so I have do do it here
for(int i = 0; i < NPerDepth; ++i) {
m_result_futures[i] = future_bool();
}
}
// xlC doesn't like incomplete aggregate constructors, so we have do do this manually:
KOKKOS_INLINE_FUNCTION
TestMultipleDependence(int depth, int max_depth, future_int dep)
: m_depth(depth),
m_max_depth(max_depth),
m_dep(dep)
{
// gcc 4.8 has an internal compile error when I give the initializer in the class, so I have do do it here
for(int i = 0; i < NPerDepth; ++i) {
m_result_futures[i] = future_bool();
}
}
int m_depth;
int m_max_depth;
future_int m_dep;
future_bool m_result_futures[NPerDepth];
struct TestCheckReady {
future_int m_dep;
using value_type = bool;
KOKKOS_INLINE_FUNCTION
void operator()(typename Scheduler::member_type&, bool& value) {
// if it was "transiently" ready, this could be false even if we made it a dependence of this task
value = m_dep.is_ready();
return;
}
};
struct TestComputeValue {
using value_type = int;
KOKKOS_INLINE_FUNCTION
void operator()(typename Scheduler::member_type&, int& result) {
double value = 0;
// keep this one busy for a while
for(int i = 0; i < 10000; ++i) {
value += i * i / 7.138 / value;
}
// Do something irrelevant
result = int(value) << 2;
return;
}
};
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type & member, bool& value)
{
if(m_result_futures[0].is_null()) {
if (m_depth == 0) {
// Spawn one expensive task at the root
m_dep = Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()), TestComputeValue{});
}
// Then check for it to be ready in a whole bunch of other tasks that race
int n_checkers = NPerDepth;
if(m_depth < m_max_depth) {
n_checkers -= NFanout;
for(int i = n_checkers; i < NPerDepth; ++i) {
m_result_futures[i] = Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestMultipleDependence<Scheduler>(m_depth + 1, m_max_depth, m_dep)
);
}
}
for(int i = 0; i < n_checkers; ++i) {
m_result_futures[i] = member.scheduler().spawn(Kokkos::TaskSingle(m_dep), TestCheckReady{m_dep});
}
auto done = member.scheduler().when_all(m_result_futures, NPerDepth);
Kokkos::respawn(this, done);
return;
}
else {
value = true;
for(int i = 0; i < NPerDepth; ++i) {
value = value && !m_result_futures[i].is_null();
if(value) {
value = value && m_result_futures[i].get();
}
}
return;
}
}
static void run(int depth)
{
typedef typename sched_type::memory_space memory_space;
enum { MemoryCapacity = 1 << 30 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched( memory_space()
, MemoryCapacity
, MinBlockSize
, MaxBlockSize
, SuperBlockSize );
auto f = Kokkos::host_spawn( Kokkos::TaskSingle( sched ), TestMultipleDependence<Scheduler>( 0, depth ) );
Kokkos::wait( sched );
ASSERT_TRUE( f.get() );
}
};
}
//----------------------------------------------------------------------------
#define KOKKOS_PP_CAT_IMPL(x, y) x ## y
#define KOKKOS_TEST_WITH_SUFFIX(x, y) KOKKOS_PP_CAT_IMPL(x, y)
#define TEST_SCHEDULER_SUFFIX _deprecated
#define TEST_SCHEDULER Kokkos::DeprecatedTaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _deprecated_multiple
#define TEST_SCHEDULER Kokkos::DeprecatedTaskSchedulerMultiple<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _single
#define TEST_SCHEDULER Kokkos::TaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _multiple
#define TEST_SCHEDULER Kokkos::TaskSchedulerMultiple<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _chase_lev
#define TEST_SCHEDULER Kokkos::ChaseLevTaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#if 0
#define TEST_SCHEDULER_SUFFIX _fixed_mempool
#define TEST_SCHEDULER \
Kokkos::SimpleTaskScheduler< \
TEST_EXECSPACE, \
Kokkos::Impl::SingleTaskQueue< \
TEST_EXECSPACE, \
Kokkos::Impl::default_tasking_memory_space_for_execution_space_t<TEST_EXECSPACE>, \
Kokkos::Impl::TaskQueueTraitsLockBased, \
Kokkos::Impl::FixedBlockSizeMemoryPool< \
Kokkos::Device<TEST_EXECSPACE, Kokkos::Impl::default_tasking_memory_space_for_execution_space_t<TEST_EXECSPACE>>, \
128, \
16 \
> \
> \
>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _fixed_mempool_multiple
#define TEST_SCHEDULER \
Kokkos::SimpleTaskScheduler< \
TEST_EXECSPACE, \
Kokkos::Impl::MultipleTaskQueue< \
TEST_EXECSPACE, \
Kokkos::Impl::default_tasking_memory_space_for_execution_space_t<TEST_EXECSPACE>, \
Kokkos::Impl::TaskQueueTraitsLockBased, \
Kokkos::Impl::FixedBlockSizeMemoryPool< \
Kokkos::Device<TEST_EXECSPACE, Kokkos::Impl::default_tasking_memory_space_for_execution_space_t<TEST_EXECSPACE>>, \
128, \
16 \
> \
> \
>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#endif
#undef KOKKOS_TEST_WITH_SUFFIX
#undef KOKKOS_PP_CAT_IMPL
#endif // #if defined( KOKKOS_ENABLE_TASKDAG )
#endif // #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP