467 lines
16 KiB
C++
467 lines
16 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS Development team: developers@lammps.org
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "compute_pace.h"
|
|
|
|
#include "ace-evaluator/ace_c_basis.h"
|
|
#include "ace-evaluator/ace_evaluator.h"
|
|
#include "ace-evaluator/ace_types.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "neigh_list.h"
|
|
#include "neighbor.h"
|
|
#include "pair.h"
|
|
#include "update.h"
|
|
|
|
namespace LAMMPS_NS {
|
|
struct ACECimpl {
|
|
ACECimpl() : basis_set(nullptr), ace(nullptr) {}
|
|
~ACECimpl()
|
|
{
|
|
delete basis_set;
|
|
delete ace;
|
|
}
|
|
ACECTildeBasisSet *basis_set;
|
|
ACECTildeEvaluator *ace;
|
|
};
|
|
} // namespace LAMMPS_NS
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
enum { SCALAR, VECTOR, ARRAY };
|
|
ComputePACE::ComputePACE(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg), cutsq(nullptr), list(nullptr), pace(nullptr), paceall(nullptr),
|
|
pace_peratom(nullptr), map(nullptr), c_pe(nullptr), c_virial(nullptr), acecimpl(nullptr)
|
|
{
|
|
array_flag = 1;
|
|
extarray = 0;
|
|
bikflag = 0;
|
|
dgradflag = 0;
|
|
|
|
int ntypes = atom->ntypes;
|
|
int nargmin = 4;
|
|
|
|
acecimpl = new ACECimpl;
|
|
if (narg < nargmin) error->all(FLERR,"Illegal compute pace command");
|
|
|
|
bikflag = utils::inumeric(FLERR, arg[4], false, lmp);
|
|
dgradflag = utils::inumeric(FLERR, arg[5], false, lmp);
|
|
if (dgradflag && !bikflag)
|
|
error->all(FLERR,"Illegal compute pace command: dgradflag=1 requires bikflag=1");
|
|
|
|
memory->create(map,ntypes+1,"pace:map");
|
|
|
|
//read in file with CG coefficients or c_tilde coefficients
|
|
|
|
auto potential_file_name = utils::get_potential_file_path(arg[3]);
|
|
delete acecimpl->basis_set;
|
|
acecimpl->basis_set = new ACECTildeBasisSet(potential_file_name);
|
|
cutmax = acecimpl->basis_set->cutoffmax;
|
|
|
|
//# of rank 1, rank > 1 functions
|
|
|
|
int n_r1, n_rp = 0;
|
|
n_r1 = acecimpl->basis_set->total_basis_size_rank1[0];
|
|
n_rp = acecimpl->basis_set->total_basis_size[0];
|
|
|
|
int ncoeff = n_r1 + n_rp;
|
|
nvalues = ncoeff;
|
|
|
|
ndims_force = 3;
|
|
ndims_virial = 6;
|
|
bik_rows = 1;
|
|
yoffset = nvalues;
|
|
zoffset = 2*nvalues;
|
|
natoms = atom->natoms;
|
|
if (bikflag) bik_rows = natoms;
|
|
dgrad_rows = ndims_force*natoms;
|
|
size_array_rows = bik_rows+dgrad_rows + ndims_virial;
|
|
if (dgradflag) {
|
|
size_array_rows = bik_rows + 3*natoms*natoms + 1;
|
|
size_array_cols = nvalues + 3;
|
|
if (comm->me == 0)
|
|
error->warning(FLERR,"dgradflag=1 creates a N^2 array, beware of large systems.");
|
|
} else size_array_cols = nvalues*atom->ntypes + 1;
|
|
lastcol = size_array_cols-1;
|
|
|
|
ndims_peratom = ndims_force;
|
|
size_peratom = ndims_peratom*nvalues*atom->ntypes;
|
|
|
|
nmax = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputePACE::~ComputePACE()
|
|
{
|
|
modify->delete_compute(id_virial);
|
|
|
|
delete acecimpl;
|
|
memory->destroy(pace);
|
|
memory->destroy(paceall);
|
|
memory->destroy(cutsq);
|
|
memory->destroy(pace_peratom);
|
|
memory->destroy(map);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputePACE::init()
|
|
{
|
|
if (force->pair == nullptr)
|
|
error->all(FLERR,"Compute pace requires a pair style be defined");
|
|
|
|
if (cutmax > force->pair->cutforce)
|
|
error->all(FLERR,"Compute pace cutoff is longer than pairwise cutoff");
|
|
|
|
// need an occasional full neighbor list
|
|
neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL);
|
|
|
|
if (modify->get_compute_by_style("pace").size() > 1 && comm->me == 0)
|
|
error->warning(FLERR,"More than one compute pace");
|
|
|
|
// allocate memory for global array
|
|
memory->create(pace,size_array_rows,size_array_cols, "pace:pace");
|
|
memory->create(paceall,size_array_rows,size_array_cols, "pace:paceall");
|
|
array = paceall;
|
|
|
|
// find compute for reference energy
|
|
|
|
c_pe = modify->get_compute_by_id("thermo_pe");
|
|
if (!c_pe) error->all(FLERR,"Compute thermo_pe does not exist.");
|
|
|
|
// add compute for reference virial tensor
|
|
|
|
id_virial = id + std::string("_press");
|
|
c_virial = modify->add_compute(id_virial + " all pressure NULL virial");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputePACE::init_list(int /*id*/, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputePACE::compute_array()
|
|
{
|
|
int ntotal = atom->nlocal + atom->nghost;
|
|
invoked_array = update->ntimestep;
|
|
|
|
// grow pace_peratom array if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(pace_peratom);
|
|
nmax = atom->nmax;
|
|
memory->create(pace_peratom,nmax,size_peratom,"pace:pace_peratom");
|
|
}
|
|
|
|
// clear global array
|
|
|
|
for (int irow = 0; irow < size_array_rows; irow++){
|
|
for (int icoeff = 0; icoeff < size_array_cols; icoeff++){
|
|
pace[irow][icoeff] = 0.0;
|
|
}
|
|
}
|
|
|
|
// clear local peratom array
|
|
|
|
for (int i = 0; i < ntotal; i++){
|
|
for (int icoeff = 0; icoeff < size_peratom; icoeff++) {
|
|
pace_peratom[i][icoeff] = 0.0;
|
|
}
|
|
}
|
|
|
|
// invoke full neighbor list (will copy or build if necessary)
|
|
|
|
neighbor->build_one(list);
|
|
|
|
const int inum = list->inum;
|
|
const int* const ilist = list->ilist;
|
|
const int* const numneigh = list->numneigh;
|
|
int** const firstneigh = list->firstneigh;
|
|
int * const type = atom->type;
|
|
|
|
//determine the maximum number of neighbours
|
|
int max_jnum = -1;
|
|
int nei = 0;
|
|
int jtmp =0;
|
|
for (int iitmp = 0; iitmp < list->inum; iitmp++) {
|
|
int itmp = ilist[iitmp];
|
|
jtmp = numneigh[itmp];
|
|
nei = nei + jtmp;
|
|
if (jtmp > max_jnum){
|
|
max_jnum = jtmp;
|
|
}
|
|
}
|
|
|
|
// compute pace derivatives for each atom in group
|
|
// use full neighbor list to count atoms less than cutoff
|
|
|
|
const int* const mask = atom->mask;
|
|
const int ntypes = atom->ntypes;
|
|
|
|
for (int ii = 0; ii < inum; ii++) {
|
|
int irow = 0;
|
|
if (bikflag) irow = atom->tag[ilist[ii] & NEIGHMASK]-1;
|
|
const int i = ilist[ii];
|
|
if (mask[i] & groupbit) {
|
|
const int itype = type[i];
|
|
const int* const jlist = firstneigh[i];
|
|
const int jnum = numneigh[i];
|
|
const int typeoffset_local = ndims_peratom*nvalues*(itype-1);
|
|
const int typeoffset_global = nvalues*(itype-1);
|
|
|
|
delete acecimpl->ace;
|
|
acecimpl->ace = new ACECTildeEvaluator(*acecimpl->basis_set);
|
|
acecimpl->ace->compute_projections = true;
|
|
acecimpl->ace->compute_b_grad = true;
|
|
int n_r1, n_rp = 0;
|
|
n_r1 = acecimpl->basis_set->total_basis_size_rank1[0];
|
|
n_rp = acecimpl->basis_set->total_basis_size[0];
|
|
|
|
int ncoeff = n_r1 + n_rp;
|
|
acecimpl->ace->element_type_mapping.init(ntypes+1);
|
|
for (int ik = 1; ik <= ntypes; ik++) {
|
|
for(int mu = 0; mu < acecimpl->basis_set->nelements; mu++){
|
|
if (mu != -1) {
|
|
if (mu == ik - 1) {
|
|
map[ik] = mu;
|
|
acecimpl->ace->element_type_mapping(ik) = mu;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dgradflag) {
|
|
|
|
// dBi/dRi tags
|
|
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][1] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][2] = 0;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][1] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][2] = 1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][1] = atom->tag[i]-1;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][2] = 2;
|
|
|
|
// dBi/dRj tags
|
|
|
|
for (int j=0; j<natoms; j++) {
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 0][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 0][1] = j;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 0][2] = 0;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 1][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 1][1] = j;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 1][2] = 1;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 2][0] = atom->tag[i]-1;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 2][1] = j;
|
|
pace[bik_rows + ((j)*3*natoms) + 3*(atom->tag[i]-1) + 2][2] = 2;
|
|
}
|
|
}
|
|
|
|
// resize the neighbor cache after setting the basis
|
|
acecimpl->ace->resize_neighbours_cache(max_jnum);
|
|
acecimpl->ace->compute_atom(i, atom->x, atom->type, list->numneigh[i], list->firstneigh[i]);
|
|
Array1D<DOUBLE_TYPE> Bs = acecimpl->ace->projections;
|
|
|
|
for (int jj = 0; jj < jnum; jj++) {
|
|
const int j = jlist[jj];
|
|
//replace mapping of jj to j
|
|
if (!dgradflag) {
|
|
double *pacedi = pace_peratom[i]+typeoffset_local;
|
|
double *pacedj = pace_peratom[j]+typeoffset_local;
|
|
|
|
//force array in (func_ind,neighbour_ind,xyz_ind) format
|
|
// dimension: (n_descriptors,max_jnum,3)
|
|
//example to access entries for neighbour jj after running compute_atom for atom i:
|
|
for (int func_ind =0; func_ind < n_r1 + n_rp; func_ind++){
|
|
DOUBLE_TYPE fx_dB = acecimpl->ace->neighbours_dB(func_ind,jj,0);
|
|
DOUBLE_TYPE fy_dB = acecimpl->ace->neighbours_dB(func_ind,jj,1);
|
|
DOUBLE_TYPE fz_dB = acecimpl->ace->neighbours_dB(func_ind,jj,2);
|
|
pacedi[func_ind] += fx_dB;
|
|
pacedi[func_ind+yoffset] += fy_dB;
|
|
pacedi[func_ind+zoffset] += fz_dB;
|
|
pacedj[func_ind] -= fx_dB;
|
|
pacedj[func_ind+yoffset] -= fy_dB;
|
|
pacedj[func_ind+zoffset] -= fz_dB;
|
|
}
|
|
} else {
|
|
for (int iicoeff = 0; iicoeff < ncoeff; iicoeff++) {
|
|
|
|
// add to pace array for this proc
|
|
// dBi/dRj
|
|
DOUBLE_TYPE fx_dB = acecimpl->ace->neighbours_dB(iicoeff,jj,0);
|
|
DOUBLE_TYPE fy_dB = acecimpl->ace->neighbours_dB(iicoeff,jj,1);
|
|
DOUBLE_TYPE fz_dB = acecimpl->ace->neighbours_dB(iicoeff,jj,2);
|
|
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][iicoeff+3] -= fx_dB;
|
|
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][iicoeff+3] -= fy_dB;
|
|
pace[bik_rows + ((atom->tag[j]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][iicoeff+3] -= fz_dB;
|
|
|
|
// dBi/dRi
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 0][iicoeff+3] += fx_dB;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 1][iicoeff+3] += fy_dB;
|
|
pace[bik_rows + ((atom->tag[i]-1)*3*natoms) + 3*(atom->tag[i]-1) + 2][iicoeff+3] += fz_dB;
|
|
}
|
|
}
|
|
} // loop over jj inside
|
|
if (!dgradflag) {
|
|
|
|
int k = typeoffset_global;
|
|
|
|
for (int icoeff = 0; icoeff < ncoeff; icoeff++){
|
|
pace[irow][k++] += Bs(icoeff);
|
|
}
|
|
} else {
|
|
int k = 3;
|
|
for (int icoeff = 0; icoeff < ncoeff; icoeff++){
|
|
pace[irow][k++] += Bs(icoeff);
|
|
}
|
|
}
|
|
} //group bit
|
|
} // for ii loop
|
|
// accumulate force contributions to global array
|
|
if (!dgradflag){
|
|
for (int itype = 0; itype < atom->ntypes; itype++) {
|
|
const int typeoffset_local = ndims_peratom*nvalues*itype;
|
|
const int typeoffset_global = nvalues*itype;
|
|
for (int icoeff = 0; icoeff < nvalues; icoeff++) {
|
|
for (int i = 0; i < ntotal; i++) {
|
|
double *pacedi = pace_peratom[i]+typeoffset_local;
|
|
int iglobal = atom->tag[i];
|
|
int irow = 3*(iglobal-1)+1;
|
|
pace[irow++][icoeff+typeoffset_global] += pacedi[icoeff];
|
|
pace[irow++][icoeff+typeoffset_global] += pacedi[icoeff+yoffset];
|
|
pace[irow][icoeff+typeoffset_global] += pacedi[icoeff+zoffset];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!dgradflag) {
|
|
// accumulate forces to global array
|
|
for (int i = 0; i < atom->nlocal; i++) {
|
|
int iglobal = atom->tag[i];
|
|
int irow = 3*(iglobal-1)+1;
|
|
pace[irow++][lastcol] = atom->f[i][0];
|
|
pace[irow++][lastcol] = atom->f[i][1];
|
|
pace[irow][lastcol] = atom->f[i][2];
|
|
}
|
|
} else {
|
|
|
|
// for dgradflag=1, put forces at first 3 columns of bik rows
|
|
|
|
for (int i=0; i<atom->nlocal; i++) {
|
|
int iglobal = atom->tag[i];
|
|
pace[iglobal-1][0+0] = atom->f[i][0];
|
|
pace[iglobal-1][0+1] = atom->f[i][1];
|
|
pace[iglobal-1][0+2] = atom->f[i][2];
|
|
}
|
|
}
|
|
|
|
dbdotr_compute();
|
|
|
|
// sum up over all processes
|
|
MPI_Allreduce(&pace[0][0],&paceall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// assign energy to last column
|
|
|
|
if (!dgradflag) {
|
|
for (int i = 0; i < bik_rows; i++) paceall[i][lastcol] = 0;
|
|
int irow = 0;
|
|
double reference_energy = c_pe->compute_scalar();
|
|
paceall[irow][lastcol] = reference_energy;
|
|
} else {
|
|
|
|
// assign reference energy right after the dgrad rows, first column
|
|
|
|
int irow = bik_rows + 3*natoms*natoms;
|
|
double reference_energy = c_pe->compute_scalar();
|
|
paceall[irow][0] = reference_energy;
|
|
}
|
|
|
|
// assign virial stress to last column
|
|
// switch to Voigt notation
|
|
|
|
if (!dgradflag) {
|
|
c_virial->compute_vector();
|
|
int irow = 3*natoms+bik_rows;
|
|
paceall[irow++][lastcol] = c_virial->vector[0];
|
|
paceall[irow++][lastcol] = c_virial->vector[1];
|
|
paceall[irow++][lastcol] = c_virial->vector[2];
|
|
paceall[irow++][lastcol] = c_virial->vector[5];
|
|
paceall[irow++][lastcol] = c_virial->vector[4];
|
|
paceall[irow++][lastcol] = c_virial->vector[3];
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute global virial contributions via summing r_i.dB^j/dr_i over
|
|
own & ghost atoms
|
|
------------------------------------------------------------------------- */
|
|
void ComputePACE::dbdotr_compute()
|
|
{
|
|
|
|
if (dgradflag) return;
|
|
|
|
double **x = atom->x;
|
|
int irow0 = bik_rows+ndims_force*natoms;
|
|
|
|
// sum over ace contributions to forces
|
|
// on all particles including ghosts
|
|
|
|
int nall = atom->nlocal + atom->nghost;
|
|
for (int i = 0; i < nall; i++)
|
|
for (int itype = 0; itype < atom->ntypes; itype++) {
|
|
const int typeoffset_local = ndims_peratom*nvalues*itype;
|
|
const int typeoffset_global = nvalues*itype;
|
|
double *pacedi = pace_peratom[i]+typeoffset_local;
|
|
for (int icoeff = 0; icoeff < nvalues; icoeff++) {
|
|
double dbdx = pacedi[icoeff];
|
|
double dbdy = pacedi[icoeff+yoffset];
|
|
double dbdz = pacedi[icoeff+zoffset];
|
|
int irow = irow0;
|
|
pace[irow++][icoeff+typeoffset_global] += dbdx*x[i][0];
|
|
pace[irow++][icoeff+typeoffset_global] += dbdy*x[i][1];
|
|
pace[irow++][icoeff+typeoffset_global] += dbdz*x[i][2];
|
|
pace[irow++][icoeff+typeoffset_global] += dbdz*x[i][1];
|
|
pace[irow++][icoeff+typeoffset_global] += dbdz*x[i][0];
|
|
pace[irow++][icoeff+typeoffset_global] += dbdy*x[i][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputePACE::memory_usage()
|
|
{
|
|
|
|
double bytes = (double)size_array_rows*size_array_cols*sizeof(double); // pace
|
|
bytes += (double)size_array_rows*size_array_cols*sizeof(double); // paceall
|
|
bytes += (double)nmax*size_peratom * sizeof(double); // pace_peratom
|
|
int n = atom->ntypes+1;
|
|
bytes += (double)n*sizeof(int); // map
|
|
|
|
return bytes;
|
|
}
|