Files
lammps/src/KOKKOS/dihedral_harmonic_kokkos.cpp
2023-06-25 06:02:17 -04:00

540 lines
16 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include "dihedral_harmonic_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "memory_kokkos.h"
#include "neighbor_kokkos.h"
#include <cmath>
using namespace LAMMPS_NS;
#define TOLERANCE 0.05
#define SMALL 0.001
#define SMALLER 0.00001
/* ---------------------------------------------------------------------- */
template<class DeviceType>
DihedralHarmonicKokkos<DeviceType>::DihedralHarmonicKokkos(LAMMPS *lmp) : DihedralHarmonic(lmp)
{
atomKK = (AtomKokkos *) atom;
neighborKK = (NeighborKokkos *) neighbor;
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
datamask_read = X_MASK | F_MASK | Q_MASK | ENERGY_MASK | VIRIAL_MASK;
datamask_modify = F_MASK | ENERGY_MASK | VIRIAL_MASK;
k_warning_flag = DAT::tdual_int_scalar("Dihedral:warning_flag");
d_warning_flag = k_warning_flag.view<DeviceType>();
h_warning_flag = k_warning_flag.h_view;
centroidstressflag = CENTROID_NOTAVAIL;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
DihedralHarmonicKokkos<DeviceType>::~DihedralHarmonicKokkos()
{
if (!copymode) {
memoryKK->destroy_kokkos(k_eatom,eatom);
memoryKK->destroy_kokkos(k_vatom,vatom);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void DihedralHarmonicKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
{
eflag = eflag_in;
vflag = vflag_in;
ev_init(eflag,vflag,0);
// reallocate per-atom arrays if necessary
if (eflag_atom) {
memoryKK->destroy_kokkos(k_eatom,eatom);
memoryKK->create_kokkos(k_eatom,eatom,maxeatom,"dihedral:eatom");
d_eatom = k_eatom.view<DeviceType>();
}
if (vflag_atom) {
memoryKK->destroy_kokkos(k_vatom,vatom);
memoryKK->create_kokkos(k_vatom,vatom,maxvatom,"dihedral:vatom");
d_vatom = k_vatom.view<DeviceType>();
}
k_k.template sync<DeviceType>();
k_cos_shift.template sync<DeviceType>();
k_sin_shift.template sync<DeviceType>();
k_sign.template sync<DeviceType>();
k_multiplicity.template sync<DeviceType>();
x = atomKK->k_x.view<DeviceType>();
f = atomKK->k_f.view<DeviceType>();
neighborKK->k_dihedrallist.template sync<DeviceType>();
dihedrallist = neighborKK->k_dihedrallist.view<DeviceType>();
int ndihedrallist = neighborKK->ndihedrallist;
nlocal = atom->nlocal;
newton_bond = force->newton_bond;
h_warning_flag() = 0;
k_warning_flag.template modify<LMPHostType>();
k_warning_flag.template sync<DeviceType>();
copymode = 1;
// loop over neighbors of my atoms
EV_FLOAT ev;
if (evflag) {
if (newton_bond) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagDihedralHarmonicCompute<1,1> >(0,ndihedrallist),*this,ev);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagDihedralHarmonicCompute<0,1> >(0,ndihedrallist),*this,ev);
}
} else {
if (newton_bond) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagDihedralHarmonicCompute<1,0> >(0,ndihedrallist),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagDihedralHarmonicCompute<0,0> >(0,ndihedrallist),*this);
}
}
// error check
k_warning_flag.template modify<DeviceType>();
k_warning_flag.template sync<LMPHostType>();
if (h_warning_flag())
error->warning(FLERR,"Dihedral problem");
if (eflag_global) energy += ev.evdwl;
if (vflag_global) {
virial[0] += ev.v[0];
virial[1] += ev.v[1];
virial[2] += ev.v[2];
virial[3] += ev.v[3];
virial[4] += ev.v[4];
virial[5] += ev.v[5];
}
if (eflag_atom) {
k_eatom.template modify<DeviceType>();
k_eatom.template sync<LMPHostType>();
}
if (vflag_atom) {
k_vatom.template modify<DeviceType>();
k_vatom.template sync<LMPHostType>();
}
copymode = 0;
}
template<class DeviceType>
template<int NEWTON_BOND, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void DihedralHarmonicKokkos<DeviceType>::operator()(TagDihedralHarmonicCompute<NEWTON_BOND,EVFLAG>, const int &n, EV_FLOAT& ev) const {
// The f array is atomic
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<Kokkos::Atomic|Kokkos::Unmanaged> > a_f = f;
const int i1 = dihedrallist(n,0);
const int i2 = dihedrallist(n,1);
const int i3 = dihedrallist(n,2);
const int i4 = dihedrallist(n,3);
const int type = dihedrallist(n,4);
// 1st bond
const F_FLOAT vb1x = x(i1,0) - x(i2,0);
const F_FLOAT vb1y = x(i1,1) - x(i2,1);
const F_FLOAT vb1z = x(i1,2) - x(i2,2);
// 2nd bond
const F_FLOAT vb2x = x(i3,0) - x(i2,0);
const F_FLOAT vb2y = x(i3,1) - x(i2,1);
const F_FLOAT vb2z = x(i3,2) - x(i2,2);
const F_FLOAT vb2xm = -vb2x;
const F_FLOAT vb2ym = -vb2y;
const F_FLOAT vb2zm = -vb2z;
// 3rd bond
const F_FLOAT vb3x = x(i4,0) - x(i3,0);
const F_FLOAT vb3y = x(i4,1) - x(i3,1);
const F_FLOAT vb3z = x(i4,2) - x(i3,2);
// c,s calculation
const F_FLOAT ax = vb1y*vb2zm - vb1z*vb2ym;
const F_FLOAT ay = vb1z*vb2xm - vb1x*vb2zm;
const F_FLOAT az = vb1x*vb2ym - vb1y*vb2xm;
const F_FLOAT bx = vb3y*vb2zm - vb3z*vb2ym;
const F_FLOAT by = vb3z*vb2xm - vb3x*vb2zm;
const F_FLOAT bz = vb3x*vb2ym - vb3y*vb2xm;
const F_FLOAT rasq = ax*ax + ay*ay + az*az;
const F_FLOAT rbsq = bx*bx + by*by + bz*bz;
const F_FLOAT rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;
const F_FLOAT rg = sqrt(rgsq);
F_FLOAT rginv,ra2inv,rb2inv;
rginv = ra2inv = rb2inv = 0.0;
if (rg > 0) rginv = 1.0/rg;
if (rasq > 0) ra2inv = 1.0/rasq;
if (rbsq > 0) rb2inv = 1.0/rbsq;
const F_FLOAT rabinv = sqrt(ra2inv*rb2inv);
F_FLOAT c = (ax*bx + ay*by + az*bz)*rabinv;
const F_FLOAT s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);
// error check
if ((c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) && !d_warning_flag())
d_warning_flag() = 1;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
const int m = d_multiplicity[type];
F_FLOAT p = 1.0;
F_FLOAT ddf1,df1;
ddf1 = df1 = 0.0;
for (int i = 0; i < m; i++) {
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
}
p = p*d_cos_shift[type] + df1*d_sin_shift[type];
df1 = df1*d_cos_shift[type] - ddf1*d_sin_shift[type];
df1 *= -m;
p += 1.0;
if (m == 0) {
p = 1.0 + d_cos_shift[type];
df1 = 0.0;
}
E_FLOAT edihedral = 0.0;
if (eflag) edihedral = d_k[type] * p;
const F_FLOAT fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
const F_FLOAT hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm;
const F_FLOAT fga = fg*ra2inv*rginv;
const F_FLOAT hgb = hg*rb2inv*rginv;
const F_FLOAT gaa = -ra2inv*rg;
const F_FLOAT gbb = rb2inv*rg;
const F_FLOAT dtfx = gaa*ax;
const F_FLOAT dtfy = gaa*ay;
const F_FLOAT dtfz = gaa*az;
const F_FLOAT dtgx = fga*ax - hgb*bx;
const F_FLOAT dtgy = fga*ay - hgb*by;
const F_FLOAT dtgz = fga*az - hgb*bz;
const F_FLOAT dthx = gbb*bx;
const F_FLOAT dthy = gbb*by;
const F_FLOAT dthz = gbb*bz;
const F_FLOAT df = -d_k[type] * df1;
const F_FLOAT sx2 = df*dtgx;
const F_FLOAT sy2 = df*dtgy;
const F_FLOAT sz2 = df*dtgz;
F_FLOAT f1[3],f2[3],f3[3],f4[3];
f1[0] = df*dtfx;
f1[1] = df*dtfy;
f1[2] = df*dtfz;
f2[0] = sx2 - f1[0];
f2[1] = sy2 - f1[1];
f2[2] = sz2 - f1[2];
f4[0] = df*dthx;
f4[1] = df*dthy;
f4[2] = df*dthz;
f3[0] = -sx2 - f4[0];
f3[1] = -sy2 - f4[1];
f3[2] = -sz2 - f4[2];
// apply force to each of 4 atoms
if (NEWTON_BOND || i1 < nlocal) {
a_f(i1,0) += f1[0];
a_f(i1,1) += f1[1];
a_f(i1,2) += f1[2];
}
if (NEWTON_BOND || i2 < nlocal) {
a_f(i2,0) += f2[0];
a_f(i2,1) += f2[1];
a_f(i2,2) += f2[2];
}
if (NEWTON_BOND || i3 < nlocal) {
a_f(i3,0) += f3[0];
a_f(i3,1) += f3[1];
a_f(i3,2) += f3[2];
}
if (NEWTON_BOND || i4 < nlocal) {
a_f(i4,0) += f4[0];
a_f(i4,1) += f4[1];
a_f(i4,2) += f4[2];
}
if (EVFLAG)
ev_tally(ev,i1,i2,i3,i4,edihedral,f1,f3,f4,
vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z);
}
template<class DeviceType>
template<int NEWTON_BOND, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void DihedralHarmonicKokkos<DeviceType>::operator()(TagDihedralHarmonicCompute<NEWTON_BOND,EVFLAG>, const int &n) const {
EV_FLOAT ev;
this->template operator()<NEWTON_BOND,EVFLAG>(TagDihedralHarmonicCompute<NEWTON_BOND,EVFLAG>(), n, ev);
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void DihedralHarmonicKokkos<DeviceType>::allocate()
{
DihedralHarmonic::allocate();
int n = atom->ndihedraltypes;
k_k = DAT::tdual_ffloat_1d("DihedralHarmonic::k",n+1);
k_cos_shift = DAT::tdual_ffloat_1d("DihedralHarmonic::cos_shift",n+1);
k_sin_shift = DAT::tdual_ffloat_1d("DihedralHarmonic::sin_shift",n+1);
k_sign = DAT::tdual_int_1d("DihedralHarmonic::sign",n+1);
k_multiplicity = DAT::tdual_int_1d("DihedralHarmonic::multiplicity",n+1);
d_k = k_k.template view<DeviceType>();
d_cos_shift = k_cos_shift.template view<DeviceType>();
d_sin_shift = k_sin_shift.template view<DeviceType>();
d_sign = k_sign.template view<DeviceType>();
d_multiplicity = k_multiplicity.template view<DeviceType>();
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
template<class DeviceType>
void DihedralHarmonicKokkos<DeviceType>::coeff(int narg, char **arg)
{
DihedralHarmonic::coeff(narg, arg);
int n = atom->ndihedraltypes;
for (int i = 1; i <= n; i++) {
k_k.h_view[i] = k[i];
k_cos_shift.h_view[i] = cos_shift[i];
k_sin_shift.h_view[i] = sin_shift[i];
k_sign.h_view[i] = sign[i];
k_multiplicity.h_view[i] = multiplicity[i];
}
k_k.template modify<LMPHostType>();
k_cos_shift.template modify<LMPHostType>();
k_sin_shift.template modify<LMPHostType>();
k_sign.template modify<LMPHostType>();
k_multiplicity.template modify<LMPHostType>();
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
template<class DeviceType>
void DihedralHarmonicKokkos<DeviceType>::read_restart(FILE *fp)
{
DihedralHarmonic::read_restart(fp);
int n = atom->ndihedraltypes;
for (int i = 1; i <= n; i++) {
k_k.h_view[i] = k[i];
k_cos_shift.h_view[i] = cos_shift[i];
k_sin_shift.h_view[i] = sin_shift[i];
k_sign.h_view[i] = sign[i];
k_multiplicity.h_view[i] = multiplicity[i];
}
k_k.template modify<LMPHostType>();
k_cos_shift.template modify<LMPHostType>();
k_sin_shift.template modify<LMPHostType>();
k_sign.template modify<LMPHostType>();
k_multiplicity.template modify<LMPHostType>();
}
/* ----------------------------------------------------------------------
tally energy and virial into global and per-atom accumulators
virial = r1F1 + r2F2 + r3F3 + r4F4 = (r1-r2) F1 + (r3-r2) F3 + (r4-r2) F4
= (r1-r2) F1 + (r3-r2) F3 + (r4-r3 + r3-r2) F4
= vb1*f1 + vb2*f3 + (vb3+vb2)*f4
------------------------------------------------------------------------- */
template<class DeviceType>
//template<int NEWTON_BOND>
KOKKOS_INLINE_FUNCTION
void DihedralHarmonicKokkos<DeviceType>::ev_tally(EV_FLOAT &ev, const int i1, const int i2, const int i3, const int i4,
F_FLOAT &edihedral, F_FLOAT *f1, F_FLOAT *f3, F_FLOAT *f4,
const F_FLOAT &vb1x, const F_FLOAT &vb1y, const F_FLOAT &vb1z,
const F_FLOAT &vb2x, const F_FLOAT &vb2y, const F_FLOAT &vb2z,
const F_FLOAT &vb3x, const F_FLOAT &vb3y, const F_FLOAT &vb3z) const
{
E_FLOAT edihedralquarter;
F_FLOAT v[6];
// The eatom and vatom arrays are atomic
Kokkos::View<E_FLOAT*, typename DAT::t_efloat_1d::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<Kokkos::Atomic|Kokkos::Unmanaged> > v_eatom = k_eatom.view<DeviceType>();
Kokkos::View<F_FLOAT*[6], typename DAT::t_virial_array::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<Kokkos::Atomic|Kokkos::Unmanaged> > v_vatom = k_vatom.view<DeviceType>();
if (eflag_either) {
if (eflag_global) {
if (newton_bond) ev.evdwl += edihedral;
else {
edihedralquarter = 0.25*edihedral;
if (i1 < nlocal) ev.evdwl += edihedralquarter;
if (i2 < nlocal) ev.evdwl += edihedralquarter;
if (i3 < nlocal) ev.evdwl += edihedralquarter;
if (i4 < nlocal) ev.evdwl += edihedralquarter;
}
}
if (eflag_atom) {
edihedralquarter = 0.25*edihedral;
if (newton_bond || i1 < nlocal) v_eatom[i1] += edihedralquarter;
if (newton_bond || i2 < nlocal) v_eatom[i2] += edihedralquarter;
if (newton_bond || i3 < nlocal) v_eatom[i3] += edihedralquarter;
if (newton_bond || i4 < nlocal) v_eatom[i4] += edihedralquarter;
}
}
if (vflag_either) {
v[0] = vb1x*f1[0] + vb2x*f3[0] + (vb3x+vb2x)*f4[0];
v[1] = vb1y*f1[1] + vb2y*f3[1] + (vb3y+vb2y)*f4[1];
v[2] = vb1z*f1[2] + vb2z*f3[2] + (vb3z+vb2z)*f4[2];
v[3] = vb1x*f1[1] + vb2x*f3[1] + (vb3x+vb2x)*f4[1];
v[4] = vb1x*f1[2] + vb2x*f3[2] + (vb3x+vb2x)*f4[2];
v[5] = vb1y*f1[2] + vb2y*f3[2] + (vb3y+vb2y)*f4[2];
if (vflag_global) {
if (newton_bond) {
ev.v[0] += v[0];
ev.v[1] += v[1];
ev.v[2] += v[2];
ev.v[3] += v[3];
ev.v[4] += v[4];
ev.v[5] += v[5];
} else {
if (i1 < nlocal) {
ev.v[0] += 0.25*v[0];
ev.v[1] += 0.25*v[1];
ev.v[2] += 0.25*v[2];
ev.v[3] += 0.25*v[3];
ev.v[4] += 0.25*v[4];
ev.v[5] += 0.25*v[5];
}
if (i2 < nlocal) {
ev.v[0] += 0.25*v[0];
ev.v[1] += 0.25*v[1];
ev.v[2] += 0.25*v[2];
ev.v[3] += 0.25*v[3];
ev.v[4] += 0.25*v[4];
ev.v[5] += 0.25*v[5];
}
if (i3 < nlocal) {
ev.v[0] += 0.25*v[0];
ev.v[1] += 0.25*v[1];
ev.v[2] += 0.25*v[2];
ev.v[3] += 0.25*v[3];
ev.v[4] += 0.25*v[4];
ev.v[5] += 0.25*v[5];
}
if (i4 < nlocal) {
ev.v[0] += 0.25*v[0];
ev.v[1] += 0.25*v[1];
ev.v[2] += 0.25*v[2];
ev.v[3] += 0.25*v[3];
ev.v[4] += 0.25*v[4];
ev.v[5] += 0.25*v[5];
}
}
}
if (vflag_atom) {
if (newton_bond || i1 < nlocal) {
v_vatom(i1,0) += 0.25*v[0];
v_vatom(i1,1) += 0.25*v[1];
v_vatom(i1,2) += 0.25*v[2];
v_vatom(i1,3) += 0.25*v[3];
v_vatom(i1,4) += 0.25*v[4];
v_vatom(i1,5) += 0.25*v[5];
}
if (newton_bond || i2 < nlocal) {
v_vatom(i2,0) += 0.25*v[0];
v_vatom(i2,1) += 0.25*v[1];
v_vatom(i2,2) += 0.25*v[2];
v_vatom(i2,3) += 0.25*v[3];
v_vatom(i2,4) += 0.25*v[4];
v_vatom(i2,5) += 0.25*v[5];
}
if (newton_bond || i3 < nlocal) {
v_vatom(i3,0) += 0.25*v[0];
v_vatom(i3,1) += 0.25*v[1];
v_vatom(i3,2) += 0.25*v[2];
v_vatom(i3,3) += 0.25*v[3];
v_vatom(i3,4) += 0.25*v[4];
v_vatom(i3,5) += 0.25*v[5];
}
if (newton_bond || i4 < nlocal) {
v_vatom(i4,0) += 0.25*v[0];
v_vatom(i4,1) += 0.25*v[1];
v_vatom(i4,2) += 0.25*v[2];
v_vatom(i4,3) += 0.25*v[3];
v_vatom(i4,4) += 0.25*v[4];
v_vatom(i4,5) += 0.25*v[5];
}
}
}
}
/* ---------------------------------------------------------------------- */
namespace LAMMPS_NS {
template class DihedralHarmonicKokkos<LMPDeviceType>;
#ifdef LMP_KOKKOS_GPU
template class DihedralHarmonicKokkos<LMPHostType>;
#endif
}