Files
lammps/src/RHEO/compute_rheo_grad.cpp
2024-07-30 16:16:05 -04:00

513 lines
13 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors:
Joel Clemmer (SNL), Thomas O'Connor (CMU)
----------------------------------------------------------------------- */
#include "compute_rheo_grad.h"
#include "atom.h"
#include "comm.h"
#include "compute_rheo_kernel.h"
#include "compute_rheo_interface.h"
#include "domain.h"
#include "error.h"
#include "fix_rheo.h"
#include "force.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "update.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace RHEO_NS;
enum{COMMGRAD, COMMFIELD};
/* ---------------------------------------------------------------------- */
ComputeRHEOGrad::ComputeRHEOGrad(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), gradv(nullptr), gradr(nullptr), grade(nullptr), gradn(nullptr),
fix_rheo(nullptr), rho0(nullptr), compute_kernel(nullptr), compute_interface(nullptr),
list(nullptr)
{
if (narg < 4) error->all(FLERR,"Illegal compute rheo/grad command");
velocity_flag = energy_flag = rho_flag = eta_flag = 0;
for (int iarg = 3; iarg < narg; iarg++) {
if (strcmp(arg[iarg], "velocity") == 0) velocity_flag = 1;
else if (strcmp(arg[iarg], "rho") == 0) rho_flag = 1;
else if (strcmp(arg[iarg], "energy") == 0) energy_flag = 1;
else if (strcmp(arg[iarg], "viscosity") == 0) eta_flag = 1;
else error->all(FLERR, "Illegal compute rheo/grad command, {}", arg[iarg]);
}
ncomm_grad = 0;
ncomm_field = 0;
comm_reverse = 0;
int dim = domain->dimension;
if (velocity_flag) {
ncomm_grad += dim * dim;
ncomm_field += dim;
comm_reverse += dim * dim;
}
if (rho_flag) {
ncomm_grad += dim;
ncomm_field += 1;
comm_reverse += dim;
}
if (energy_flag) {
ncomm_grad += dim;
ncomm_field += 1;
comm_reverse += dim;
}
if (eta_flag) {
ncomm_grad += dim;
comm_reverse += dim;
}
comm_forward = ncomm_grad;
nmax_store = 0;
grow_arrays(atom->nmax);
}
/* ---------------------------------------------------------------------- */
ComputeRHEOGrad::~ComputeRHEOGrad()
{
memory->destroy(gradv);
memory->destroy(gradr);
memory->destroy(grade);
memory->destroy(gradn);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::init()
{
cut = fix_rheo->cut;
cutsq = cut * cut;
rho0 = fix_rheo->rho0;
interface_flag = fix_rheo->interface_flag;
compute_kernel = fix_rheo->compute_kernel;
compute_interface = fix_rheo->compute_interface;
remap_v_flag = domain->deform_vremap;
neighbor->add_request(this, NeighConst::REQ_DEFAULT);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::compute_peratom()
{
int i, j, k, ii, jj, jnum, itype, jtype, a, b, fluidi, fluidj;
double xtmp, ytmp, ztmp, delx, dely, delz;
double rsq, rhoi, rhoj, Voli, Volj, drho, de, deta;
double vi[3], vj[3], vij[3];
double *dWij, *dWji;
int inum, *ilist, *numneigh, **firstneigh;
int *jlist;
int nlocal = atom->nlocal;
double **x = atom->x;
double **v = atom->v;
double *rho = atom->rho;
double *energy = atom->esph;
double *viscosity = atom->viscosity;
int *status = atom->rheo_status;
int *type = atom->type;
double *mass = atom->mass;
double *rmass = atom->rmass;
int newton = force->newton;
int dim = domain->dimension;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// initialize arrays
if (atom->nmax > nmax_store) grow_arrays(atom->nmax);
for (i = 0; i < nmax_store; i++) {
if (velocity_flag) {
for (k = 0; k < dim * dim; k++)
gradv[i][k] = 0.0;
}
if (rho_flag) {
for (k = 0; k < dim; k++)
gradr[i][k] = 0.0;
}
if (energy_flag) {
for (k = 0; k < dim; k++)
grade[i][k] = 0.0;
}
if (eta_flag) {
for (k = 0; k < dim; k++)
gradn[i][k] = 0.0;
}
}
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
fluidi = !(status[i] & PHASECHECK);
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cutsq) {
fluidj = !(status[j] & PHASECHECK);
rhoi = rho[i];
rhoj = rho[j];
vi[0] = v[i][0];
vi[1] = v[i][1];
vi[2] = v[i][2];
vj[0] = v[j][0];
vj[1] = v[j][1];
vj[2] = v[j][2];
// Add corrections for walls
if (interface_flag) {
if (fluidi && (!fluidj)) {
compute_interface->correct_v(vj, vi, j, i);
rhoj = compute_interface->correct_rho(j, i);
} else if ((!fluidi) && fluidj) {
compute_interface->correct_v(vi, vj, i, j);
rhoi = compute_interface->correct_rho(i, j);
} else if ((!fluidi) && (!fluidj)) {
rhoi = rho0[itype];
rhoj = rho0[jtype];
}
}
if (rmass) {
Voli = rmass[i] / rhoi;
Volj = rmass[j] / rhoj;
} else {
Voli = mass[itype] / rhoi;
Volj = mass[jtype] / rhoj;
}
vij[0] = vi[0] - vj[0];
vij[1] = vi[1] - vj[1];
vij[2] = vi[2] - vj[2];
if (rho_flag) drho = rhoi - rhoj;
if (energy_flag) de = energy[i] - energy[j];
if (eta_flag) deta = viscosity[i] - viscosity[j];
compute_kernel->calc_dw(i, j, delx, dely, delz, sqrt(rsq));
dWij = compute_kernel->dWij;
dWji = compute_kernel->dWji;
for (a = 0; a < dim; a++) {
for (b = 0; b < dim; b++) {
if (velocity_flag) // uxx uxy uxz uyx uyy uyz uzx uzy uzz
gradv[i][a * dim + b] -= vij[a] * Volj * dWij[b];
}
if (rho_flag) // P,x P,y P,z
gradr[i][a] -= drho * Volj * dWij[a];
if (energy_flag) // e,x e,y e,z
grade[i][a] -= de * Volj * dWij[a];
if (eta_flag) // n,x n,y n,z
gradn[i][a] -= deta * Volj * dWij[a];
}
if (newton || j < nlocal) {
for (a = 0; a < dim; a++) {
for (b = 0; b < dim; b++) {
if (velocity_flag) // uxx uxy uxz uyx uyy uyz uzx uzy uzz
gradv[j][a * dim + b] += vij[a] * Voli * dWji[b];
}
if (rho_flag) // P,x P,y P,z
gradr[j][a] += drho * Voli * dWji[a];
if (energy_flag) // e,x e,y e,z
grade[j][a] += de * Voli * dWji[a];
if (eta_flag) // n,x n,y n,z
gradn[j][a] += deta * Voli * dWji[a];
}
}
}
}
}
if (newton) comm->reverse_comm(this);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::forward_gradients()
{
comm_stage = COMMGRAD;
comm_forward = ncomm_grad;
comm->forward_comm(this);
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::forward_fields()
{
comm_stage = COMMFIELD;
comm_forward = ncomm_field;
comm->forward_comm(this);
}
/* ---------------------------------------------------------------------- */
int ComputeRHEOGrad::pack_forward_comm(int n, int *list, double *buf,
int pbc_flag, int *pbc)
{
int i,j,k,m;
int *mask = atom->mask;
double *rho = atom->rho;
double *energy = atom->esph;
double **v = atom->v;
int dim = domain->dimension;
double *h_rate = domain->h_rate;
int deform_groupbit = domain->deform_groupbit;
double dv[3];
if (remap_v_flag) {
dv[0] = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4];
dv[1] = pbc[1] * h_rate[1] + pbc[3] * h_rate[3];
dv[2] = pbc[2] * h_rate[2];
}
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (comm_stage == COMMGRAD) {
if (velocity_flag)
for (k = 0; k < dim * dim; k++)
buf[m++] = gradv[j][k];
if (rho_flag)
for (k = 0; k < dim; k++)
buf[m++] = gradr[j][k];
if (energy_flag)
for (k = 0; k < dim; k++)
buf[m++] = grade[j][k];
if (eta_flag)
for (k = 0; k < dim; k++)
buf[m++] = gradn[j][k];
} else if (comm_stage == COMMFIELD) {
if (velocity_flag) {
if (remap_v_flag && pbc_flag && (mask[j] & deform_groupbit)) {
for (k = 0; k < dim; k++)
buf[m++] = v[j][k] + dv[k];
} else {
for (k = 0; k < dim; k++)
buf[m++] = v[j][k];
}
}
if (rho_flag)
buf[m++] = rho[j];
if (energy_flag)
buf[m++] = energy[j];
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::unpack_forward_comm(int n, int first, double *buf)
{
int i, k, m, last;
double *rho = atom->rho;
double *energy = atom->esph; double **v = atom->v;
int dim = domain->dimension;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (comm_stage == COMMGRAD) {
if (velocity_flag)
for (k = 0; k < dim * dim; k++)
gradv[i][k] = buf[m++];
if (rho_flag)
for (k = 0; k < dim; k++)
gradr[i][k] = buf[m++];
if (energy_flag)
for (k = 0; k < dim; k++)
grade[i][k] = buf[m++];
if (eta_flag)
for (k = 0; k < dim; k++)
gradn[i][k] = buf[m++];
} else if (comm_stage == COMMFIELD) {
if (velocity_flag)
for (k = 0; k < dim; k++)
v[i][k] = buf[m++];
if (rho_flag)
rho[i] = buf[m++];
if (energy_flag)
energy[i] = buf[m++];
}
}
}
/* ---------------------------------------------------------------------- */
int ComputeRHEOGrad::pack_reverse_comm(int n, int first, double *buf)
{
int i,k,m,last;
int dim = domain->dimension;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
if (velocity_flag)
for (k = 0; k < dim * dim; k++)
buf[m++] = gradv[i][k];
if (rho_flag)
for (k = 0; k < dim; k++)
buf[m++] = gradr[i][k];
if (energy_flag)
for (k = 0; k < dim; k++)
buf[m++] = grade[i][k];
if (eta_flag)
for (k = 0; k < dim; k++)
buf[m++] = gradn[i][k];
}
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,k,j,m;
int dim = domain->dimension;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (velocity_flag)
for (k = 0; k < dim * dim; k++)
gradv[j][k] += buf[m++];
if (rho_flag)
for (k = 0; k < dim; k++)
gradr[j][k] += buf[m++];
if (energy_flag)
for (k = 0; k < dim; k++)
grade[j][k] += buf[m++];
if (eta_flag)
for (k = 0; k < dim; k++)
gradn[j][k] += buf[m++];
}
}
/* ---------------------------------------------------------------------- */
void ComputeRHEOGrad::grow_arrays(int nmax)
{
int dim = domain->dimension;
if (velocity_flag)
memory->grow(gradv, nmax, dim * dim, "rheo:grad_v");
if (rho_flag)
memory->grow(gradr, nmax, dim, "rheo:grad_rho");
if (energy_flag)
memory->grow(grade, nmax, dim, "rheo:grad_energy");
if (eta_flag)
memory->grow(gradn, nmax, dim, "rheo:grad_eta");
nmax_store = nmax;
}
/* ---------------------------------------------------------------------- */
double ComputeRHEOGrad::memory_usage()
{
double bytes = 0.0;
int dim = domain->dimension;
if (velocity_flag)
bytes = (size_t) nmax_store * dim * dim * sizeof(double);
if (rho_flag)
bytes = (size_t) nmax_store * dim * sizeof(double);
if (energy_flag)
bytes = (size_t) nmax_store * dim * sizeof(double);
if (eta_flag)
bytes = (size_t) nmax_store * dim * sizeof(double);
return bytes;
}