513 lines
13 KiB
C++
513 lines
13 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors:
|
|
Joel Clemmer (SNL), Thomas O'Connor (CMU)
|
|
----------------------------------------------------------------------- */
|
|
|
|
#include "compute_rheo_grad.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "compute_rheo_kernel.h"
|
|
#include "compute_rheo_interface.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "fix_rheo.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace RHEO_NS;
|
|
|
|
enum{COMMGRAD, COMMFIELD};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeRHEOGrad::ComputeRHEOGrad(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg), gradv(nullptr), gradr(nullptr), grade(nullptr), gradn(nullptr),
|
|
fix_rheo(nullptr), rho0(nullptr), compute_kernel(nullptr), compute_interface(nullptr),
|
|
list(nullptr)
|
|
{
|
|
if (narg < 4) error->all(FLERR,"Illegal compute rheo/grad command");
|
|
|
|
velocity_flag = energy_flag = rho_flag = eta_flag = 0;
|
|
for (int iarg = 3; iarg < narg; iarg++) {
|
|
if (strcmp(arg[iarg], "velocity") == 0) velocity_flag = 1;
|
|
else if (strcmp(arg[iarg], "rho") == 0) rho_flag = 1;
|
|
else if (strcmp(arg[iarg], "energy") == 0) energy_flag = 1;
|
|
else if (strcmp(arg[iarg], "viscosity") == 0) eta_flag = 1;
|
|
else error->all(FLERR, "Illegal compute rheo/grad command, {}", arg[iarg]);
|
|
}
|
|
|
|
ncomm_grad = 0;
|
|
ncomm_field = 0;
|
|
comm_reverse = 0;
|
|
|
|
int dim = domain->dimension;
|
|
if (velocity_flag) {
|
|
ncomm_grad += dim * dim;
|
|
ncomm_field += dim;
|
|
comm_reverse += dim * dim;
|
|
}
|
|
|
|
if (rho_flag) {
|
|
ncomm_grad += dim;
|
|
ncomm_field += 1;
|
|
comm_reverse += dim;
|
|
}
|
|
|
|
if (energy_flag) {
|
|
ncomm_grad += dim;
|
|
ncomm_field += 1;
|
|
comm_reverse += dim;
|
|
}
|
|
|
|
if (eta_flag) {
|
|
ncomm_grad += dim;
|
|
comm_reverse += dim;
|
|
}
|
|
|
|
comm_forward = ncomm_grad;
|
|
|
|
nmax_store = 0;
|
|
grow_arrays(atom->nmax);
|
|
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeRHEOGrad::~ComputeRHEOGrad()
|
|
{
|
|
memory->destroy(gradv);
|
|
memory->destroy(gradr);
|
|
memory->destroy(grade);
|
|
memory->destroy(gradn);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::init()
|
|
{
|
|
cut = fix_rheo->cut;
|
|
cutsq = cut * cut;
|
|
rho0 = fix_rheo->rho0;
|
|
interface_flag = fix_rheo->interface_flag;
|
|
compute_kernel = fix_rheo->compute_kernel;
|
|
compute_interface = fix_rheo->compute_interface;
|
|
|
|
remap_v_flag = domain->deform_vremap;
|
|
|
|
neighbor->add_request(this, NeighConst::REQ_DEFAULT);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::init_list(int /*id*/, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::compute_peratom()
|
|
{
|
|
int i, j, k, ii, jj, jnum, itype, jtype, a, b, fluidi, fluidj;
|
|
double xtmp, ytmp, ztmp, delx, dely, delz;
|
|
double rsq, rhoi, rhoj, Voli, Volj, drho, de, deta;
|
|
double vi[3], vj[3], vij[3];
|
|
double *dWij, *dWji;
|
|
|
|
int inum, *ilist, *numneigh, **firstneigh;
|
|
int *jlist;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double *rho = atom->rho;
|
|
double *energy = atom->esph;
|
|
double *viscosity = atom->viscosity;
|
|
int *status = atom->rheo_status;
|
|
int *type = atom->type;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int newton = force->newton;
|
|
int dim = domain->dimension;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// initialize arrays
|
|
if (atom->nmax > nmax_store) grow_arrays(atom->nmax);
|
|
|
|
for (i = 0; i < nmax_store; i++) {
|
|
if (velocity_flag) {
|
|
for (k = 0; k < dim * dim; k++)
|
|
gradv[i][k] = 0.0;
|
|
}
|
|
if (rho_flag) {
|
|
for (k = 0; k < dim; k++)
|
|
gradr[i][k] = 0.0;
|
|
}
|
|
if (energy_flag) {
|
|
for (k = 0; k < dim; k++)
|
|
grade[i][k] = 0.0;
|
|
}
|
|
if (eta_flag) {
|
|
for (k = 0; k < dim; k++)
|
|
gradn[i][k] = 0.0;
|
|
}
|
|
}
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
fluidi = !(status[i] & PHASECHECK);
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
jtype = type[j];
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
|
|
if (rsq < cutsq) {
|
|
fluidj = !(status[j] & PHASECHECK);
|
|
|
|
rhoi = rho[i];
|
|
rhoj = rho[j];
|
|
|
|
vi[0] = v[i][0];
|
|
vi[1] = v[i][1];
|
|
vi[2] = v[i][2];
|
|
|
|
vj[0] = v[j][0];
|
|
vj[1] = v[j][1];
|
|
vj[2] = v[j][2];
|
|
|
|
// Add corrections for walls
|
|
if (interface_flag) {
|
|
if (fluidi && (!fluidj)) {
|
|
compute_interface->correct_v(vj, vi, j, i);
|
|
rhoj = compute_interface->correct_rho(j, i);
|
|
} else if ((!fluidi) && fluidj) {
|
|
compute_interface->correct_v(vi, vj, i, j);
|
|
rhoi = compute_interface->correct_rho(i, j);
|
|
} else if ((!fluidi) && (!fluidj)) {
|
|
rhoi = rho0[itype];
|
|
rhoj = rho0[jtype];
|
|
}
|
|
}
|
|
|
|
if (rmass) {
|
|
Voli = rmass[i] / rhoi;
|
|
Volj = rmass[j] / rhoj;
|
|
} else {
|
|
Voli = mass[itype] / rhoi;
|
|
Volj = mass[jtype] / rhoj;
|
|
}
|
|
|
|
vij[0] = vi[0] - vj[0];
|
|
vij[1] = vi[1] - vj[1];
|
|
vij[2] = vi[2] - vj[2];
|
|
|
|
if (rho_flag) drho = rhoi - rhoj;
|
|
if (energy_flag) de = energy[i] - energy[j];
|
|
if (eta_flag) deta = viscosity[i] - viscosity[j];
|
|
|
|
compute_kernel->calc_dw(i, j, delx, dely, delz, sqrt(rsq));
|
|
dWij = compute_kernel->dWij;
|
|
dWji = compute_kernel->dWji;
|
|
|
|
for (a = 0; a < dim; a++) {
|
|
for (b = 0; b < dim; b++) {
|
|
if (velocity_flag) // uxx uxy uxz uyx uyy uyz uzx uzy uzz
|
|
gradv[i][a * dim + b] -= vij[a] * Volj * dWij[b];
|
|
}
|
|
|
|
if (rho_flag) // P,x P,y P,z
|
|
gradr[i][a] -= drho * Volj * dWij[a];
|
|
|
|
if (energy_flag) // e,x e,y e,z
|
|
grade[i][a] -= de * Volj * dWij[a];
|
|
|
|
if (eta_flag) // n,x n,y n,z
|
|
gradn[i][a] -= deta * Volj * dWij[a];
|
|
}
|
|
|
|
if (newton || j < nlocal) {
|
|
for (a = 0; a < dim; a++) {
|
|
for (b = 0; b < dim; b++) {
|
|
if (velocity_flag) // uxx uxy uxz uyx uyy uyz uzx uzy uzz
|
|
gradv[j][a * dim + b] += vij[a] * Voli * dWji[b];
|
|
}
|
|
|
|
if (rho_flag) // P,x P,y P,z
|
|
gradr[j][a] += drho * Voli * dWji[a];
|
|
|
|
if (energy_flag) // e,x e,y e,z
|
|
grade[j][a] += de * Voli * dWji[a];
|
|
|
|
if (eta_flag) // n,x n,y n,z
|
|
gradn[j][a] += deta * Voli * dWji[a];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (newton) comm->reverse_comm(this);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::forward_gradients()
|
|
{
|
|
comm_stage = COMMGRAD;
|
|
comm_forward = ncomm_grad;
|
|
comm->forward_comm(this);
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::forward_fields()
|
|
{
|
|
comm_stage = COMMFIELD;
|
|
comm_forward = ncomm_field;
|
|
comm->forward_comm(this);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int ComputeRHEOGrad::pack_forward_comm(int n, int *list, double *buf,
|
|
int pbc_flag, int *pbc)
|
|
{
|
|
int i,j,k,m;
|
|
int *mask = atom->mask;
|
|
double *rho = atom->rho;
|
|
double *energy = atom->esph;
|
|
double **v = atom->v;
|
|
int dim = domain->dimension;
|
|
double *h_rate = domain->h_rate;
|
|
int deform_groupbit = domain->deform_groupbit;
|
|
double dv[3];
|
|
|
|
if (remap_v_flag) {
|
|
dv[0] = pbc[0] * h_rate[0] + pbc[5] * h_rate[5] + pbc[4] * h_rate[4];
|
|
dv[1] = pbc[1] * h_rate[1] + pbc[3] * h_rate[3];
|
|
dv[2] = pbc[2] * h_rate[2];
|
|
}
|
|
|
|
m = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
if (comm_stage == COMMGRAD) {
|
|
|
|
if (velocity_flag)
|
|
for (k = 0; k < dim * dim; k++)
|
|
buf[m++] = gradv[j][k];
|
|
|
|
if (rho_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = gradr[j][k];
|
|
|
|
if (energy_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = grade[j][k];
|
|
|
|
if (eta_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = gradn[j][k];
|
|
|
|
} else if (comm_stage == COMMFIELD) {
|
|
|
|
if (velocity_flag) {
|
|
if (remap_v_flag && pbc_flag && (mask[j] & deform_groupbit)) {
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = v[j][k] + dv[k];
|
|
} else {
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = v[j][k];
|
|
}
|
|
}
|
|
|
|
if (rho_flag)
|
|
buf[m++] = rho[j];
|
|
|
|
if (energy_flag)
|
|
buf[m++] = energy[j];
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::unpack_forward_comm(int n, int first, double *buf)
|
|
{
|
|
int i, k, m, last;
|
|
double *rho = atom->rho;
|
|
double *energy = atom->esph; double **v = atom->v;
|
|
int dim = domain->dimension;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; i++) {
|
|
if (comm_stage == COMMGRAD) {
|
|
if (velocity_flag)
|
|
for (k = 0; k < dim * dim; k++)
|
|
gradv[i][k] = buf[m++];
|
|
|
|
if (rho_flag)
|
|
for (k = 0; k < dim; k++)
|
|
gradr[i][k] = buf[m++];
|
|
|
|
if (energy_flag)
|
|
for (k = 0; k < dim; k++)
|
|
grade[i][k] = buf[m++];
|
|
|
|
if (eta_flag)
|
|
for (k = 0; k < dim; k++)
|
|
gradn[i][k] = buf[m++];
|
|
|
|
} else if (comm_stage == COMMFIELD) {
|
|
if (velocity_flag)
|
|
for (k = 0; k < dim; k++)
|
|
v[i][k] = buf[m++];
|
|
|
|
if (rho_flag)
|
|
rho[i] = buf[m++];
|
|
|
|
if (energy_flag)
|
|
energy[i] = buf[m++];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int ComputeRHEOGrad::pack_reverse_comm(int n, int first, double *buf)
|
|
{
|
|
int i,k,m,last;
|
|
int dim = domain->dimension;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; i++) {
|
|
if (velocity_flag)
|
|
for (k = 0; k < dim * dim; k++)
|
|
buf[m++] = gradv[i][k];
|
|
|
|
if (rho_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = gradr[i][k];
|
|
|
|
if (energy_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = grade[i][k];
|
|
|
|
if (eta_flag)
|
|
for (k = 0; k < dim; k++)
|
|
buf[m++] = gradn[i][k];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::unpack_reverse_comm(int n, int *list, double *buf)
|
|
{
|
|
int i,k,j,m;
|
|
int dim = domain->dimension;
|
|
|
|
m = 0;
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
if (velocity_flag)
|
|
for (k = 0; k < dim * dim; k++)
|
|
gradv[j][k] += buf[m++];
|
|
|
|
if (rho_flag)
|
|
for (k = 0; k < dim; k++)
|
|
gradr[j][k] += buf[m++];
|
|
|
|
if (energy_flag)
|
|
for (k = 0; k < dim; k++)
|
|
grade[j][k] += buf[m++];
|
|
|
|
if (eta_flag)
|
|
for (k = 0; k < dim; k++)
|
|
gradn[j][k] += buf[m++];
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeRHEOGrad::grow_arrays(int nmax)
|
|
{
|
|
int dim = domain->dimension;
|
|
if (velocity_flag)
|
|
memory->grow(gradv, nmax, dim * dim, "rheo:grad_v");
|
|
|
|
if (rho_flag)
|
|
memory->grow(gradr, nmax, dim, "rheo:grad_rho");
|
|
|
|
if (energy_flag)
|
|
memory->grow(grade, nmax, dim, "rheo:grad_energy");
|
|
|
|
if (eta_flag)
|
|
memory->grow(gradn, nmax, dim, "rheo:grad_eta");
|
|
nmax_store = nmax;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double ComputeRHEOGrad::memory_usage()
|
|
{
|
|
double bytes = 0.0;
|
|
int dim = domain->dimension;
|
|
|
|
if (velocity_flag)
|
|
bytes = (size_t) nmax_store * dim * dim * sizeof(double);
|
|
|
|
if (rho_flag)
|
|
bytes = (size_t) nmax_store * dim * sizeof(double);
|
|
|
|
if (energy_flag)
|
|
bytes = (size_t) nmax_store * dim * sizeof(double);
|
|
|
|
if (eta_flag)
|
|
bytes = (size_t) nmax_store * dim * sizeof(double);
|
|
|
|
return bytes;
|
|
}
|