Files
lammps/lib/kokkos/core/unit_test/TestTaskPolicy.hpp
stamoor fda492ea48 Updating kokkos lib
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14919 f3b2605a-c512-4ea7-a41b-209d697bcdaa
2016-05-02 22:10:37 +00:00

680 lines
19 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP
#define KOKKOS_UNITTEST_TASKPOLICY_HPP
#include <stdio.h>
#include <iostream>
#include <cmath>
#include <Kokkos_TaskPolicy.hpp>
namespace TestTaskPolicy {
//----------------------------------------------------------------------------
template< class ExecSpace >
struct FibChild {
typedef long value_type ;
Kokkos::Experimental::TaskPolicy<ExecSpace> policy ;
Kokkos::Experimental::Future<long,ExecSpace> fib_1 ;
Kokkos::Experimental::Future<long,ExecSpace> fib_2 ;
const value_type n ;
int has_nested ;
KOKKOS_INLINE_FUNCTION
FibChild( const Kokkos::Experimental::TaskPolicy<ExecSpace> & arg_policy
, const value_type arg_n )
: policy(arg_policy)
, fib_1() , fib_2()
, n( arg_n ), has_nested(0) {}
KOKKOS_INLINE_FUNCTION
void apply( value_type & result )
{
typedef Kokkos::Experimental::Future<long,ExecSpace> future_type ;
if ( n < 2 ) {
has_nested = -1 ;
result = n ;
}
else {
if ( has_nested == 0 ) {
// Spawn new children and respawn myself to sum their results:
// Spawn lower value at higher priority as it has a shorter
// path to completion.
if ( fib_2.is_null() ) {
fib_2 = policy.task_create( FibChild(policy,n-2) );
}
if ( ! fib_2.is_null() && fib_1.is_null() ) {
fib_1 = policy.task_create( FibChild(policy,n-1) );
}
if ( ! fib_1.is_null() ) {
has_nested = 2 ;
policy.spawn( fib_2 , true /* high priority */ );
policy.spawn( fib_1 );
policy.add_dependence( this , fib_1 );
policy.add_dependence( this , fib_2 );
policy.respawn( this );
}
else {
// Release task memory before spawning the task,
// after spawning memory cannot be released.
fib_2 = future_type();
// Respawn when more memory is available
policy.respawn_needing_memory( this );
}
}
else if ( has_nested == 2 ) {
has_nested = -1 ;
result = fib_1.get() + fib_2.get();
if ( false ) {
printf("FibChild %ld = fib(%ld), task_count(%d)\n"
, long(n), long(result), policy.allocated_task_count());
}
}
else {
printf("FibChild(%ld) execution error\n",(long)n);
Kokkos::abort("FibChild execution error");
}
}
}
};
template< class ExecSpace >
struct FibChild2 {
typedef long value_type ;
Kokkos::Experimental::TaskPolicy<ExecSpace> policy ;
Kokkos::Experimental::Future<long,ExecSpace> fib_a ;
Kokkos::Experimental::Future<long,ExecSpace> fib_b ;
const value_type n ;
int has_nested ;
KOKKOS_INLINE_FUNCTION
FibChild2( const Kokkos::Experimental::TaskPolicy<ExecSpace> & arg_policy
, const value_type arg_n )
: policy(arg_policy)
, n( arg_n ), has_nested(0) {}
KOKKOS_INLINE_FUNCTION
void apply( value_type & result )
{
if ( 0 == has_nested ) {
if ( n < 2 ) {
has_nested = -1 ;
result = n ;
}
else if ( n < 4 ) {
// Spawn new children and respawn myself to sum their results:
// result = Fib(n-1) + Fib(n-2)
has_nested = 2 ;
// Spawn lower value at higher priority as it has a shorter
// path to completion.
policy.clear_dependence( this );
fib_a = policy.spawn( policy.task_create( FibChild2(policy,n-1) ) );
fib_b = policy.spawn( policy.task_create( FibChild2(policy,n-2) ) , true );
policy.add_dependence( this , fib_a );
policy.add_dependence( this , fib_b );
policy.respawn( this );
}
else {
// Spawn new children and respawn myself to sum their results:
// result = Fib(n-1) + Fib(n-2)
// result = ( Fib(n-2) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) )
// result = ( ( Fib(n-3) + Fib(n-4) ) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) )
// result = 3 * Fib(n-3) + 2 * Fib(n-4)
has_nested = 4 ;
// Spawn lower value at higher priority as it has a shorter
// path to completion.
policy.clear_dependence( this );
fib_a = policy.spawn( policy.task_create( FibChild2(policy,n-3) ) );
fib_b = policy.spawn( policy.task_create( FibChild2(policy,n-4) ) , true );
policy.add_dependence( this , fib_a );
policy.add_dependence( this , fib_b );
policy.respawn( this );
}
}
else if ( 2 == has_nested || 4 == has_nested ) {
result = ( has_nested == 2 ) ? fib_a.get() + fib_b.get()
: 3 * fib_a.get() + 2 * fib_b.get() ;
has_nested = -1 ;
}
else {
printf("FibChild2(%ld) execution error\n",(long)n);
Kokkos::abort("FibChild2 execution error");
}
}
};
namespace {
long eval_fib( long n )
{
if ( 2 <= n ) {
std::vector<long> fib(n+1);
fib[0] = 0 ;
fib[1] = 1 ;
for ( long i = 2 ; i <= n ; ++i ) { fib[i] = fib[i-2] + fib[i-1]; }
n = fib[n] ;
}
return n ;
}
}
template< class ExecSpace >
void test_fib( long n , const unsigned task_max_count = 1024 )
{
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<long,ExecSpace> f =
policy.spawn( policy.proc_create( FibChild<ExecSpace>(policy,n) ) );
Kokkos::Experimental::wait( policy );
if ( f.get() != eval_fib(n) ) {
std::cout << "Fib(" << n << ") = " << f.get();
std::cout << " != " << eval_fib(n);
std::cout << std::endl ;
}
}
template< class ExecSpace >
void test_fib2( long n , const unsigned task_max_count = 1024 )
{
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<long,ExecSpace> f =
policy.spawn( policy.proc_create( FibChild2<ExecSpace>(policy,n) ) );
Kokkos::Experimental::wait( policy );
if ( f.get() != eval_fib(n) ) {
std::cout << "Fib2(" << n << ") = " << f.get();
std::cout << " != " << eval_fib(n);
std::cout << std::endl ;
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct Norm2 {
typedef double value_type ;
const double * const m_x ;
Norm2( const double * x ) : m_x(x) {}
inline
void init( double & val ) const { val = 0 ; }
KOKKOS_INLINE_FUNCTION
void operator()( int i , double & val ) const { val += m_x[i] * m_x[i] ; }
void apply( double & dst ) const { dst = std::sqrt( dst ); }
};
template< class ExecSpace >
void test_norm2( const int n )
{
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
double * const x = new double[n];
for ( int i = 0 ; i < n ; ++i ) x[i] = 1 ;
Kokkos::RangePolicy<ExecSpace> r(0,n);
Kokkos::Experimental::Future<double,ExecSpace> f =
Kokkos::Experimental::spawn_reduce( policy , r , Norm2<ExecSpace>(x) );
Kokkos::Experimental::wait( policy );
#if defined(PRINT)
std::cout << "Norm2: " << f.get() << std::endl ;
#endif
delete[] x ;
}
//----------------------------------------------------------------------------
template< class Space >
struct TaskDep {
typedef int value_type ;
typedef Kokkos::Experimental::TaskPolicy< Space > policy_type ;
const policy_type policy ;
const int input ;
TaskDep( const policy_type & arg_p , const int arg_i )
: policy( arg_p ), input( arg_i ) {}
KOKKOS_INLINE_FUNCTION
void apply( int & val )
{
val = input ;
const int num = policy.get_dependence( this );
for ( int i = 0 ; i < num ; ++i ) {
Kokkos::Experimental::Future<int,Space> f = policy.get_dependence( this , i );
val += f.get();
}
}
};
template< class Space >
void test_task_dep( const int n )
{
enum { NTEST = 64 };
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 64 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<Space>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<int,Space> f[ NTEST ];
for ( int i = 0 ; i < NTEST ; ++i ) {
// Create task in the "constructing" state with capacity for 'n+1' dependences
f[i] = policy.proc_create( TaskDep<Space>(policy,0) , n + 1 );
if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING ) {
Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING");
}
// Only use 'n' dependences
for ( int j = 0 ; j < n ; ++j ) {
Kokkos::Experimental::Future<int,Space> nested =
policy.proc_create( TaskDep<Space>(policy,j+1) );
policy.spawn( nested );
// Add dependence to a "constructing" task
policy.add_dependence( f[i] , nested );
}
// Spawn task from the "constructing" to the "waiting" state
policy.spawn( f[i] );
}
const int answer = n % 2 ? n * ( ( n + 1 ) / 2 ) : ( n / 2 ) * ( n + 1 );
Kokkos::Experimental::wait( policy );
int error = 0 ;
for ( int i = 0 ; i < NTEST ; ++i ) {
if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE ) {
Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE");
}
if ( answer != f[i].get() && 0 == error ) {
std::cout << "test_task_dep(" << n << ") ERROR at[" << i << "]"
<< " answer(" << answer << ") != result(" << f[i].get() << ")" << std::endl ;
}
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct TaskTeam {
enum { SPAN = 8 };
typedef void value_type ;
typedef Kokkos::Experimental::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Experimental::Future<void,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type result ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TaskTeam( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void apply( const typename policy_type::member_type & member )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.get_task_state() == Kokkos::Experimental::TASK_STATE_NULL ) {
if ( member.team_rank() == 0 ) {
future = policy.spawn( policy.task_create_team( TaskTeam( policy , result , begin - 1 ) ) );
policy.clear_dependence( this );
policy.add_dependence( this , future );
policy.respawn( this );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
}
};
template< class ExecSpace >
struct TaskTeamValue {
enum { SPAN = 8 };
typedef long value_type ;
typedef Kokkos::Experimental::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Experimental::Future<value_type,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type result ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TaskTeamValue( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void apply( const typename policy_type::member_type & member , value_type & final )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_create_team( TaskTeamValue( policy , result , begin - 1 ) );
policy.spawn( future );
policy.add_dependence( this , future );
policy.respawn( this );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
if ( member.team_rank() == 0 ) {
final = result[nvalue] ;
}
Kokkos::memory_fence();
}
};
template< class ExecSpace >
void test_task_team( long n )
{
typedef TaskTeam< ExecSpace > task_type ;
typedef TaskTeamValue< ExecSpace > task_value_type ;
typedef typename task_type::view_type view_type ;
typedef typename task_type::policy_type policy_type ;
typedef typename task_type::future_type future_type ;
typedef typename task_value_type::future_type future_value_type ;
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
policy_type
policy( task_max_count
, task_max_size
, task_dependence );
view_type result("result",n+1);
typename view_type::HostMirror
host_result = Kokkos::create_mirror_view( result );
future_type f = policy.proc_create_team( task_type( policy , result , n ) );
ASSERT_FALSE( f.is_null() );
policy.spawn( f );
Kokkos::Experimental::wait( policy );
Kokkos::deep_copy( host_result , result );
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "test_task_team void ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
}
future_value_type fv = policy.proc_create_team( task_value_type( policy , result , n ) );
ASSERT_FALSE( fv.is_null() );
policy.spawn( fv );
Kokkos::Experimental::wait( policy );
Kokkos::deep_copy( host_result , result );
if ( fv.get() != n + 1 ) {
std::cerr << "test_task_team value ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl ;
}
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "test_task_team value ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct TaskLatchAdd {
typedef void value_type ;
typedef Kokkos::Experimental::Future< Kokkos::Experimental::Latch , ExecSpace > future_type ;
future_type latch ;
volatile int * count ;
KOKKOS_INLINE_FUNCTION
TaskLatchAdd( const future_type & arg_latch
, volatile int * const arg_count )
: latch( arg_latch )
, count( arg_count )
{}
KOKKOS_INLINE_FUNCTION
void apply()
{
Kokkos::atomic_fetch_add( count , 1 );
latch.add(1);
}
};
template< class ExecSpace >
struct TaskLatchRun {
typedef void value_type ;
typedef Kokkos::Experimental::TaskPolicy< ExecSpace > policy_type ;
typedef Kokkos::Experimental::Future< Kokkos::Experimental::Latch , ExecSpace > future_type ;
policy_type policy ;
int total ;
volatile int count ;
KOKKOS_INLINE_FUNCTION
TaskLatchRun( const policy_type & arg_policy , const int arg_total )
: policy(arg_policy), total(arg_total), count(0) {}
KOKKOS_INLINE_FUNCTION
void apply()
{
if ( 0 == count && 0 < total ) {
future_type latch = policy.create_latch( total );
for ( int i = 0 ; i < total ; ++i ) {
auto f = policy.task_create( TaskLatchAdd<ExecSpace>(latch,&count) , 0 );
if ( f.is_null() ) {
Kokkos::abort("TaskLatchAdd allocation FAILED" );
}
if ( policy.spawn( f ).is_null() ) {
Kokkos::abort("TaskLatcAdd spawning FAILED" );
}
}
policy.add_dependence( this , latch );
policy.respawn( this );
}
else if ( count != total ) {
printf("TaskLatchRun FAILED %d != %d\n",count,total);
}
}
};
template< class ExecSpace >
void test_latch( int n )
{
typedef TaskLatchRun< ExecSpace > task_type ;
typedef typename task_type::policy_type policy_type ;
// Primary + latch + n*LatchAdd
const unsigned task_max_count = n + 2 ;
const unsigned task_max_size = sizeof(task_type);
const unsigned task_dependence = 4 ;
policy_type
policy( task_max_count
, task_max_size
, task_dependence );
policy.spawn( policy.proc_create( TaskLatchRun<ExecSpace>(policy,n) ) );
wait( policy );
}
//----------------------------------------------------------------------------
} // namespace TestTaskPolicy
#endif /* #ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP */