732 lines
22 KiB
C++
732 lines
22 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Aidan Thompson (SNL), Axel Kohlmeyer (Temple U)
|
|
|
|
Tomas Oppelstrup (LLNL): Optimization which reduces the number
|
|
of iterations in the L,m1,m2 loops (by a factor of up to 10), and
|
|
avoids evaluation of Ylm functions of negative m
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "compute_orientorder_atom.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "math_special.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "neigh_list.h"
|
|
#include "neighbor.h"
|
|
#include "pair.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
using MathSpecial::factorial;
|
|
|
|
#ifdef DBL_EPSILON
|
|
static constexpr double MY_EPSILON = (10.0 * DBL_EPSILON);
|
|
#else
|
|
static constexpr double MY_EPSILON = (10.0 * 2.220446049250313e-16);
|
|
#endif
|
|
|
|
static constexpr double QEPSILON = 1.0e-6;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg), qlist(nullptr), qnormfac(nullptr), qnormfac2(nullptr), distsq(nullptr),
|
|
nearest(nullptr), rlist(nullptr), qnarray(nullptr), qnm_r(nullptr), qnm_i(nullptr),
|
|
w3jlist(nullptr)
|
|
{
|
|
if (narg < 3) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
|
|
// set default values for optional args
|
|
|
|
nnn = 12;
|
|
cutsq = 0.0;
|
|
wlflag = 0;
|
|
wlhatflag = 0;
|
|
qlcompflag = 0;
|
|
chunksize = 16384;
|
|
|
|
// specify which orders to request
|
|
|
|
nqlist = 5;
|
|
memory->create(qlist, nqlist, "orientorder/atom:qlist");
|
|
qlist[0] = 4;
|
|
qlist[1] = 6;
|
|
qlist[2] = 8;
|
|
qlist[3] = 10;
|
|
qlist[4] = 12;
|
|
qmax = 12;
|
|
|
|
// process optional args
|
|
|
|
int iarg = 3;
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg], "nnn") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
if (strcmp(arg[iarg + 1], "NULL") == 0) {
|
|
nnn = 0;
|
|
} else {
|
|
nnn = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
if (nnn <= 0) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
}
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "degrees") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
nqlist = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
if (nqlist <= 0) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
memory->destroy(qlist);
|
|
memory->create(qlist, nqlist, "orientorder/atom:qlist");
|
|
iarg += 2;
|
|
if (iarg + nqlist > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
qmax = 0;
|
|
for (int il = 0; il < nqlist; il++) {
|
|
qlist[il] = utils::numeric(FLERR, arg[iarg + il], false, lmp);
|
|
if (qlist[il] < 0) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
if (qlist[il] > qmax) qmax = qlist[il];
|
|
}
|
|
iarg += nqlist;
|
|
} else if (strcmp(arg[iarg], "wl") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
wlflag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "wl/hat") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
wlhatflag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "components") == 0) {
|
|
qlcompflag = 1;
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
qlcomp = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
iqlcomp = -1;
|
|
for (int il = 0; il < nqlist; il++)
|
|
if (qlcomp == qlist[il]) {
|
|
iqlcomp = il;
|
|
break;
|
|
}
|
|
if (iqlcomp == -1) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "cutoff") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
double cutoff = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
if (cutoff <= 0.0) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
cutsq = cutoff * cutoff;
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "chunksize") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
chunksize = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
if (chunksize <= 0) error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
iarg += 2;
|
|
} else
|
|
error->all(FLERR, "Illegal compute orientorder/atom command");
|
|
}
|
|
|
|
ncol = nqlist;
|
|
if (wlflag) ncol += nqlist;
|
|
if (wlhatflag) ncol += nqlist;
|
|
if (qlcompflag) ncol += 2 * (2 * qlcomp + 1);
|
|
|
|
peratom_flag = 1;
|
|
size_peratom_cols = ncol;
|
|
|
|
nmax = 0;
|
|
maxneigh = 0;
|
|
|
|
memory->create(qnormfac, nqlist, "orientorder/atom:qnormfac");
|
|
memory->create(qnormfac2, nqlist, "orientorder/atom:qnormfac2");
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
qnormfac[il] = sqrt(MY_4PI / (2.0 * l + 1.0));
|
|
qnormfac2[il] = sqrt(2.0 * l + 1.0);
|
|
}
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
ComputeOrientOrderAtom::~ComputeOrientOrderAtom()
|
|
{
|
|
if (copymode) return;
|
|
|
|
memory->destroy(qnarray);
|
|
memory->destroy(distsq);
|
|
memory->destroy(rlist);
|
|
memory->destroy(nearest);
|
|
memory->destroy(qlist);
|
|
memory->destroy(qnormfac);
|
|
memory->destroy(qnormfac2);
|
|
memory->destroy(qnm_r);
|
|
memory->destroy(qnm_i);
|
|
memory->destroy(w3jlist);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::init()
|
|
{
|
|
if (force->pair == nullptr)
|
|
error->all(FLERR, "Compute orientorder/atom requires a pair style be defined");
|
|
if (cutsq == 0.0)
|
|
cutsq = force->pair->cutforce * force->pair->cutforce;
|
|
else if (sqrt(cutsq) > force->pair->cutforce)
|
|
error->all(FLERR, "Compute orientorder/atom cutoff is longer than pairwise cutoff");
|
|
|
|
memory->destroy(qnm_r);
|
|
memory->destroy(qnm_i);
|
|
memory->create(qnm_r, nqlist, qmax + 1, "orientorder/atom:qnm_r");
|
|
memory->create(qnm_i, nqlist, qmax + 1, "orientorder/atom:qnm_i");
|
|
|
|
// need an occasional full neighbor list
|
|
|
|
neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL);
|
|
|
|
if ((modify->get_compute_by_style("orientorder/atom").size() > 1) && (comm->me == 0))
|
|
error->warning(FLERR, "More than one instance of compute orientorder/atom");
|
|
|
|
if (wlflag || wlhatflag) init_wigner3j();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::init_list(int /*id*/, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::compute_peratom()
|
|
{
|
|
int i, j, ii, jj, inum, jnum;
|
|
double xtmp, ytmp, ztmp, delx, dely, delz, rsq;
|
|
int *ilist, *jlist, *numneigh, **firstneigh;
|
|
|
|
invoked_peratom = update->ntimestep;
|
|
|
|
// grow order parameter array if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(qnarray);
|
|
nmax = atom->nmax;
|
|
memory->create(qnarray, nmax, ncol, "orientorder/atom:qnarray");
|
|
array_atom = qnarray;
|
|
}
|
|
|
|
// invoke full neighbor list (will copy or build if necessary)
|
|
|
|
neighbor->build_one(list);
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// compute order parameter for each atom in group
|
|
// use full neighbor list to count atoms less than cutoff
|
|
|
|
double **x = atom->x;
|
|
int *mask = atom->mask;
|
|
memset(&qnarray[0][0], 0, sizeof(double) * nmax * ncol);
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
double *qn = qnarray[i];
|
|
if (mask[i] & groupbit) {
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// ensure distsq and nearest arrays are long enough
|
|
|
|
if (jnum > maxneigh) {
|
|
memory->destroy(distsq);
|
|
memory->destroy(rlist);
|
|
memory->destroy(nearest);
|
|
maxneigh = jnum;
|
|
memory->create(distsq, maxneigh, "orientorder/atom:distsq");
|
|
memory->create(rlist, maxneigh, 3, "orientorder/atom:rlist");
|
|
memory->create(nearest, maxneigh, "orientorder/atom:nearest");
|
|
}
|
|
|
|
// loop over list of all neighbors within force cutoff
|
|
// distsq[] = distance sq to each
|
|
// rlist[] = distance vector to each
|
|
// nearest[] = atom indices of neighbors
|
|
|
|
int ncount = 0;
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
if (rsq < cutsq) {
|
|
distsq[ncount] = rsq;
|
|
rlist[ncount][0] = delx;
|
|
rlist[ncount][1] = dely;
|
|
rlist[ncount][2] = delz;
|
|
nearest[ncount++] = j;
|
|
}
|
|
}
|
|
|
|
// if not nnn neighbors, order parameter = 0;
|
|
|
|
if ((ncount == 0) || (ncount < nnn)) {
|
|
for (jj = 0; jj < ncol; jj++) qn[jj] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
// if nnn > 0, use only nearest nnn neighbors
|
|
|
|
if (nnn > 0) {
|
|
select3(nnn, ncount, distsq, nearest, rlist);
|
|
ncount = nnn;
|
|
}
|
|
|
|
calc_boop(rlist, ncount, qn, qlist, nqlist);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local atom-based array
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeOrientOrderAtom::memory_usage()
|
|
{
|
|
double bytes = (double) ncol * nmax * sizeof(double);
|
|
bytes += (double) (qmax * (2 * qmax + 1) + maxneigh * 4) * sizeof(double);
|
|
bytes += (double) (nqlist + maxneigh) * sizeof(int);
|
|
return bytes;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
select3 routine from Numerical Recipes (slightly modified)
|
|
find k smallest values in array of length n
|
|
sort auxiliary arrays at same time
|
|
------------------------------------------------------------------------- */
|
|
|
|
// Use no-op do while to create single statement
|
|
|
|
#define SWAP(a, b) \
|
|
do { \
|
|
tmp = a; \
|
|
(a) = b; \
|
|
(b) = tmp; \
|
|
} while (0)
|
|
|
|
#define ISWAP(a, b) \
|
|
do { \
|
|
itmp = a; \
|
|
(a) = b; \
|
|
(b) = itmp; \
|
|
} while (0)
|
|
|
|
#define SWAP3(a, b) \
|
|
do { \
|
|
tmp = (a)[0]; \
|
|
(a)[0] = (b)[0]; \
|
|
(b)[0] = tmp; \
|
|
tmp = (a)[1]; \
|
|
(a)[1] = (b)[1]; \
|
|
(b)[1] = tmp; \
|
|
tmp = (a)[2]; \
|
|
(a)[2] = (b)[2]; \
|
|
(b)[2] = tmp; \
|
|
} while (0)
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::select3(int k, int n, double *arr, int *iarr, double **arr3)
|
|
{
|
|
int i, ir, j, l, mid, ia, itmp;
|
|
double a, tmp, a3[3];
|
|
|
|
arr--;
|
|
iarr--;
|
|
arr3--;
|
|
l = 1;
|
|
ir = n;
|
|
while (true) {
|
|
if (ir <= l + 1) {
|
|
if (ir == l + 1 && arr[ir] < arr[l]) {
|
|
SWAP(arr[l], arr[ir]);
|
|
ISWAP(iarr[l], iarr[ir]);
|
|
SWAP3(arr3[l], arr3[ir]);
|
|
}
|
|
return;
|
|
} else {
|
|
mid = (l + ir) >> 1;
|
|
SWAP(arr[mid], arr[l + 1]);
|
|
ISWAP(iarr[mid], iarr[l + 1]);
|
|
SWAP3(arr3[mid], arr3[l + 1]);
|
|
if (arr[l] > arr[ir]) {
|
|
SWAP(arr[l], arr[ir]);
|
|
ISWAP(iarr[l], iarr[ir]);
|
|
SWAP3(arr3[l], arr3[ir]);
|
|
}
|
|
if (arr[l + 1] > arr[ir]) {
|
|
SWAP(arr[l + 1], arr[ir]);
|
|
ISWAP(iarr[l + 1], iarr[ir]);
|
|
SWAP3(arr3[l + 1], arr3[ir]);
|
|
}
|
|
if (arr[l] > arr[l + 1]) {
|
|
SWAP(arr[l], arr[l + 1]);
|
|
ISWAP(iarr[l], iarr[l + 1]);
|
|
SWAP3(arr3[l], arr3[l + 1]);
|
|
}
|
|
i = l + 1;
|
|
j = ir;
|
|
a = arr[l + 1];
|
|
ia = iarr[l + 1];
|
|
a3[0] = arr3[l + 1][0];
|
|
a3[1] = arr3[l + 1][1];
|
|
a3[2] = arr3[l + 1][2];
|
|
while (true) {
|
|
do i++;
|
|
while (arr[i] < a);
|
|
do j--;
|
|
while (arr[j] > a);
|
|
if (j < i) break;
|
|
SWAP(arr[i], arr[j]);
|
|
ISWAP(iarr[i], iarr[j]);
|
|
SWAP3(arr3[i], arr3[j]);
|
|
}
|
|
arr[l + 1] = arr[j];
|
|
arr[j] = a;
|
|
iarr[l + 1] = iarr[j];
|
|
iarr[j] = ia;
|
|
arr3[l + 1][0] = arr3[j][0];
|
|
arr3[l + 1][1] = arr3[j][1];
|
|
arr3[l + 1][2] = arr3[j][2];
|
|
arr3[j][0] = a3[0];
|
|
arr3[j][1] = a3[1];
|
|
arr3[j][2] = a3[2];
|
|
if (j >= k) ir = j - 1;
|
|
if (j <= k) l = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
calculate the bond orientational order parameters
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::calc_boop(double **rlist, int ncount, double qn[], int qlist[],
|
|
int nqlist)
|
|
{
|
|
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
for (int m = 0; m < l + 1; m++) {
|
|
qnm_r[il][m] = 0.0;
|
|
qnm_i[il][m] = 0.0;
|
|
}
|
|
}
|
|
|
|
for (int ineigh = 0; ineigh < ncount; ineigh++) {
|
|
const double *const r = rlist[ineigh];
|
|
double rmag = sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]);
|
|
if (rmag <= MY_EPSILON) { return; }
|
|
|
|
double costheta = r[2] / rmag;
|
|
double expphi_r = r[0];
|
|
double expphi_i = r[1];
|
|
double rxymag = sqrt(expphi_r * expphi_r + expphi_i * expphi_i);
|
|
if (rxymag <= MY_EPSILON) {
|
|
expphi_r = 1.0;
|
|
expphi_i = 0.0;
|
|
} else {
|
|
double rxymaginv = 1.0 / rxymag;
|
|
expphi_r *= rxymaginv;
|
|
expphi_i *= rxymaginv;
|
|
}
|
|
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
|
|
// calculate spherical harmonics
|
|
// Ylm, -l <= m <= l
|
|
// sign convention: sign(Yll(0,0)) = (-1)^l
|
|
|
|
qnm_r[il][0] += polar_prefactor(l, 0, costheta);
|
|
double expphim_r = expphi_r;
|
|
double expphim_i = expphi_i;
|
|
for (int m = 1; m <= +l; m++) {
|
|
|
|
double prefactor = polar_prefactor(l, m, costheta);
|
|
double ylm_r = prefactor * expphim_r;
|
|
double ylm_i = prefactor * expphim_i;
|
|
qnm_r[il][m] += ylm_r;
|
|
qnm_i[il][m] += ylm_i;
|
|
// Skip calculation of qnm for m<0 due to symmetry
|
|
double tmp_r = expphim_r * expphi_r - expphim_i * expphi_i;
|
|
double tmp_i = expphim_r * expphi_i + expphim_i * expphi_r;
|
|
expphim_r = tmp_r;
|
|
expphim_i = tmp_i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert sums to averages
|
|
|
|
double facn = 1.0 / ncount;
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
for (int m = 0; m < l + 1; m++) {
|
|
qnm_r[il][m] *= facn;
|
|
qnm_i[il][m] *= facn;
|
|
}
|
|
}
|
|
|
|
// calculate Q_l
|
|
// NOTE: optional W_l_hat and components of Q_qlcomp use these stored Q_l values
|
|
|
|
int jj = 0;
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
double qm_sum = qnm_r[il][0] * qnm_r[il][0];
|
|
for (int m = 1; m < l + 1; m++)
|
|
qm_sum += 2.0 * (qnm_r[il][m] * qnm_r[il][m] + qnm_i[il][m] * qnm_i[il][m]);
|
|
qn[jj++] = qnormfac[il] * sqrt(qm_sum);
|
|
}
|
|
|
|
// calculate W_l
|
|
|
|
int nterms = 0;
|
|
int widx_count = 0;
|
|
if (wlflag || wlhatflag) {
|
|
for (int il = 0; il < nqlist; il++) {
|
|
int l = qlist[il];
|
|
double wlsum = 0.0;
|
|
for (int m1 = -l; m1 <= 0; m1++) {
|
|
const int sgn = 1 - 2 * (m1 & 1); // sgn = (-1)^m1
|
|
for (int m2 = 0; m2 <= ((-m1) >> 1); m2++) {
|
|
const int m3 = -(m1 + m2);
|
|
// Loop enforces -L <= m1 <= 0 <= m2 <= m3 <= L, and m1 + m2 + m3 = 0
|
|
|
|
// For even L, W3j is invariant under permutation of
|
|
// (m1, m2, m3) and (m1, m2, m3) -> (-m1, -m2, -m3). The loop
|
|
// structure enforces visiting only one member of each
|
|
// such symmetry (invariance) group.
|
|
|
|
// m1 <= 0, and Qlm[-m] = (-1)^m * conjg(Qlm[m])
|
|
const double Q1Q2_r =
|
|
(qnm_r[il][-m1] * qnm_r[il][m2] + qnm_i[il][-m1] * qnm_i[il][m2]) * sgn;
|
|
const double Q1Q2_i =
|
|
(qnm_r[il][-m1] * qnm_i[il][m2] - qnm_i[il][-m1] * qnm_r[il][m2]) * sgn;
|
|
const double Q1Q2Q3 = Q1Q2_r * qnm_r[il][m3] - Q1Q2_i * qnm_i[il][m3];
|
|
const double c = w3jlist[widx_count++];
|
|
wlsum += Q1Q2Q3 * c;
|
|
}
|
|
}
|
|
qn[jj++] = wlsum / qnormfac2[il];
|
|
nterms++;
|
|
}
|
|
}
|
|
|
|
// calculate W_l_hat
|
|
|
|
if (wlhatflag) {
|
|
const int jptr = jj - nterms;
|
|
if (!wlflag) jj = jptr;
|
|
for (int il = 0; il < nqlist; il++) {
|
|
if (qn[il] < QEPSILON)
|
|
qn[jj++] = 0.0;
|
|
else {
|
|
double qnfac = qnormfac[il] / qn[il];
|
|
qn[jj++] = qn[jptr + il] * (qnfac * qnfac * qnfac) * qnormfac2[il];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate components of Q_l/|Q_l|, for l=qlcomp
|
|
|
|
if (qlcompflag) {
|
|
int il = iqlcomp;
|
|
int l = qlcomp;
|
|
if (qn[il] < QEPSILON)
|
|
for (int m = 0; m < 2 * l + 1; m++) {
|
|
qn[jj++] = 0.0;
|
|
qn[jj++] = 0.0;
|
|
}
|
|
else {
|
|
double qnfac = qnormfac[il] / qn[il];
|
|
for (int m = -l; m < 0; m++) {
|
|
// Computed only qnm for m>=0.
|
|
// qnm[-m] = (-1)^m * conjg(qnm[m])
|
|
const int sgn = 1 - 2 * (m & 1); // sgn = (-1)^m
|
|
qn[jj++] = qnm_r[il][-m] * qnfac * sgn;
|
|
qn[jj++] = -qnm_i[il][-m] * qnfac * sgn;
|
|
}
|
|
for (int m = 0; m < l + 1; m++) {
|
|
qn[jj++] = qnm_r[il][m] * qnfac;
|
|
qn[jj++] = qnm_i[il][m] * qnfac;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
polar prefactor for spherical harmonic Y_l^m, where
|
|
Y_l^m (theta, phi) = prefactor(l, m, cos(theta)) * exp(i*m*phi)
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeOrientOrderAtom::polar_prefactor(int l, int m, double costheta)
|
|
{
|
|
const int mabs = abs(m);
|
|
|
|
double prefactor = 1.0;
|
|
for (int i = l - mabs + 1; i < l + mabs + 1; ++i) prefactor *= static_cast<double>(i);
|
|
|
|
prefactor = sqrt(static_cast<double>(2 * l + 1) / (MY_4PI * prefactor)) *
|
|
associated_legendre(l, mabs, costheta);
|
|
|
|
if ((m < 0) && (m % 2)) prefactor = -prefactor;
|
|
|
|
return prefactor;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
associated legendre polynomial
|
|
sign convention: P(l,l) = (2l-1)!!(-sqrt(1-x^2))^l
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
|
|
{
|
|
if (l < m) return 0.0;
|
|
|
|
double p(1.0), pm1(0.0), pm2(0.0);
|
|
|
|
if (m != 0) {
|
|
const double msqx = -sqrt(1.0 - x * x);
|
|
for (int i = 1; i < m + 1; ++i) p *= static_cast<double>(2 * i - 1) * msqx;
|
|
}
|
|
|
|
for (int i = m + 1; i < l + 1; ++i) {
|
|
pm2 = pm1;
|
|
pm1 = p;
|
|
p = (static_cast<double>(2 * i - 1) * x * pm1 - static_cast<double>(i + m - 1) * pm2) /
|
|
static_cast<double>(i - m);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Initialize table of Wigner 3j symbols
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeOrientOrderAtom::init_wigner3j()
|
|
{
|
|
int widx_count = 0;
|
|
|
|
for (int il = 0; il < nqlist; il++) {
|
|
const int l = qlist[il];
|
|
|
|
for (int m1 = -l; m1 <= 0; m1++) {
|
|
for (int m2 = 0; m2 <= ((-m1) >> 1); m2++) { widx_count++; }
|
|
}
|
|
}
|
|
widx_max = widx_count;
|
|
memory->destroy(w3jlist);
|
|
memory->create(w3jlist, widx_max, "computeorientorderatom:w3jlist");
|
|
|
|
widx_count = 0;
|
|
|
|
for (int il = 0; il < nqlist; il++) {
|
|
const int l = qlist[il];
|
|
|
|
for (int m1 = -l; m1 <= 0; m1++) {
|
|
for (int m2 = 0; m2 <= ((-m1) >> 1); m2++) {
|
|
const int m3 = -(m1 + m2);
|
|
// Loop enforces -L<=m1<=0<=m2<=m3<=L, and m1+m2+m3=0
|
|
|
|
// For even L, W3j is invariant under permutation of
|
|
// (m1,m2,m3) and (m1,m2,m3)->(-m1,-m2,-m3). The loop
|
|
// structure enforces visiting only one member of each
|
|
// such symmetry (invariance) group.
|
|
|
|
// Determine number of elements in symmetry group of (m1,m2,m3)
|
|
// Concise determination exploiting (m1,m2,m3) loop structure.
|
|
int pfac;
|
|
if (m1 == 0)
|
|
pfac = 1; // m1 = m2 = m3 = 0
|
|
else if (m2 == 0 || m2 == m3) {
|
|
// reduced group when only 3 permutations, or sign inversion
|
|
// is equivalent to permutation
|
|
pfac = 6;
|
|
} else
|
|
pfac = 12; // 6 permutations * 2 signs
|
|
|
|
w3jlist[widx_count] = w3j(l, m1, m2, m3) * pfac;
|
|
widx_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double ComputeOrientOrderAtom::triangle_coeff(const int a, const int b, const int c)
|
|
{
|
|
return factorial(a + b - c) * factorial(a - b + c) * factorial(-a + b + c) /
|
|
factorial(a + b + c + 1);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double ComputeOrientOrderAtom::w3j(const int lmax, const int j1, const int j2, const int j3)
|
|
{
|
|
const int a = lmax, b = lmax, c = lmax;
|
|
const int alpha = j1, beta = j2, gamma = j3;
|
|
struct {
|
|
double operator()(const int a, const int b, const int c, const int alpha, const int beta,
|
|
const int t)
|
|
{
|
|
return factorial(t) * factorial(c - b + t + alpha) * factorial(c - a + t - beta) *
|
|
factorial(a + b - c - t) * factorial(a - t - alpha) * factorial(b - t + beta);
|
|
}
|
|
} x;
|
|
const double sgn = 1 - 2 * ((a - b - gamma) & 1);
|
|
const double g = sqrt(triangle_coeff(lmax, lmax, lmax)) *
|
|
sqrt(factorial(a + alpha) * factorial(a - alpha) * factorial(b + beta) * factorial(b - beta) *
|
|
factorial(c + gamma) * factorial(c - gamma));
|
|
double s = 0;
|
|
int t = 0;
|
|
while (c - b + t + alpha < 0 || c - a + t - beta < 0) t++;
|
|
// ^^ t>=-j1 ^^ t>=j2
|
|
while (true) {
|
|
if (a + b - c - t < 0) break; // t<=lmax
|
|
if (a - t - alpha < 0) break; // t<=lmax-j1
|
|
if (b - t + beta < 0) break; // t<=lmax+j2
|
|
const int m1t = 1 - 2 * (t & 1);
|
|
s += m1t / x(lmax, lmax, lmax, alpha, beta, t);
|
|
t++;
|
|
}
|
|
return sgn * g * s;
|
|
}
|