Files
lammps/src/KOKKOS/atom_vec_dpd_kokkos.cpp
2023-03-06 16:31:19 -07:00

1076 lines
44 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "atom_vec_dpd_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "comm_kokkos.h"
#include "domain.h"
#include "error.h"
#include "fix.h"
#include "memory_kokkos.h"
#include "modify.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
AtomVecDPDKokkos::AtomVecDPDKokkos(LAMMPS *lmp) : AtomVec(lmp),
AtomVecKokkos(lmp), AtomVecDPD(lmp)
{
no_comm_vel_flag = 1;
}
/* ----------------------------------------------------------------------
grow atom arrays
n = 0 grows arrays by DELTA
n > 0 allocates arrays to size n
------------------------------------------------------------------------- */
void AtomVecDPDKokkos::grow(int n)
{
auto DELTA = LMP_KOKKOS_AV_DELTA;
int step = MAX(DELTA,nmax*0.01);
if (n == 0) nmax += step;
else nmax = n;
atomKK->nmax = nmax;
if (nmax < 0 || nmax > MAXSMALLINT)
error->one(FLERR,"Per-processor system is too big");
atomKK->sync(Device,ALL_MASK);
atomKK->modified(Device,ALL_MASK);
memoryKK->grow_kokkos(atomKK->k_tag,atomKK->tag,nmax,"atom:tag");
memoryKK->grow_kokkos(atomKK->k_type,atomKK->type,nmax,"atom:type");
memoryKK->grow_kokkos(atomKK->k_mask,atomKK->mask,nmax,"atom:mask");
memoryKK->grow_kokkos(atomKK->k_image,atomKK->image,nmax,"atom:image");
memoryKK->grow_kokkos(atomKK->k_x,atomKK->x,nmax,"atom:x");
memoryKK->grow_kokkos(atomKK->k_v,atomKK->v,nmax,"atom:v");
memoryKK->grow_kokkos(atomKK->k_f,atomKK->f,nmax,"atom:f");
memoryKK->grow_kokkos(atomKK->k_rho,atomKK->rho,nmax,"atom:rho");
memoryKK->grow_kokkos(atomKK->k_dpdTheta,atomKK->dpdTheta,nmax,"atom:dpdTheta");
memoryKK->grow_kokkos(atomKK->k_uCond,atomKK->uCond,nmax,"atom:uCond");
memoryKK->grow_kokkos(atomKK->k_uMech,atomKK->uMech,nmax,"atom:uMech");
memoryKK->grow_kokkos(atomKK->k_uChem,atomKK->uChem,nmax,"atom:uChem");
memoryKK->grow_kokkos(atomKK->k_uCG,atomKK->uCG,nmax,"atom:uCG");
memoryKK->grow_kokkos(atomKK->k_uCGnew,atomKK->uCGnew,nmax,"atom:uCGnew");
memoryKK->grow_kokkos(atomKK->k_duChem,atomKK->duChem,nmax,"atom:duChem");
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->grow_arrays(nmax);
grow_pointers();
atomKK->sync(Host,ALL_MASK);
}
/* ----------------------------------------------------------------------
reset local array ptrs
------------------------------------------------------------------------- */
void AtomVecDPDKokkos::grow_pointers()
{
tag = atomKK->tag;
d_tag = atomKK->k_tag.d_view;
h_tag = atomKK->k_tag.h_view;
type = atomKK->type;
d_type = atomKK->k_type.d_view;
h_type = atomKK->k_type.h_view;
mask = atomKK->mask;
d_mask = atomKK->k_mask.d_view;
h_mask = atomKK->k_mask.h_view;
image = atomKK->image;
d_image = atomKK->k_image.d_view;
h_image = atomKK->k_image.h_view;
x = atomKK->x;
d_x = atomKK->k_x.d_view;
h_x = atomKK->k_x.h_view;
v = atomKK->v;
d_v = atomKK->k_v.d_view;
h_v = atomKK->k_v.h_view;
f = atomKK->f;
d_f = atomKK->k_f.d_view;
h_f = atomKK->k_f.h_view;
rho = atomKK->rho;
d_rho = atomKK->k_rho.d_view;
h_rho = atomKK->k_rho.h_view;
dpdTheta = atomKK->dpdTheta;
d_dpdTheta = atomKK->k_dpdTheta.d_view;
h_dpdTheta = atomKK->k_dpdTheta.h_view;
uCond = atomKK->uCond;
d_uCond = atomKK->k_uCond.d_view;;
h_uCond = atomKK->k_uCond.h_view;
uMech = atomKK->uMech;
d_uMech = atomKK->k_uMech.d_view;;
h_uMech = atomKK->k_uMech.h_view;
uChem = atomKK->uChem;
d_uChem = atomKK->k_uChem.d_view;;
h_uChem = atomKK->k_uChem.h_view;
uCG = atomKK->uCG;
d_uCG = atomKK->k_uCG.d_view;;
h_uCG = atomKK->k_uCG.h_view;
uCGnew = atomKK->uCGnew;
d_uCGnew = atomKK->k_uCGnew.d_view;;
h_uCGnew = atomKK->k_uCGnew.h_view;
duChem = atomKK->duChem;
d_duChem = atomKK->k_duChem.d_view;;
h_duChem = atomKK->k_duChem.h_view;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType,int PBC_FLAG,int TRICLINIC>
struct AtomVecDPDKokkos_PackComm {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_x_array_randomread _x;
typename ArrayTypes<DeviceType>::t_efloat_1d _dpdTheta,_uCond,_uMech,_uChem;
typename ArrayTypes<DeviceType>::t_xfloat_2d_um _buf;
typename ArrayTypes<DeviceType>::t_int_2d_const _list;
const int _iswap;
X_FLOAT _xprd,_yprd,_zprd,_xy,_xz,_yz;
X_FLOAT _pbc[6];
AtomVecDPDKokkos_PackComm(
const typename DAT::tdual_x_array &x,
const typename DAT::tdual_efloat_1d &dpdTheta,
const typename DAT::tdual_efloat_1d &uCond,
const typename DAT::tdual_efloat_1d &uMech,
const typename DAT::tdual_efloat_1d &uChem,
const typename DAT::tdual_xfloat_2d &buf,
const typename DAT::tdual_int_2d &list,
const int & iswap,
const X_FLOAT &xprd, const X_FLOAT &yprd, const X_FLOAT &zprd,
const X_FLOAT &xy, const X_FLOAT &xz, const X_FLOAT &yz, const int* const pbc):
_x(x.view<DeviceType>()),
_dpdTheta(dpdTheta.view<DeviceType>()),
_uCond(uCond.view<DeviceType>()),
_uMech(uMech.view<DeviceType>()),
_uChem(uChem.view<DeviceType>()),
_list(list.view<DeviceType>()),_iswap(iswap),
_xprd(xprd),_yprd(yprd),_zprd(zprd),
_xy(xy),_xz(xz),_yz(yz) {
const size_t maxsend = (buf.view<DeviceType>().extent(0)*buf.view<DeviceType>().extent(1))/3;
const size_t elements = 3;
buffer_view<DeviceType>(_buf,buf,maxsend,elements);
_pbc[0] = pbc[0]; _pbc[1] = pbc[1]; _pbc[2] = pbc[2];
_pbc[3] = pbc[3]; _pbc[4] = pbc[4]; _pbc[5] = pbc[5];
};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
const int j = _list(_iswap,i);
if (PBC_FLAG == 0) {
_buf(i,0) = _x(j,0);
_buf(i,1) = _x(j,1);
_buf(i,2) = _x(j,2);
} else {
if (TRICLINIC == 0) {
_buf(i,0) = _x(j,0) + _pbc[0]*_xprd;
_buf(i,1) = _x(j,1) + _pbc[1]*_yprd;
_buf(i,2) = _x(j,2) + _pbc[2]*_zprd;
} else {
_buf(i,0) = _x(j,0) + _pbc[0]*_xprd + _pbc[5]*_xy + _pbc[4]*_xz;
_buf(i,1) = _x(j,1) + _pbc[1]*_yprd + _pbc[3]*_yz;
_buf(i,2) = _x(j,2) + _pbc[2]*_zprd;
}
}
_buf(i,3) = _dpdTheta(j);
_buf(i,4) = _uCond(j);
_buf(i,5) = _uMech(j);
_buf(i,6) = _uChem(j);
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::pack_comm_kokkos(const int &n,
const DAT::tdual_int_2d &list,
const int & iswap,
const DAT::tdual_xfloat_2d &buf,
const int &pbc_flag,
const int* const pbc)
{
// Check whether to always run forward communication on the host
// Choose correct forward PackComm kernel
if (commKK->forward_comm_on_host) {
atomKK->sync(Host,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
if (pbc_flag) {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackComm<LMPHostType,1,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackComm<LMPHostType,1,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
} else {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackComm<LMPHostType,0,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackComm<LMPHostType,0,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
}
} else {
atomKK->sync(Device,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
if (pbc_flag) {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackComm<LMPDeviceType,1,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackComm<LMPDeviceType,1,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
} else {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackComm<LMPDeviceType,0,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackComm<LMPDeviceType,0,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
}
}
return n*size_forward;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType,int PBC_FLAG,int TRICLINIC>
struct AtomVecDPDKokkos_PackCommSelf {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_x_array_randomread _x;
typename ArrayTypes<DeviceType>::t_x_array _xw;
typename ArrayTypes<DeviceType>::t_efloat_1d _dpdTheta,_uCond,_uMech,_uChem;
int _nfirst;
typename ArrayTypes<DeviceType>::t_int_2d_const _list;
const int _iswap;
X_FLOAT _xprd,_yprd,_zprd,_xy,_xz,_yz;
X_FLOAT _pbc[6];
AtomVecDPDKokkos_PackCommSelf(
const typename DAT::tdual_x_array &x,
const typename DAT::tdual_efloat_1d &dpdTheta,
const typename DAT::tdual_efloat_1d &uCond,
const typename DAT::tdual_efloat_1d &uMech,
const typename DAT::tdual_efloat_1d &uChem,
const int &nfirst,
const typename DAT::tdual_int_2d &list,
const int & iswap,
const X_FLOAT &xprd, const X_FLOAT &yprd, const X_FLOAT &zprd,
const X_FLOAT &xy, const X_FLOAT &xz, const X_FLOAT &yz, const int* const pbc):
_x(x.view<DeviceType>()),_xw(x.view<DeviceType>()),
_dpdTheta(dpdTheta.view<DeviceType>()),
_uCond(uCond.view<DeviceType>()),
_uMech(uMech.view<DeviceType>()),
_uChem(uChem.view<DeviceType>()),
_nfirst(nfirst),_list(list.view<DeviceType>()),_iswap(iswap),
_xprd(xprd),_yprd(yprd),_zprd(zprd),
_xy(xy),_xz(xz),_yz(yz) {
_pbc[0] = pbc[0]; _pbc[1] = pbc[1]; _pbc[2] = pbc[2];
_pbc[3] = pbc[3]; _pbc[4] = pbc[4]; _pbc[5] = pbc[5];
};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
const int j = _list(_iswap,i);
if (PBC_FLAG == 0) {
_xw(i+_nfirst,0) = _x(j,0);
_xw(i+_nfirst,1) = _x(j,1);
_xw(i+_nfirst,2) = _x(j,2);
} else {
if (TRICLINIC == 0) {
_xw(i+_nfirst,0) = _x(j,0) + _pbc[0]*_xprd;
_xw(i+_nfirst,1) = _x(j,1) + _pbc[1]*_yprd;
_xw(i+_nfirst,2) = _x(j,2) + _pbc[2]*_zprd;
} else {
_xw(i+_nfirst,0) = _x(j,0) + _pbc[0]*_xprd + _pbc[5]*_xy + _pbc[4]*_xz;
_xw(i+_nfirst,1) = _x(j,1) + _pbc[1]*_yprd + _pbc[3]*_yz;
_xw(i+_nfirst,2) = _x(j,2) + _pbc[2]*_zprd;
}
}
_dpdTheta(i+_nfirst) = _dpdTheta(j);
_uCond(i+_nfirst) = _uCond(j);
_uMech(i+_nfirst) = _uMech(j);
_uChem(i+_nfirst) = _uChem(j);
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::pack_comm_self(const int &n, const DAT::tdual_int_2d &list, const int & iswap,
const int nfirst, const int &pbc_flag, const int* const pbc) {
if (commKK->forward_comm_on_host) {
atomKK->sync(Host,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
atomKK->modified(Host,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
if (pbc_flag) {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackCommSelf<LMPHostType,1,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackCommSelf<LMPHostType,1,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
} else {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackCommSelf<LMPHostType,0,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackCommSelf<LMPHostType,0,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
}
} else {
atomKK->sync(Device,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
atomKK->modified(Device,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
if (pbc_flag) {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackCommSelf<LMPDeviceType,1,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackCommSelf<LMPDeviceType,1,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
} else {
if (domain->triclinic) {
struct AtomVecDPDKokkos_PackCommSelf<LMPDeviceType,0,1> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_PackCommSelf<LMPDeviceType,0,0> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
nfirst,list,iswap,
domain->xprd,domain->yprd,domain->zprd,
domain->xy,domain->xz,domain->yz,pbc);
Kokkos::parallel_for(n,f);
}
}
}
return n*3;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDPDKokkos_UnpackComm {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_x_array _x;
typename ArrayTypes<DeviceType>::t_efloat_1d _dpdTheta,_uCond,_uMech,_uChem;
typename ArrayTypes<DeviceType>::t_xfloat_2d_const _buf;
int _first;
AtomVecDPDKokkos_UnpackComm(
const typename DAT::tdual_x_array &x,
const typename DAT::tdual_efloat_1d &dpdTheta,
const typename DAT::tdual_efloat_1d &uCond,
const typename DAT::tdual_efloat_1d &uMech,
const typename DAT::tdual_efloat_1d &uChem,
const typename DAT::tdual_xfloat_2d &buf,
const int& first):_x(x.view<DeviceType>()),
_dpdTheta(dpdTheta.view<DeviceType>()),
_uCond(uCond.view<DeviceType>()),
_uMech(uMech.view<DeviceType>()),
_uChem(uChem.view<DeviceType>()),
_buf(buf.view<DeviceType>()),
_first(first) {};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
_x(i+_first,0) = _buf(i,0);
_x(i+_first,1) = _buf(i,1);
_x(i+_first,2) = _buf(i,2);
_dpdTheta(i+_first) = _buf(i,3);
_uCond(i+_first) = _buf(i,4);
_uMech(i+_first) = _buf(i,5);
_uChem(i+_first) = _buf(i,6);
}
};
/* ---------------------------------------------------------------------- */
void AtomVecDPDKokkos::unpack_comm_kokkos(const int &n, const int &first,
const DAT::tdual_xfloat_2d &buf) {
if (commKK->forward_comm_on_host) {
atomKK->sync(Host,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
atomKK->modified(Host,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
struct AtomVecDPDKokkos_UnpackComm<LMPHostType> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,first);
Kokkos::parallel_for(n,f);
} else {
atomKK->sync(Device,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
atomKK->modified(Device,X_MASK|DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK);
struct AtomVecDPDKokkos_UnpackComm<LMPDeviceType> f(atomKK->k_x,
atomKK->k_dpdTheta,atomKK->k_uCond,atomKK->k_uMech,atomKK->k_uChem,
buf,first);
Kokkos::parallel_for(n,f);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType,int PBC_FLAG>
struct AtomVecDPDKokkos_PackBorder {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_xfloat_2d _buf;
const typename ArrayTypes<DeviceType>::t_int_2d_const _list;
const int _iswap;
const typename ArrayTypes<DeviceType>::t_x_array_randomread _x;
const typename ArrayTypes<DeviceType>::t_tagint_1d _tag;
const typename ArrayTypes<DeviceType>::t_int_1d _type;
const typename ArrayTypes<DeviceType>::t_int_1d _mask;
typename ArrayTypes<DeviceType>::t_efloat_1d _dpdTheta,_uCond,_uMech,_uChem,_uCG,_uCGnew;
X_FLOAT _dx,_dy,_dz;
AtomVecDPDKokkos_PackBorder(
const typename ArrayTypes<DeviceType>::t_xfloat_2d &buf,
const typename ArrayTypes<DeviceType>::t_int_2d_const &list,
const int & iswap,
const typename ArrayTypes<DeviceType>::t_x_array &x,
const typename ArrayTypes<DeviceType>::t_tagint_1d &tag,
const typename ArrayTypes<DeviceType>::t_int_1d &type,
const typename ArrayTypes<DeviceType>::t_int_1d &mask,
const typename ArrayTypes<DeviceType>::t_efloat_1d &dpdTheta,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCond,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uMech,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uChem,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCG,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCGnew,
const X_FLOAT &dx, const X_FLOAT &dy, const X_FLOAT &dz):
_buf(buf),_list(list),_iswap(iswap),
_x(x),_tag(tag),_type(type),_mask(mask),
_dpdTheta(dpdTheta),
_uCond(uCond),
_uMech(uMech),
_uChem(uChem),
_uCG(uCG),
_uCGnew(uCGnew),
_dx(dx),_dy(dy),_dz(dz) {}
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
const int j = _list(_iswap,i);
if (PBC_FLAG == 0) {
_buf(i,0) = _x(j,0);
_buf(i,1) = _x(j,1);
_buf(i,2) = _x(j,2);
} else {
_buf(i,0) = _x(j,0) + _dx;
_buf(i,1) = _x(j,1) + _dy;
_buf(i,2) = _x(j,2) + _dz;
}
_buf(i,3) = _tag(j);
_buf(i,4) = _type(j);
_buf(i,5) = _mask(j);
_buf(i,6) = _dpdTheta(j);
_buf(i,7) = _uCond(j);
_buf(i,8) = _uMech(j);
_buf(i,9) = _uChem(j);
_buf(i,10) = _uCG(j);
_buf(i,11) = _uCGnew(j);
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::pack_border_kokkos(int n, DAT::tdual_int_2d k_sendlist, DAT::tdual_xfloat_2d buf,int iswap,
int pbc_flag, int *pbc, ExecutionSpace space)
{
X_FLOAT dx,dy,dz;
atomKK->sync(space,ALL_MASK);
if (pbc_flag != 0) {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
if (space==Host) {
AtomVecDPDKokkos_PackBorder<LMPHostType,1> f(
buf.view<LMPHostType>(), k_sendlist.view<LMPHostType>(),
iswap,h_x,h_tag,h_type,h_mask,
h_dpdTheta,h_uCond,h_uMech,h_uChem,h_uCG,h_uCGnew,
dx,dy,dz);
Kokkos::parallel_for(n,f);
} else {
AtomVecDPDKokkos_PackBorder<LMPDeviceType,1> f(
buf.view<LMPDeviceType>(), k_sendlist.view<LMPDeviceType>(),
iswap,d_x,d_tag,d_type,d_mask,
d_dpdTheta,d_uCond,d_uMech,d_uChem,d_uCG,d_uCGnew,
dx,dy,dz);
Kokkos::parallel_for(n,f);
}
} else {
dx = dy = dz = 0;
if (space==Host) {
AtomVecDPDKokkos_PackBorder<LMPHostType,0> f(
buf.view<LMPHostType>(), k_sendlist.view<LMPHostType>(),
iswap,h_x,h_tag,h_type,h_mask,
h_dpdTheta,h_uCond,h_uMech,h_uChem,h_uCG,h_uCGnew,
dx,dy,dz);
Kokkos::parallel_for(n,f);
} else {
AtomVecDPDKokkos_PackBorder<LMPDeviceType,0> f(
buf.view<LMPDeviceType>(), k_sendlist.view<LMPDeviceType>(),
iswap,d_x,d_tag,d_type,d_mask,
d_dpdTheta,d_uCond,d_uMech,d_uChem,d_uCG,d_uCGnew,
dx,dy,dz);
Kokkos::parallel_for(n,f);
}
}
return n*6;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDPDKokkos_UnpackBorder {
typedef DeviceType device_type;
const typename ArrayTypes<DeviceType>::t_xfloat_2d_const _buf;
typename ArrayTypes<DeviceType>::t_x_array _x;
typename ArrayTypes<DeviceType>::t_tagint_1d _tag;
typename ArrayTypes<DeviceType>::t_int_1d _type;
typename ArrayTypes<DeviceType>::t_int_1d _mask;
typename ArrayTypes<DeviceType>::t_efloat_1d _dpdTheta,_uCond,_uMech,_uChem,_uCG,_uCGnew;
int _first;
AtomVecDPDKokkos_UnpackBorder(
const typename ArrayTypes<DeviceType>::t_xfloat_2d_const &buf,
typename ArrayTypes<DeviceType>::t_x_array &x,
typename ArrayTypes<DeviceType>::t_tagint_1d &tag,
typename ArrayTypes<DeviceType>::t_int_1d &type,
typename ArrayTypes<DeviceType>::t_int_1d &mask,
const typename ArrayTypes<DeviceType>::t_efloat_1d &dpdTheta,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCond,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uMech,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uChem,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCG,
const typename ArrayTypes<DeviceType>::t_efloat_1d &uCGnew,
const int& first):
_buf(buf),_x(x),_tag(tag),_type(type),_mask(mask),
_dpdTheta(dpdTheta),
_uCond(uCond),
_uMech(uMech),
_uChem(uChem),
_uCG(uCG),
_uCGnew(uCGnew),
_first(first) {};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
_x(i+_first,0) = _buf(i,0);
_x(i+_first,1) = _buf(i,1);
_x(i+_first,2) = _buf(i,2);
_tag(i+_first) = static_cast<int> (_buf(i,3));
_type(i+_first) = static_cast<int> (_buf(i,4));
_mask(i+_first) = static_cast<int> (_buf(i,5));
_dpdTheta(i+_first) = _buf(i,6);
_uCond(i+_first) = _buf(i,7);
_uMech(i+_first) = _buf(i,8);
_uChem(i+_first) = _buf(i,9);
_uCG(i+_first) = _buf(i,10);
_uCGnew(i+_first) = _buf(i,11);
// printf("%i %i %lf %lf %lf %i BORDER\n",_tag(i+_first),i+_first,_x(i+_first,0),_x(i+_first,1),_x(i+_first,2),_type(i+_first));
}
};
/* ---------------------------------------------------------------------- */
void AtomVecDPDKokkos::unpack_border_kokkos(const int &n, const int &first,
const DAT::tdual_xfloat_2d &buf,ExecutionSpace space) {
atomKK->modified(space,X_MASK|TAG_MASK|TYPE_MASK|MASK_MASK|
DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK|
UCG_MASK|UCGNEW_MASK);
while (first+n >= nmax) grow(0);
atomKK->modified(space,X_MASK|TAG_MASK|TYPE_MASK|MASK_MASK|
DPDTHETA_MASK|UCOND_MASK|UMECH_MASK|UCHEM_MASK|
UCG_MASK|UCGNEW_MASK|DVECTOR_MASK);
if (space==Host) {
struct AtomVecDPDKokkos_UnpackBorder<LMPHostType> f(buf.view<LMPHostType>(),
h_x,h_tag,h_type,h_mask,
h_dpdTheta,h_uCond,h_uMech,h_uChem,h_uCG,h_uCGnew,
first);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDPDKokkos_UnpackBorder<LMPDeviceType> f(buf.view<LMPDeviceType>(),
d_x,d_tag,d_type,d_mask,
d_dpdTheta,d_uCond,d_uMech,d_uChem,d_uCG,d_uCGnew,
first);
Kokkos::parallel_for(n,f);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDPDKokkos_PackExchangeFunctor {
typedef DeviceType device_type;
typedef ArrayTypes<DeviceType> AT;
typename AT::t_x_array_randomread _x;
typename AT::t_v_array_randomread _v;
typename AT::t_tagint_1d_randomread _tag;
typename AT::t_int_1d_randomread _type;
typename AT::t_int_1d_randomread _mask;
typename AT::t_imageint_1d_randomread _image;
typename AT::t_efloat_1d_randomread _dpdTheta,_uCond,_uMech,_uChem,_uCG,_uCGnew;
typename AT::t_x_array _xw;
typename AT::t_v_array _vw;
typename AT::t_tagint_1d _tagw;
typename AT::t_int_1d _typew;
typename AT::t_int_1d _maskw;
typename AT::t_imageint_1d _imagew;
typename AT::t_efloat_1d _dpdThetaw,_uCondw,_uMechw,_uChemw,_uCGw,_uCGneww;
typename AT::t_xfloat_2d_um _buf;
typename AT::t_int_1d_const _sendlist;
typename AT::t_int_1d_const _copylist;
int _size_exchange;
AtomVecDPDKokkos_PackExchangeFunctor(
const AtomKokkos* atom,
const typename AT::tdual_xfloat_2d buf,
typename AT::tdual_int_1d sendlist,
typename AT::tdual_int_1d copylist):
_size_exchange(atom->avecKK->size_exchange),
_x(atom->k_x.view<DeviceType>()),
_v(atom->k_v.view<DeviceType>()),
_tag(atom->k_tag.view<DeviceType>()),
_type(atom->k_type.view<DeviceType>()),
_mask(atom->k_mask.view<DeviceType>()),
_image(atom->k_image.view<DeviceType>()),
_dpdTheta(atom->k_dpdTheta.view<DeviceType>()),
_uCond(atom->k_uCond.view<DeviceType>()),
_uMech(atom->k_uMech.view<DeviceType>()),
_uChem(atom->k_uChem.view<DeviceType>()),
_uCG(atom->k_uCG.view<DeviceType>()),
_uCGnew(atom->k_uCGnew.view<DeviceType>()),
_xw(atom->k_x.view<DeviceType>()),
_vw(atom->k_v.view<DeviceType>()),
_tagw(atom->k_tag.view<DeviceType>()),
_typew(atom->k_type.view<DeviceType>()),
_maskw(atom->k_mask.view<DeviceType>()),
_imagew(atom->k_image.view<DeviceType>()),
_dpdThetaw(atom->k_dpdTheta.view<DeviceType>()),
_uCondw(atom->k_uCond.view<DeviceType>()),
_uMechw(atom->k_uMech.view<DeviceType>()),
_uChemw(atom->k_uChem.view<DeviceType>()),
_uCGw(atom->k_uCG.view<DeviceType>()),
_uCGneww(atom->k_uCGnew.view<DeviceType>()),
_sendlist(sendlist.template view<DeviceType>()),
_copylist(copylist.template view<DeviceType>()) {
const int maxsendlist = (buf.template view<DeviceType>().extent(0)*buf.template view<DeviceType>().extent(1))/_size_exchange;
buffer_view<DeviceType>(_buf,buf,maxsendlist,_size_exchange);
}
KOKKOS_INLINE_FUNCTION
void operator() (const int &mysend) const {
const int i = _sendlist(mysend);
_buf(mysend,0) = _size_exchange;
_buf(mysend,1) = _x(i,0);
_buf(mysend,2) = _x(i,1);
_buf(mysend,3) = _x(i,2);
_buf(mysend,4) = _v(i,0);
_buf(mysend,5) = _v(i,1);
_buf(mysend,6) = _v(i,2);
_buf(mysend,7) = _tag[i];
_buf(mysend,8) = _type[i];
_buf(mysend,9) = _mask[i];
_buf(mysend,10) = _image[i];
_buf(mysend,11) = _dpdTheta[i];
_buf(mysend,12) = _uCond[i];
_buf(mysend,13) = _uMech[i];
_buf(mysend,14) = _uChem[i];
_buf(mysend,15) = _uCG[i];
_buf(mysend,16) = _uCGnew[i];
const int j = _copylist(mysend);
if (j>-1) {
_xw(i,0) = _x(j,0);
_xw(i,1) = _x(j,1);
_xw(i,2) = _x(j,2);
_vw(i,0) = _v(j,0);
_vw(i,1) = _v(j,1);
_vw(i,2) = _v(j,2);
_tagw[i] = _tag(j);
_typew[i] = _type(j);
_maskw[i] = _mask(j);
_imagew[i] = _image(j);
_dpdThetaw[i] = _dpdTheta(j);
_uCondw[i] = _uCond(j);
_uMechw[i] = _uMech(j);
_uChemw[i] = _uChem(j);
_uCGw[i] = _uCG(j);
_uCGneww[i] = _uCGnew(j);
}
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::pack_exchange_kokkos(const int &nsend,DAT::tdual_xfloat_2d &k_buf, DAT::tdual_int_1d k_sendlist,DAT::tdual_int_1d k_copylist,ExecutionSpace space)
{
size_exchange = 17;
if (nsend > (int) (k_buf.view<LMPHostType>().extent(0)*k_buf.view<LMPHostType>().extent(1))/size_exchange) {
int newsize = nsend*size_exchange/k_buf.view<LMPHostType>().extent(1)+1;
k_buf.resize(newsize,k_buf.view<LMPHostType>().extent(1));
}
atomKK->sync(space,X_MASK | V_MASK | TAG_MASK | TYPE_MASK |
MASK_MASK | IMAGE_MASK| DPDTHETA_MASK | UCOND_MASK |
UMECH_MASK | UCHEM_MASK | UCG_MASK | UCGNEW_MASK |
DVECTOR_MASK);
if (space == Host) {
AtomVecDPDKokkos_PackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_sendlist,k_copylist);
Kokkos::parallel_for(nsend,f);
} else {
AtomVecDPDKokkos_PackExchangeFunctor<LMPDeviceType> f(atomKK,k_buf,k_sendlist,k_copylist);
Kokkos::parallel_for(nsend,f);
}
return nsend*size_exchange;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDPDKokkos_UnpackExchangeFunctor {
typedef DeviceType device_type;
typedef ArrayTypes<DeviceType> AT;
typename AT::t_x_array _x;
typename AT::t_v_array _v;
typename AT::t_tagint_1d _tag;
typename AT::t_int_1d _type;
typename AT::t_int_1d _mask;
typename AT::t_imageint_1d _image;
typename AT::t_efloat_1d _dpdTheta;
typename AT::t_efloat_1d _uCond;
typename AT::t_efloat_1d _uMech;
typename AT::t_efloat_1d _uChem;
typename AT::t_efloat_1d _uCG;
typename AT::t_efloat_1d _uCGnew;
typename AT::t_xfloat_2d_um _buf;
typename AT::t_int_1d _nlocal;
int _dim;
X_FLOAT _lo,_hi;
int _size_exchange;
AtomVecDPDKokkos_UnpackExchangeFunctor(
const AtomKokkos* atom,
const typename AT::tdual_xfloat_2d buf,
typename AT::tdual_int_1d nlocal,
int dim, X_FLOAT lo, X_FLOAT hi):
_size_exchange(atom->avecKK->size_exchange),
_x(atom->k_x.view<DeviceType>()),
_v(atom->k_v.view<DeviceType>()),
_tag(atom->k_tag.view<DeviceType>()),
_type(atom->k_type.view<DeviceType>()),
_mask(atom->k_mask.view<DeviceType>()),
_image(atom->k_image.view<DeviceType>()),
_nlocal(nlocal.template view<DeviceType>()),_dim(dim),
_lo(lo),_hi(hi) {
const int maxsendlist = (buf.template view<DeviceType>().extent(0)*buf.template view<DeviceType>().extent(1))/_size_exchange;
buffer_view<DeviceType>(_buf,buf,maxsendlist,_size_exchange);
}
KOKKOS_INLINE_FUNCTION
void operator() (const int &myrecv) const {
X_FLOAT x = _buf(myrecv,_dim+1);
if (x >= _lo && x < _hi) {
int i = Kokkos::atomic_fetch_add(&_nlocal(0),1);
_x(i,0) = _buf(myrecv,1);
_x(i,1) = _buf(myrecv,2);
_x(i,2) = _buf(myrecv,3);
_v(i,0) = _buf(myrecv,4);
_v(i,1) = _buf(myrecv,5);
_v(i,2) = _buf(myrecv,6);
_tag[i] = _buf(myrecv,7);
_type[i] = _buf(myrecv,8);
_mask[i] = _buf(myrecv,9);
_image[i] = _buf(myrecv,10);
_dpdTheta[i] = _buf(myrecv,11);
_uCond[i] = _buf(myrecv,12);
_uMech[i] = _buf(myrecv,13);
_uChem[i] = _buf(myrecv,14);
_uCG[i] = _buf(myrecv,15);
_uCGnew[i] = _buf(myrecv,16);
}
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDPDKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf, int nrecv, int nlocal,
int dim, X_FLOAT lo, X_FLOAT hi, ExecutionSpace space,
DAT::tdual_int_1d &k_indices)
{
while (nlocal + nrecv/size_exchange >= nmax) grow(0);
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecDPDKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);
Kokkos::parallel_for(nrecv/size_exchange,f);
} else {
k_count.h_view(0) = nlocal;
k_count.modify<LMPHostType>();
k_count.sync<LMPDeviceType>();
AtomVecDPDKokkos_UnpackExchangeFunctor<LMPDeviceType> f(atomKK,k_buf,k_count,dim,lo,hi);
Kokkos::parallel_for(nrecv/size_exchange,f);
k_count.modify<LMPDeviceType>();
k_count.sync<LMPHostType>();
}
atomKK->modified(space,X_MASK | V_MASK | TAG_MASK | TYPE_MASK |
MASK_MASK | IMAGE_MASK| DPDTHETA_MASK | UCOND_MASK |
UMECH_MASK | UCHEM_MASK | UCG_MASK | UCGNEW_MASK |
DVECTOR_MASK);
return k_count.h_view(0);
}
/* ---------------------------------------------------------------------- */
void AtomVecDPDKokkos::sync(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if (mask & X_MASK) atomKK->k_x.sync<LMPDeviceType>();
if (mask & V_MASK) atomKK->k_v.sync<LMPDeviceType>();
if (mask & F_MASK) atomKK->k_f.sync<LMPDeviceType>();
if (mask & TAG_MASK) atomKK->k_tag.sync<LMPDeviceType>();
if (mask & TYPE_MASK) atomKK->k_type.sync<LMPDeviceType>();
if (mask & MASK_MASK) atomKK->k_mask.sync<LMPDeviceType>();
if (mask & IMAGE_MASK) atomKK->k_image.sync<LMPDeviceType>();
if (mask & DPDRHO_MASK) atomKK->k_rho.sync<LMPDeviceType>();
if (mask & DPDTHETA_MASK) atomKK->k_dpdTheta.sync<LMPDeviceType>();
if (mask & UCOND_MASK) atomKK->k_uCond.sync<LMPDeviceType>();
if (mask & UMECH_MASK) atomKK->k_uMech.sync<LMPDeviceType>();
if (mask & UCHEM_MASK) atomKK->k_uChem.sync<LMPDeviceType>();
if (mask & UCG_MASK) atomKK->k_uCG.sync<LMPDeviceType>();
if (mask & UCGNEW_MASK) atomKK->k_uCGnew.sync<LMPDeviceType>();
if (mask & DUCHEM_MASK) atomKK->k_duChem.sync<LMPDeviceType>();
if (mask & DVECTOR_MASK) atomKK->k_dvector.sync<LMPDeviceType>();
} else {
if (mask & X_MASK) atomKK->k_x.sync<LMPHostType>();
if (mask & V_MASK) atomKK->k_v.sync<LMPHostType>();
if (mask & F_MASK) atomKK->k_f.sync<LMPHostType>();
if (mask & TAG_MASK) atomKK->k_tag.sync<LMPHostType>();
if (mask & TYPE_MASK) atomKK->k_type.sync<LMPHostType>();
if (mask & MASK_MASK) atomKK->k_mask.sync<LMPHostType>();
if (mask & IMAGE_MASK) atomKK->k_image.sync<LMPHostType>();
if (mask & DPDRHO_MASK) atomKK->k_rho.sync<LMPHostType>();
if (mask & DPDTHETA_MASK) atomKK->k_dpdTheta.sync<LMPHostType>();
if (mask & UCOND_MASK) atomKK->k_uCond.sync<LMPHostType>();
if (mask & UMECH_MASK) atomKK->k_uMech.sync<LMPHostType>();
if (mask & UCHEM_MASK) atomKK->k_uChem.sync<LMPHostType>();
if (mask & UCG_MASK) atomKK->k_uCG.sync<LMPHostType>();
if (mask & UCGNEW_MASK) atomKK->k_uCGnew.sync<LMPHostType>();
if (mask & DUCHEM_MASK) atomKK->k_duChem.sync<LMPHostType>();
if (mask & DVECTOR_MASK) atomKK->k_dvector.sync<LMPHostType>();
}
}
/* ---------------------------------------------------------------------- */
void AtomVecDPDKokkos::sync_overlapping_device(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if ((mask & X_MASK) && atomKK->k_x.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_x_array>(atomKK->k_x,space);
if ((mask & V_MASK) && atomKK->k_v.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_v_array>(atomKK->k_v,space);
if ((mask & F_MASK) && atomKK->k_f.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_f_array>(atomKK->k_f,space);
if ((mask & TAG_MASK) && atomKK->k_tag.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_tagint_1d>(atomKK->k_tag,space);
if ((mask & TYPE_MASK) && atomKK->k_type.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_type,space);
if ((mask & MASK_MASK) && atomKK->k_mask.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_mask,space);
if ((mask & IMAGE_MASK) && atomKK->k_image.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_imageint_1d>(atomKK->k_image,space);
if ((mask & DPDRHO_MASK) && atomKK->k_rho.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_rho,space);
if ((mask & DPDTHETA_MASK) && atomKK->k_dpdTheta.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_dpdTheta,space);
if ((mask & UCOND_MASK) && atomKK->k_uCond.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCond,space);
if ((mask & UMECH_MASK) && atomKK->k_uMech.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uMech,space);
if ((mask & UCHEM_MASK) && atomKK->k_uChem.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uChem,space);
if ((mask & UCG_MASK) && atomKK->k_uCG.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCG,space);
if ((mask & UCGNEW_MASK) && atomKK->k_uCGnew.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCGnew,space);
if ((mask & DUCHEM_MASK) && atomKK->k_duChem.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_duChem,space);
if ((mask & DVECTOR_MASK) && atomKK->k_dvector.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_float_2d>(atomKK->k_dvector,space);
} else {
if ((mask & X_MASK) && atomKK->k_x.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_x_array>(atomKK->k_x,space);
if ((mask & V_MASK) && atomKK->k_v.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_v_array>(atomKK->k_v,space);
if ((mask & F_MASK) && atomKK->k_f.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_f_array>(atomKK->k_f,space);
if ((mask & TAG_MASK) && atomKK->k_tag.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_tagint_1d>(atomKK->k_tag,space);
if ((mask & TYPE_MASK) && atomKK->k_type.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_type,space);
if ((mask & MASK_MASK) && atomKK->k_mask.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_mask,space);
if ((mask & IMAGE_MASK) && atomKK->k_image.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_imageint_1d>(atomKK->k_image,space);
if ((mask & DPDRHO_MASK) && atomKK->k_rho.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_rho,space);
if ((mask & DPDTHETA_MASK) && atomKK->k_dpdTheta.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_dpdTheta,space);
if ((mask & UCOND_MASK) && atomKK->k_uCond.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCond,space);
if ((mask & UMECH_MASK) && atomKK->k_uMech.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uMech,space);
if ((mask & UCHEM_MASK) && atomKK->k_uChem.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uChem,space);
if ((mask & UCG_MASK) && atomKK->k_uCG.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCG,space);
if ((mask & UCGNEW_MASK) && atomKK->k_uCGnew.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_uCGnew,space);
if ((mask & DUCHEM_MASK) && atomKK->k_duChem.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_efloat_1d>(atomKK->k_duChem,space);
if ((mask & DVECTOR_MASK) && atomKK->k_dvector.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_float_2d>(atomKK->k_dvector,space);
}
}
/* ---------------------------------------------------------------------- */
void AtomVecDPDKokkos::modified(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if (mask & X_MASK) atomKK->k_x.modify<LMPDeviceType>();
if (mask & V_MASK) atomKK->k_v.modify<LMPDeviceType>();
if (mask & F_MASK) atomKK->k_f.modify<LMPDeviceType>();
if (mask & TAG_MASK) atomKK->k_tag.modify<LMPDeviceType>();
if (mask & TYPE_MASK) atomKK->k_type.modify<LMPDeviceType>();
if (mask & MASK_MASK) atomKK->k_mask.modify<LMPDeviceType>();
if (mask & IMAGE_MASK) atomKK->k_image.modify<LMPDeviceType>();
if (mask & DPDRHO_MASK) atomKK->k_rho.modify<LMPDeviceType>();
if (mask & DPDTHETA_MASK) atomKK->k_dpdTheta.modify<LMPDeviceType>();
if (mask & UCOND_MASK) atomKK->k_uCond.modify<LMPDeviceType>();
if (mask & UMECH_MASK) atomKK->k_uMech.modify<LMPDeviceType>();
if (mask & UCHEM_MASK) atomKK->k_uChem.modify<LMPDeviceType>();
if (mask & UCG_MASK) atomKK->k_uCG.modify<LMPDeviceType>();
if (mask & UCGNEW_MASK) atomKK->k_uCGnew.modify<LMPDeviceType>();
if (mask & DUCHEM_MASK) atomKK->k_duChem.modify<LMPDeviceType>();
if (mask & DVECTOR_MASK) atomKK->k_dvector.modify<LMPDeviceType>();
} else {
if (mask & X_MASK) atomKK->k_x.modify<LMPHostType>();
if (mask & V_MASK) atomKK->k_v.modify<LMPHostType>();
if (mask & F_MASK) atomKK->k_f.modify<LMPHostType>();
if (mask & TAG_MASK) atomKK->k_tag.modify<LMPHostType>();
if (mask & TYPE_MASK) atomKK->k_type.modify<LMPHostType>();
if (mask & MASK_MASK) atomKK->k_mask.modify<LMPHostType>();
if (mask & IMAGE_MASK) atomKK->k_image.modify<LMPHostType>();
if (mask & DPDRHO_MASK) atomKK->k_rho.modify<LMPHostType>();
if (mask & DPDTHETA_MASK) atomKK->k_dpdTheta.modify<LMPHostType>();
if (mask & UCOND_MASK) atomKK->k_uCond.modify<LMPHostType>();
if (mask & UMECH_MASK) atomKK->k_uMech.modify<LMPHostType>();
if (mask & UCHEM_MASK) atomKK->k_uChem.modify<LMPHostType>();
if (mask & UCG_MASK) atomKK->k_uCG.modify<LMPHostType>();
if (mask & UCGNEW_MASK) atomKK->k_uCGnew.modify<LMPHostType>();
if (mask & DUCHEM_MASK) atomKK->k_duChem.modify<LMPHostType>();
if (mask & DVECTOR_MASK) atomKK->k_dvector.modify<LMPHostType>();
}
}