This directory contains multipler examples of machine-learning potentials defined using the MLIAP package in LAMMPS. The input files are descirbed below. in.mliap.snap.Ta06A ------------------- Run linear SNAP, equivalent to examples/snap/in.snap.Ta06A in.mliap.snap.WBe.PRB2019 ------------------------- Run linear SNAP, equivalent to examples/snap/in.snap.WBe.PRB2019 in.mliap.snap.quadratic ----------------------- Run quadratic SNAP in.mliap.snap.chem ------------------ Run EME-SNAP, equivalent to examples/snap/in.snap.InP.JCPA2020 in.mliap.snap.compute --------------------- Generate gradients w.r.t. coefficients for linear SNAP, equivalent to in.snap.compute in.mliap.quadratic.compute -------------------------- Generate gradients w.r.t. coefficients for quadratic SNAP, equivalent to in.snap.compute.quadratic in.mliap.pytorch.Ta06A ----------------------- This reproduces the output of in.mliap.snap.Ta06A above, but using the Python coupling to PyTorch. It can be run in two different ways: 1: Running a LAMMPS executable: in.mliap.pytorch.Ta06A First run convert_mliap_Ta06A.py, which will convert the Ta06A potential into a pytorch model. It will be saved as "Ta06A.mliap.pytorch.model.pkl". It will also copy "../../src/MLIAP/mliappy_pytorch.py" file into the current working directory. mliappy_pytorch.py contains class definitions suitable for wrapping an arbitrary PyTorch energy model. It must be available to python when creating or unpickling a PyTorch energy model. From that point you can run the example as follows `lmp -in in.mliap.pytorch.Ta06A -echo both` The resultant log.lammps output should be identical to that generated by in.mliap.snap.Ta06A. 2: Running a Python script: mliap_pytorch_Ta06A.py Before testing this, ensure that the first example (using LAMMPS executable) works. Also, not all python installations support this mode of operation. It requires that the Python interpreter be initialized. To check this for your Python library, try running the Py_IsInitialized() method. If the return value is True, you should be able to run the example, as follows: `python mliap_pytorch_Ta06A.py` or `mpirun -np 4 python mliap_pytorch_Ta06A.py` The resultant log.lammps output should be identical to that generated by in.mliap.snap.Ta06A and in.mliap.pytorch.Ta06A.