Files
lammps/src/MOLECULE/angle_charmm.cpp
2022-03-17 19:44:34 -04:00

312 lines
8.9 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include "angle_charmm.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "neighbor.h"
#include <cmath>
using namespace LAMMPS_NS;
using MathConst::DEG2RAD;
using MathConst::RAD2DEG;
static constexpr double SMALL = 0.001;
/* ---------------------------------------------------------------------- */
AngleCharmm::AngleCharmm(LAMMPS *_lmp) : Angle(_lmp) {}
/* ---------------------------------------------------------------------- */
AngleCharmm::~AngleCharmm()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(theta0);
memory->destroy(k_ub);
memory->destroy(r_ub);
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::compute(int eflag, int vflag)
{
int i1, i2, i3, n, type;
double delx1, dely1, delz1, delx2, dely2, delz2;
double eangle, f1[3], f3[3];
double dtheta, tk;
double rsq1, rsq2, r1, r2, c, s, a, a11, a12, a22;
double delxUB, delyUB, delzUB, rsqUB, rUB, dr, rk, forceUB;
eangle = 0.0;
ev_init(eflag, vflag);
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1 * delx1 + dely1 * dely1 + delz1 * delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2 * delx2 + dely2 * dely2 + delz2 * delz2;
r2 = sqrt(rsq2);
// Urey-Bradley bond
delxUB = x[i3][0] - x[i1][0];
delyUB = x[i3][1] - x[i1][1];
delzUB = x[i3][2] - x[i1][2];
rsqUB = delxUB * delxUB + delyUB * delyUB + delzUB * delzUB;
rUB = sqrt(rsqUB);
// Urey-Bradley force & energy
dr = rUB - r_ub[type];
rk = k_ub[type] * dr;
if (rUB > 0.0)
forceUB = -2.0 * rk / rUB;
else
forceUB = 0.0;
if (eflag) eangle = rk * dr;
// angle (cos and sin)
c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2;
c /= r1 * r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c * c);
if (s < SMALL) s = SMALL;
s = 1.0 / s;
// harmonic force & energy
dtheta = acos(c) - theta0[type];
tk = k[type] * dtheta;
if (eflag) eangle += tk * dtheta;
a = -2.0 * tk * s;
a11 = a * c / rsq1;
a12 = -a / (r1 * r2);
a22 = a * c / rsq2;
f1[0] = a11 * delx1 + a12 * delx2 - delxUB * forceUB;
f1[1] = a11 * dely1 + a12 * dely2 - delyUB * forceUB;
f1[2] = a11 * delz1 + a12 * delz2 - delzUB * forceUB;
f3[0] = a22 * delx2 + a12 * delx1 + delxUB * forceUB;
f3[1] = a22 * dely2 + a12 * dely1 + delyUB * forceUB;
f3[2] = a22 * delz2 + a12 * delz1 + delzUB * forceUB;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag)
ev_tally(i1, i2, i3, nlocal, newton_bond, eangle, f1, f3, delx1, dely1, delz1, delx2, dely2,
delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleCharmm::allocate()
{
allocated = 1;
const int np1 = atom->nangletypes + 1;
memory->create(k, np1, "angle:k");
memory->create(theta0, np1, "angle:theta0");
memory->create(k_ub, np1, "angle:k_ub");
memory->create(r_ub, np1, "angle:r_ub");
memory->create(setflag, np1, "angle:setflag");
for (int i = 1; i < np1; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void AngleCharmm::coeff(int narg, char **arg)
{
if (narg != 5) error->all(FLERR, "Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo, ihi;
utils::bounds(FLERR, arg[0], 1, atom->nangletypes, ilo, ihi, error);
double k_one = utils::numeric(FLERR, arg[1], false, lmp);
double theta0_one = utils::numeric(FLERR, arg[2], false, lmp);
double k_ub_one = utils::numeric(FLERR, arg[3], false, lmp);
double r_ub_one = utils::numeric(FLERR, arg[4], false, lmp);
// convert theta0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
theta0[i] = DEG2RAD * theta0_one;
k_ub[i] = k_ub_one;
r_ub[i] = r_ub_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR, "Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCharmm::write_restart(FILE *fp)
{
fwrite(&k[1], sizeof(double), atom->nangletypes, fp);
fwrite(&theta0[1], sizeof(double), atom->nangletypes, fp);
fwrite(&k_ub[1], sizeof(double), atom->nangletypes, fp);
fwrite(&r_ub[1], sizeof(double), atom->nangletypes, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCharmm::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
utils::sfread(FLERR, &k[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
utils::sfread(FLERR, &theta0[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
utils::sfread(FLERR, &k_ub[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
utils::sfread(FLERR, &r_ub[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
}
MPI_Bcast(&k[1], atom->nangletypes, MPI_DOUBLE, 0, world);
MPI_Bcast(&theta0[1], atom->nangletypes, MPI_DOUBLE, 0, world);
MPI_Bcast(&k_ub[1], atom->nangletypes, MPI_DOUBLE, 0, world);
MPI_Bcast(&r_ub[1], atom->nangletypes, MPI_DOUBLE, 0, world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleCharmm::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp, "%d %g %g %g %g\n", i, k[i], RAD2DEG * theta0[i], k_ub[i], r_ub[i]);
}
/* ---------------------------------------------------------------------- */
double AngleCharmm::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1, dely1, delz1);
double r1 = sqrt(delx1 * delx1 + dely1 * dely1 + delz1 * delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2, dely2, delz2);
double r2 = sqrt(delx2 * delx2 + dely2 * dely2 + delz2 * delz2);
double delxUB = x[i3][0] - x[i1][0];
double delyUB = x[i3][1] - x[i1][1];
double delzUB = x[i3][2] - x[i1][2];
domain->minimum_image(delxUB, delyUB, delzUB);
double rUB = sqrt(delxUB * delxUB + delyUB * delyUB + delzUB * delzUB);
double c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2;
c /= r1 * r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double dtheta = acos(c) - theta0[type];
double tk = k[type] * dtheta;
double dr = rUB - r_ub[type];
double rk = k_ub[type] * dr;
return (tk * dtheta + rk * dr);
}