Files
lammps/src/ELECTRODE/fix_electrode_thermo.cpp
2023-05-31 14:50:55 +00:00

124 lines
4.7 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Ludwig Ahrens-Iwers (TUHH), Shern Tee (UQ), Robert Meißner (TUHH)
------------------------------------------------------------------------- */
#include "fix_electrode_thermo.h"
#include "atom.h"
#include "error.h"
#include "fix_electrode_conp.h"
#include "input.h"
#include "random_mars.h"
#include "update.h"
#include "variable.h"
#include <cmath>
using namespace LAMMPS_NS;
#define NUM_GROUPS 2
#define SMALL 0.00001
/* ----------------------------------------------------------------------- */
// 0 1 2 3 4
// fix fxupdate group1 electrode/thermo pot1 eta couple group2 pot2
FixElectrodeThermo::FixElectrodeThermo(LAMMPS *lmp, int narg, char **arg) :
FixElectrodeConp(lmp, narg, arg)
{
if (num_of_groups != NUM_GROUPS)
error->all(FLERR, "Number of electrodes != two in electrode/thermo");
if (group_psi_var_styles[0] != group_psi_var_styles[1])
error->all(FLERR, "Potentials in electrode/thermo must have same style");
if (algo != Algo::MATRIX_INV) error->all(FLERR, "Algorithm not allowed in electrode/thermo");
if (thermo_time < SMALL) error->all(FLERR, "Keyword temp not set or zero in electrode/thermo");
thermo_random = new RanMars(lmp, thermo_init);
if (group_psi_var_styles[0] == VarStyle::CONST)
delta_psi_0 = group_psi_const[1] - group_psi_const[0];
}
/* ----------------------------------------------------------------------- */
FixElectrodeThermo::~FixElectrodeThermo()
{
delete thermo_random;
}
/* ----------------------------------------------------------------------- */
void FixElectrodeThermo::compute_macro_matrices()
{
FixElectrodeConp::compute_macro_matrices();
if (symm)
vac_cap = macro_capacitance[0][0];
else
vac_cap = (macro_capacitance[0][0] * macro_capacitance[1][1] -
macro_capacitance[0][1] * macro_capacitance[0][1]) /
(macro_capacitance[0][0] + macro_capacitance[1][1] + 2 * macro_capacitance[0][1]);
}
/* ----------------------------------------------------------------------- */
void FixElectrodeThermo::pre_update()
{
// total electrode charges after last step, required for update psi
int const nlocal = atom->nlocal;
int *mask = atom->mask;
double *q = atom->q;
for (int g = 0; g < NUM_GROUPS; g++) {
group_q_old[g] = 0.;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & group_bits[g]) { group_q_old[g] += q[i]; }
}
}
MPI_Allreduce(MPI_IN_PLACE, &group_q_old, NUM_GROUPS, MPI_DOUBLE, MPI_SUM, world);
}
/* ----------------------------------------------------------------------- */
void FixElectrodeThermo::update_psi()
{
double const dt = update->dt;
// group_q_eff is charge that corresponds to potential after previous step
double const group_q_eff[NUM_GROUPS] = {group_q_old[0] - sb_charges[0],
(symm) ? 0. : group_q_old[1] - sb_charges[1]};
double const group_psi_old[NUM_GROUPS] = {
macro_elastance[0][0] * group_q_eff[0] + macro_elastance[0][1] * group_q_eff[1],
macro_elastance[1][0] * group_q_eff[0] + macro_elastance[1][1] * group_q_eff[1]};
double const delta_psi = group_psi_old[1] - group_psi_old[0];
// target potential difference from input parameters
if (group_psi_var_styles[0] == VarStyle::EQUAL) {
delta_psi_0 = input->variable->compute_equal(group_psi_var_ids[1]) -
input->variable->compute_equal(group_psi_var_ids[0]);
}
double delta_charge = 0.5 * (group_q_old[1] - group_q_old[0]) -
vac_cap * (delta_psi - delta_psi_0) * (1. - exp(-dt / thermo_time));
delta_charge += sqrt((thermo_temp * vac_cap) * (1. - exp(-2. * dt / thermo_time))) *
thermo_random->gaussian();
double const group_remainder_q[NUM_GROUPS] = {-delta_charge - sb_charges[0],
(symm) ? 0. : delta_charge - sb_charges[1]};
group_psi[0] =
macro_elastance[0][0] * group_remainder_q[0] + macro_elastance[0][1] * group_remainder_q[1];
group_psi[1] =
macro_elastance[1][0] * group_remainder_q[0] + macro_elastance[1][1] * group_remainder_q[1];
}