1181 lines
35 KiB
C++
1181 lines
35 KiB
C++
/*
|
|
//@HEADER
|
|
// ************************************************************************
|
|
//
|
|
// Kokkos v. 2.0
|
|
// Copyright (2014) Sandia Corporation
|
|
//
|
|
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
|
|
// the U.S. Government retains certain rights in this software.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the Corporation nor the names of the
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
|
|
//
|
|
// ************************************************************************
|
|
//@HEADER
|
|
*/
|
|
|
|
#include <stdexcept>
|
|
#include <sstream>
|
|
#include <iostream>
|
|
#include <limits>
|
|
|
|
#include <Kokkos_Core.hpp>
|
|
|
|
namespace Test {
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class ReduceFunctor
|
|
{
|
|
public:
|
|
typedef DeviceType execution_space;
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
struct value_type {
|
|
ScalarType value[3];
|
|
};
|
|
|
|
const size_type nwork;
|
|
|
|
ReduceFunctor( const size_type & arg_nwork )
|
|
: nwork( arg_nwork ) {}
|
|
|
|
ReduceFunctor( const ReduceFunctor & rhs )
|
|
: nwork( rhs.nwork ) {}
|
|
|
|
/*
|
|
KOKKOS_INLINE_FUNCTION
|
|
void init( value_type & dst ) const
|
|
{
|
|
dst.value[0] = 0;
|
|
dst.value[1] = 0;
|
|
dst.value[2] = 0;
|
|
}
|
|
*/
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void join( volatile value_type & dst,
|
|
const volatile value_type & src ) const
|
|
{
|
|
dst.value[0] += src.value[0];
|
|
dst.value[1] += src.value[1];
|
|
dst.value[2] += src.value[2];
|
|
}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( size_type iwork, value_type & dst ) const
|
|
{
|
|
dst.value[0] += 1;
|
|
dst.value[1] += iwork + 1;
|
|
dst.value[2] += nwork - iwork;
|
|
}
|
|
};
|
|
|
|
template< class DeviceType >
|
|
class ReduceFunctorFinal : public ReduceFunctor< long, DeviceType > {
|
|
public:
|
|
typedef typename ReduceFunctor< long, DeviceType >::value_type value_type;
|
|
|
|
ReduceFunctorFinal( const size_t n )
|
|
: ReduceFunctor< long, DeviceType >( n ) {}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void final( value_type & dst ) const
|
|
{
|
|
dst.value[0] = -dst.value[0];
|
|
dst.value[1] = -dst.value[1];
|
|
dst.value[2] = -dst.value[2];
|
|
}
|
|
};
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class RuntimeReduceFunctor
|
|
{
|
|
public:
|
|
// Required for functor:
|
|
typedef DeviceType execution_space;
|
|
typedef ScalarType value_type[];
|
|
const unsigned value_count;
|
|
|
|
// Unit test details:
|
|
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
const size_type nwork;
|
|
|
|
RuntimeReduceFunctor( const size_type arg_nwork,
|
|
const size_type arg_count )
|
|
: value_count( arg_count )
|
|
, nwork( arg_nwork ) {}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void init( ScalarType dst[] ) const
|
|
{
|
|
for ( unsigned i = 0; i < value_count; ++i ) dst[i] = 0;
|
|
}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void join( volatile ScalarType dst[],
|
|
const volatile ScalarType src[] ) const
|
|
{
|
|
for ( unsigned i = 0; i < value_count; ++i ) dst[i] += src[i];
|
|
}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( size_type iwork, ScalarType dst[] ) const
|
|
{
|
|
const size_type tmp[3] = { 1, iwork + 1, nwork - iwork };
|
|
|
|
for ( size_type i = 0; i < value_count; ++i ) {
|
|
dst[i] += tmp[ i % 3 ];
|
|
}
|
|
}
|
|
};
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class RuntimeReduceMinMax
|
|
{
|
|
public:
|
|
// Required for functor:
|
|
typedef DeviceType execution_space;
|
|
typedef ScalarType value_type[];
|
|
const unsigned value_count;
|
|
|
|
// Unit test details:
|
|
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
const size_type nwork;
|
|
const ScalarType amin;
|
|
const ScalarType amax;
|
|
|
|
RuntimeReduceMinMax( const size_type arg_nwork,
|
|
const size_type arg_count )
|
|
: value_count( arg_count )
|
|
, nwork( arg_nwork )
|
|
, amin( std::numeric_limits< ScalarType >::min() )
|
|
, amax( std::numeric_limits< ScalarType >::max() )
|
|
{}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void init( ScalarType dst[] ) const
|
|
{
|
|
for ( unsigned i = 0; i < value_count; ++i ) {
|
|
dst[i] = i % 2 ? amax : amin;
|
|
}
|
|
}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void join( volatile ScalarType dst[],
|
|
const volatile ScalarType src[] ) const
|
|
{
|
|
for ( unsigned i = 0; i < value_count; ++i ) {
|
|
dst[i] = i % 2 ? ( dst[i] < src[i] ? dst[i] : src[i] ) // min
|
|
: ( dst[i] > src[i] ? dst[i] : src[i] ); // max
|
|
}
|
|
}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( size_type iwork, ScalarType dst[] ) const
|
|
{
|
|
const ScalarType tmp[2] = { ScalarType( iwork + 1 )
|
|
, ScalarType( nwork - iwork ) };
|
|
|
|
for ( size_type i = 0; i < value_count; ++i ) {
|
|
dst[i] = i % 2 ? ( dst[i] < tmp[i % 2] ? dst[i] : tmp[i % 2] )
|
|
: ( dst[i] > tmp[i % 2] ? dst[i] : tmp[i % 2] );
|
|
}
|
|
}
|
|
};
|
|
|
|
template< class DeviceType >
|
|
class RuntimeReduceFunctorFinal : public RuntimeReduceFunctor< long, DeviceType > {
|
|
public:
|
|
typedef RuntimeReduceFunctor< long, DeviceType > base_type;
|
|
typedef typename base_type::value_type value_type;
|
|
typedef long scalar_type;
|
|
|
|
RuntimeReduceFunctorFinal( const size_t theNwork, const size_t count )
|
|
: base_type( theNwork, count ) {}
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void final( value_type dst ) const
|
|
{
|
|
for ( unsigned i = 0; i < base_type::value_count; ++i ) {
|
|
dst[i] = -dst[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace Test
|
|
|
|
namespace {
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class TestReduce
|
|
{
|
|
public:
|
|
typedef DeviceType execution_space;
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
TestReduce( const size_type & nwork )
|
|
{
|
|
run_test( nwork );
|
|
run_test_final( nwork );
|
|
}
|
|
|
|
void run_test( const size_type & nwork )
|
|
{
|
|
typedef Test::ReduceFunctor< ScalarType, execution_space > functor_type;
|
|
typedef typename functor_type::value_type value_type;
|
|
|
|
enum { Count = 3 };
|
|
enum { Repeat = 100 };
|
|
|
|
value_type result[ Repeat ];
|
|
|
|
const unsigned long nw = nwork;
|
|
const unsigned long nsum = nw % 2 ? nw * ( ( nw + 1 ) / 2 )
|
|
: ( nw / 2 ) * ( nw + 1 );
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
Kokkos::parallel_reduce( nwork, functor_type( nwork ), result[i] );
|
|
}
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
for ( unsigned j = 0; j < Count; ++j ) {
|
|
const unsigned long correct = 0 == j % 3 ? nw : nsum;
|
|
ASSERT_EQ( (ScalarType) correct, result[i].value[j] );
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_test_final( const size_type & nwork )
|
|
{
|
|
typedef Test::ReduceFunctorFinal< execution_space > functor_type;
|
|
typedef typename functor_type::value_type value_type;
|
|
|
|
enum { Count = 3 };
|
|
enum { Repeat = 100 };
|
|
|
|
value_type result[ Repeat ];
|
|
|
|
const unsigned long nw = nwork;
|
|
const unsigned long nsum = nw % 2 ? nw * ( ( nw + 1 ) / 2 )
|
|
: ( nw / 2 ) * ( nw + 1 );
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
if ( i % 2 == 0 ) {
|
|
Kokkos::parallel_reduce( nwork, functor_type( nwork ), result[i] );
|
|
}
|
|
else {
|
|
Kokkos::parallel_reduce( "Reduce", nwork, functor_type( nwork ), result[i] );
|
|
}
|
|
}
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
for ( unsigned j = 0; j < Count; ++j ) {
|
|
const unsigned long correct = 0 == j % 3 ? nw : nsum;
|
|
ASSERT_EQ( (ScalarType) correct, -result[i].value[j] );
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class TestReduceDynamic
|
|
{
|
|
public:
|
|
typedef DeviceType execution_space;
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
TestReduceDynamic( const size_type nwork )
|
|
{
|
|
run_test_dynamic( nwork );
|
|
run_test_dynamic_minmax( nwork );
|
|
run_test_dynamic_final( nwork );
|
|
}
|
|
|
|
void run_test_dynamic( const size_type nwork )
|
|
{
|
|
typedef Test::RuntimeReduceFunctor< ScalarType, execution_space > functor_type;
|
|
|
|
enum { Count = 3 };
|
|
enum { Repeat = 100 };
|
|
|
|
ScalarType result[ Repeat ][ Count ];
|
|
|
|
const unsigned long nw = nwork;
|
|
const unsigned long nsum = nw % 2 ? nw * ( ( nw + 1 ) / 2 )
|
|
: ( nw / 2 ) * ( nw + 1 );
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
if ( i % 2 == 0 ) {
|
|
Kokkos::parallel_reduce( nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
else {
|
|
Kokkos::parallel_reduce( "Reduce", nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
}
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
for ( unsigned j = 0; j < Count; ++j ) {
|
|
const unsigned long correct = 0 == j % 3 ? nw : nsum;
|
|
ASSERT_EQ( (ScalarType) correct, result[i][j] );
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_test_dynamic_minmax( const size_type nwork )
|
|
{
|
|
typedef Test::RuntimeReduceMinMax< ScalarType, execution_space > functor_type;
|
|
|
|
enum { Count = 2 };
|
|
enum { Repeat = 100 };
|
|
|
|
ScalarType result[ Repeat ][ Count ];
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
if ( i % 2 == 0 ) {
|
|
Kokkos::parallel_reduce( nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
else {
|
|
Kokkos::parallel_reduce( "Reduce", nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
}
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
for ( unsigned j = 0; j < Count; ++j ) {
|
|
if ( nwork == 0 )
|
|
{
|
|
ScalarType amin( std::numeric_limits< ScalarType >::min() );
|
|
ScalarType amax( std::numeric_limits< ScalarType >::max() );
|
|
const ScalarType correct = ( j % 2 ) ? amax : amin;
|
|
ASSERT_EQ( (ScalarType) correct, result[i][j] );
|
|
}
|
|
else {
|
|
const unsigned long correct = j % 2 ? 1 : nwork;
|
|
ASSERT_EQ( (ScalarType) correct, result[i][j] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void run_test_dynamic_final( const size_type nwork )
|
|
{
|
|
typedef Test::RuntimeReduceFunctorFinal< execution_space > functor_type;
|
|
|
|
enum { Count = 3 };
|
|
enum { Repeat = 100 };
|
|
|
|
typename functor_type::scalar_type result[ Repeat ][ Count ];
|
|
|
|
const unsigned long nw = nwork;
|
|
const unsigned long nsum = nw % 2 ? nw * ( ( nw + 1 ) / 2 )
|
|
: ( nw / 2 ) * ( nw + 1 );
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
if ( i % 2 == 0 ) {
|
|
Kokkos::parallel_reduce( nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
else {
|
|
Kokkos::parallel_reduce( "TestKernelReduce", nwork, functor_type( nwork, Count ), result[i] );
|
|
}
|
|
|
|
}
|
|
|
|
for ( unsigned i = 0; i < Repeat; ++i ) {
|
|
for ( unsigned j = 0; j < Count; ++j ) {
|
|
const unsigned long correct = 0 == j % 3 ? nw : nsum;
|
|
ASSERT_EQ( (ScalarType) correct, -result[i][j] );
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template< typename ScalarType, class DeviceType >
|
|
class TestReduceDynamicView
|
|
{
|
|
public:
|
|
typedef DeviceType execution_space;
|
|
typedef typename execution_space::size_type size_type;
|
|
|
|
TestReduceDynamicView( const size_type nwork )
|
|
{
|
|
run_test_dynamic_view( nwork );
|
|
}
|
|
|
|
void run_test_dynamic_view( const size_type nwork )
|
|
{
|
|
typedef Test::RuntimeReduceFunctor< ScalarType, execution_space > functor_type;
|
|
|
|
typedef Kokkos::View< ScalarType*, DeviceType > result_type;
|
|
typedef typename result_type::HostMirror result_host_type;
|
|
|
|
const unsigned CountLimit = 23;
|
|
|
|
const unsigned long nw = nwork;
|
|
const unsigned long nsum = nw % 2 ? nw * ( ( nw + 1 ) / 2 )
|
|
: ( nw / 2 ) * ( nw + 1 );
|
|
|
|
for ( unsigned count = 0; count < CountLimit; ++count ) {
|
|
|
|
result_type result( "result", count );
|
|
result_host_type host_result = Kokkos::create_mirror( result );
|
|
|
|
// Test result to host pointer:
|
|
|
|
std::string str( "TestKernelReduce" );
|
|
if ( count % 2 == 0 ) {
|
|
Kokkos::parallel_reduce( nw, functor_type( nw, count ), host_result.ptr_on_device() );
|
|
}
|
|
else {
|
|
Kokkos::parallel_reduce( str, nw, functor_type( nw, count ), host_result.ptr_on_device() );
|
|
}
|
|
|
|
for ( unsigned j = 0; j < count; ++j ) {
|
|
const unsigned long correct = 0 == j % 3 ? nw : nsum;
|
|
ASSERT_EQ( host_result( j ), (ScalarType) correct );
|
|
host_result( j ) = 0;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
//--------------------------------------------------------------------------
|
|
|
|
namespace Test {
|
|
|
|
template< class Scalar, class ExecSpace = Kokkos::DefaultExecutionSpace >
|
|
struct TestReducers {
|
|
struct SumFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value += values( i );
|
|
}
|
|
};
|
|
|
|
struct ProdFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value *= values( i );
|
|
}
|
|
};
|
|
|
|
struct MinFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
if ( values( i ) < value ) value = values( i );
|
|
}
|
|
};
|
|
|
|
struct MaxFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
if ( values( i ) > value ) value = values( i );
|
|
}
|
|
};
|
|
|
|
struct MinLocFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, typename Kokkos::Experimental::MinLoc< Scalar, int >::value_type & value ) const {
|
|
if ( values( i ) < value.val ) {
|
|
value.val = values( i );
|
|
value.loc = i;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct MaxLocFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, typename Kokkos::Experimental::MaxLoc< Scalar, int >::value_type & value ) const {
|
|
if ( values( i ) > value.val ) {
|
|
value.val = values( i );
|
|
value.loc = i;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct MinMaxLocFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, typename Kokkos::Experimental::MinMaxLoc< Scalar, int >::value_type & value ) const {
|
|
if ( values( i ) > value.max_val ) {
|
|
value.max_val = values( i );
|
|
value.max_loc = i;
|
|
}
|
|
|
|
if ( values( i ) < value.min_val ) {
|
|
value.min_val = values( i );
|
|
value.min_loc = i;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct BAndFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value = value & values( i );
|
|
}
|
|
};
|
|
|
|
struct BOrFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value = value | values( i );
|
|
}
|
|
};
|
|
|
|
struct LAndFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value = value && values( i );
|
|
}
|
|
};
|
|
|
|
struct LOrFunctor {
|
|
Kokkos::View< const Scalar*, ExecSpace > values;
|
|
|
|
KOKKOS_INLINE_FUNCTION
|
|
void operator()( const int & i, Scalar & value ) const {
|
|
value = value || values( i );
|
|
}
|
|
};
|
|
|
|
static void test_sum( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_sum = 0;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100 );
|
|
reference_sum += h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
SumFunctor f;
|
|
f.values = values;
|
|
Scalar init = 0;
|
|
|
|
{
|
|
Scalar sum_scalar = init;
|
|
Kokkos::Experimental::Sum< Scalar > reducer_scalar( sum_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( sum_scalar, reference_sum );
|
|
|
|
Scalar sum_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( sum_scalar_view, reference_sum );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace> sum_view( "View" );
|
|
sum_view() = init;
|
|
Kokkos::Experimental::Sum< Scalar > reducer_view( sum_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar sum_view_scalar = sum_view();
|
|
ASSERT_EQ( sum_view_scalar, reference_sum );
|
|
|
|
Scalar sum_view_view = reducer_view.reference();
|
|
ASSERT_EQ( sum_view_view, reference_sum );
|
|
}
|
|
}
|
|
|
|
static void test_prod( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_prod = 1;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 4 + 1 );
|
|
reference_prod *= h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
ProdFunctor f;
|
|
f.values = values;
|
|
Scalar init = 1;
|
|
|
|
{
|
|
Scalar prod_scalar = init;
|
|
Kokkos::Experimental::Prod< Scalar > reducer_scalar( prod_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( prod_scalar, reference_prod );
|
|
|
|
Scalar prod_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( prod_scalar_view, reference_prod );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > prod_view( "View" );
|
|
prod_view() = init;
|
|
Kokkos::Experimental::Prod< Scalar > reducer_view( prod_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar prod_view_scalar = prod_view();
|
|
ASSERT_EQ( prod_view_scalar, reference_prod );
|
|
|
|
Scalar prod_view_view = reducer_view.reference();
|
|
ASSERT_EQ( prod_view_view, reference_prod );
|
|
}
|
|
}
|
|
|
|
static void test_min( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_min = std::numeric_limits< Scalar >::max();
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 );
|
|
|
|
if ( h_values( i ) < reference_min ) reference_min = h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
MinFunctor f;
|
|
f.values = values;
|
|
Scalar init = std::numeric_limits< Scalar >::max();
|
|
|
|
{
|
|
Scalar min_scalar = init;
|
|
Kokkos::Experimental::Min< Scalar > reducer_scalar( min_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( min_scalar, reference_min );
|
|
|
|
Scalar min_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( min_scalar_view, reference_min );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > min_view( "View" );
|
|
min_view() = init;
|
|
Kokkos::Experimental::Min< Scalar > reducer_view( min_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar min_view_scalar = min_view();
|
|
ASSERT_EQ( min_view_scalar, reference_min );
|
|
|
|
Scalar min_view_view = reducer_view.reference();
|
|
ASSERT_EQ( min_view_view, reference_min );
|
|
}
|
|
}
|
|
|
|
static void test_max( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_max = std::numeric_limits< Scalar >::min();
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 + 1 );
|
|
|
|
if ( h_values( i ) > reference_max ) reference_max = h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
MaxFunctor f;
|
|
f.values = values;
|
|
Scalar init = std::numeric_limits< Scalar >::min();
|
|
|
|
{
|
|
Scalar max_scalar = init;
|
|
Kokkos::Experimental::Max< Scalar > reducer_scalar( max_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( max_scalar, reference_max );
|
|
|
|
Scalar max_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( max_scalar_view, reference_max );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > max_view( "View" );
|
|
max_view() = init;
|
|
Kokkos::Experimental::Max< Scalar > reducer_view( max_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar max_view_scalar = max_view();
|
|
ASSERT_EQ( max_view_scalar, reference_max );
|
|
|
|
Scalar max_view_view = reducer_view.reference();
|
|
ASSERT_EQ( max_view_view, reference_max );
|
|
}
|
|
}
|
|
|
|
static void test_minloc( int N ) {
|
|
typedef typename Kokkos::Experimental::MinLoc< Scalar, int >::value_type value_type;
|
|
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_min = std::numeric_limits< Scalar >::max();
|
|
int reference_loc = -1;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 );
|
|
|
|
if ( h_values( i ) < reference_min ) {
|
|
reference_min = h_values( i );
|
|
reference_loc = i;
|
|
}
|
|
else if ( h_values( i ) == reference_min ) {
|
|
// Make min unique.
|
|
h_values( i ) += std::numeric_limits< Scalar >::epsilon();
|
|
}
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
MinLocFunctor f;
|
|
f.values = values;
|
|
|
|
{
|
|
value_type min_scalar;
|
|
Kokkos::Experimental::MinLoc< Scalar, int > reducer_scalar( min_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( min_scalar.val, reference_min );
|
|
ASSERT_EQ( min_scalar.loc, reference_loc );
|
|
|
|
value_type min_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( min_scalar_view.val, reference_min );
|
|
ASSERT_EQ( min_scalar_view.loc, reference_loc );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< value_type, Kokkos::HostSpace > min_view( "View" );
|
|
Kokkos::Experimental::MinLoc< Scalar, int > reducer_view( min_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
value_type min_view_scalar = min_view();
|
|
ASSERT_EQ( min_view_scalar.val, reference_min );
|
|
ASSERT_EQ( min_view_scalar.loc, reference_loc );
|
|
|
|
value_type min_view_view = reducer_view.reference();
|
|
ASSERT_EQ( min_view_view.val, reference_min );
|
|
ASSERT_EQ( min_view_view.loc, reference_loc );
|
|
}
|
|
}
|
|
|
|
static void test_maxloc( int N ) {
|
|
typedef typename Kokkos::Experimental::MaxLoc< Scalar, int >::value_type value_type;
|
|
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_max = std::numeric_limits< Scalar >::min();
|
|
int reference_loc = -1;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 );
|
|
|
|
if ( h_values( i ) > reference_max ) {
|
|
reference_max = h_values( i );
|
|
reference_loc = i;
|
|
}
|
|
else if ( h_values( i ) == reference_max ) {
|
|
// Make max unique.
|
|
h_values( i ) -= std::numeric_limits< Scalar >::epsilon();
|
|
}
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
MaxLocFunctor f;
|
|
f.values = values;
|
|
|
|
{
|
|
value_type max_scalar;
|
|
Kokkos::Experimental::MaxLoc< Scalar, int > reducer_scalar( max_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( max_scalar.val, reference_max );
|
|
ASSERT_EQ( max_scalar.loc, reference_loc );
|
|
|
|
value_type max_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( max_scalar_view.val, reference_max );
|
|
ASSERT_EQ( max_scalar_view.loc, reference_loc );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< value_type, Kokkos::HostSpace > max_view( "View" );
|
|
Kokkos::Experimental::MaxLoc< Scalar, int > reducer_view( max_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
value_type max_view_scalar = max_view();
|
|
ASSERT_EQ( max_view_scalar.val, reference_max );
|
|
ASSERT_EQ( max_view_scalar.loc, reference_loc );
|
|
|
|
value_type max_view_view = reducer_view.reference();
|
|
ASSERT_EQ( max_view_view.val, reference_max );
|
|
ASSERT_EQ( max_view_view.loc, reference_loc );
|
|
}
|
|
}
|
|
|
|
static void test_minmaxloc( int N ) {
|
|
typedef typename Kokkos::Experimental::MinMaxLoc< Scalar, int >::value_type value_type;
|
|
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_max = std::numeric_limits< Scalar >::min();
|
|
Scalar reference_min = std::numeric_limits< Scalar >::max();
|
|
int reference_minloc = -1;
|
|
int reference_maxloc = -1;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 );
|
|
}
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
if ( h_values( i ) > reference_max ) {
|
|
reference_max = h_values( i );
|
|
reference_maxloc = i;
|
|
}
|
|
else if ( h_values( i ) == reference_max ) {
|
|
// Make max unique.
|
|
h_values( i ) -= std::numeric_limits< Scalar >::epsilon();
|
|
}
|
|
}
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
if ( h_values( i ) < reference_min ) {
|
|
reference_min = h_values( i );
|
|
reference_minloc = i;
|
|
}
|
|
else if ( h_values( i ) == reference_min ) {
|
|
// Make min unique.
|
|
h_values( i ) += std::numeric_limits< Scalar >::epsilon();
|
|
}
|
|
}
|
|
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
MinMaxLocFunctor f;
|
|
f.values = values;
|
|
|
|
{
|
|
value_type minmax_scalar;
|
|
Kokkos::Experimental::MinMaxLoc< Scalar, int > reducer_scalar( minmax_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( minmax_scalar.min_val, reference_min );
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
if ( ( i == minmax_scalar.min_loc ) && ( h_values( i ) == reference_min ) ) {
|
|
reference_minloc = i;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ( minmax_scalar.min_loc, reference_minloc );
|
|
ASSERT_EQ( minmax_scalar.max_val, reference_max );
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
if ( ( i == minmax_scalar.max_loc ) && ( h_values( i ) == reference_max ) ) {
|
|
reference_maxloc = i;
|
|
}
|
|
}
|
|
|
|
ASSERT_EQ( minmax_scalar.max_loc, reference_maxloc );
|
|
|
|
value_type minmax_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( minmax_scalar_view.min_val, reference_min );
|
|
ASSERT_EQ( minmax_scalar_view.min_loc, reference_minloc );
|
|
ASSERT_EQ( minmax_scalar_view.max_val, reference_max );
|
|
ASSERT_EQ( minmax_scalar_view.max_loc, reference_maxloc );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< value_type, Kokkos::HostSpace > minmax_view( "View" );
|
|
Kokkos::Experimental::MinMaxLoc< Scalar, int > reducer_view( minmax_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
value_type minmax_view_scalar = minmax_view();
|
|
ASSERT_EQ( minmax_view_scalar.min_val, reference_min );
|
|
ASSERT_EQ( minmax_view_scalar.min_loc, reference_minloc );
|
|
ASSERT_EQ( minmax_view_scalar.max_val, reference_max );
|
|
ASSERT_EQ( minmax_view_scalar.max_loc, reference_maxloc );
|
|
|
|
value_type minmax_view_view = reducer_view.reference();
|
|
ASSERT_EQ( minmax_view_view.min_val, reference_min );
|
|
ASSERT_EQ( minmax_view_view.min_loc, reference_minloc );
|
|
ASSERT_EQ( minmax_view_view.max_val, reference_max );
|
|
ASSERT_EQ( minmax_view_view.max_loc, reference_maxloc );
|
|
}
|
|
}
|
|
|
|
static void test_BAnd( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_band = Scalar() | ( ~Scalar() );
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 100000 + 1 );
|
|
reference_band = reference_band & h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
BAndFunctor f;
|
|
f.values = values;
|
|
Scalar init = Scalar() | ( ~Scalar() );
|
|
|
|
{
|
|
Scalar band_scalar = init;
|
|
Kokkos::Experimental::BAnd< Scalar > reducer_scalar( band_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( band_scalar, reference_band );
|
|
Scalar band_scalar_view = reducer_scalar.reference();
|
|
|
|
ASSERT_EQ( band_scalar_view, reference_band );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > band_view( "View" );
|
|
band_view() = init;
|
|
Kokkos::Experimental::BAnd< Scalar > reducer_view( band_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar band_view_scalar = band_view();
|
|
ASSERT_EQ( band_view_scalar, reference_band );
|
|
|
|
Scalar band_view_view = reducer_view.reference();
|
|
ASSERT_EQ( band_view_view, reference_band );
|
|
}
|
|
}
|
|
|
|
static void test_BOr( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_bor = Scalar() & ( ~Scalar() );
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( ( rand() % 100000 + 1 ) * 2 );
|
|
reference_bor = reference_bor | h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
BOrFunctor f;
|
|
f.values = values;
|
|
Scalar init = Scalar() & ( ~Scalar() );
|
|
|
|
{
|
|
Scalar bor_scalar = init;
|
|
Kokkos::Experimental::BOr< Scalar > reducer_scalar( bor_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( bor_scalar, reference_bor );
|
|
|
|
Scalar bor_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( bor_scalar_view, reference_bor );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > bor_view( "View" );
|
|
bor_view() = init;
|
|
Kokkos::Experimental::BOr< Scalar > reducer_view( bor_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar bor_view_scalar = bor_view();
|
|
ASSERT_EQ( bor_view_scalar, reference_bor );
|
|
|
|
Scalar bor_view_view = reducer_view.reference();
|
|
ASSERT_EQ( bor_view_view, reference_bor );
|
|
}
|
|
}
|
|
|
|
static void test_LAnd( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_land = 1;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 2 );
|
|
reference_land = reference_land && h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
LAndFunctor f;
|
|
f.values = values;
|
|
Scalar init = 1;
|
|
|
|
{
|
|
Scalar land_scalar = init;
|
|
Kokkos::Experimental::LAnd< Scalar > reducer_scalar( land_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( land_scalar, reference_land );
|
|
|
|
Scalar land_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( land_scalar_view, reference_land );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > land_view( "View" );
|
|
land_view() = init;
|
|
Kokkos::Experimental::LAnd< Scalar > reducer_view( land_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar land_view_scalar = land_view();
|
|
ASSERT_EQ( land_view_scalar, reference_land );
|
|
|
|
Scalar land_view_view = reducer_view.reference();
|
|
ASSERT_EQ( land_view_view, reference_land );
|
|
}
|
|
}
|
|
|
|
static void test_LOr( int N ) {
|
|
Kokkos::View< Scalar*, ExecSpace > values( "Values", N );
|
|
auto h_values = Kokkos::create_mirror_view( values );
|
|
Scalar reference_lor = 0;
|
|
|
|
for ( int i = 0; i < N; i++ ) {
|
|
h_values( i ) = (Scalar) ( rand() % 2 );
|
|
reference_lor = reference_lor || h_values( i );
|
|
}
|
|
Kokkos::deep_copy( values, h_values );
|
|
|
|
LOrFunctor f;
|
|
f.values = values;
|
|
Scalar init = 0;
|
|
|
|
{
|
|
Scalar lor_scalar = init;
|
|
Kokkos::Experimental::LOr< Scalar > reducer_scalar( lor_scalar );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_scalar );
|
|
|
|
ASSERT_EQ( lor_scalar, reference_lor );
|
|
|
|
Scalar lor_scalar_view = reducer_scalar.reference();
|
|
ASSERT_EQ( lor_scalar_view, reference_lor );
|
|
}
|
|
|
|
{
|
|
Kokkos::View< Scalar, Kokkos::HostSpace > lor_view( "View" );
|
|
lor_view() = init;
|
|
Kokkos::Experimental::LOr< Scalar > reducer_view( lor_view );
|
|
Kokkos::parallel_reduce( Kokkos::RangePolicy< ExecSpace >( 0, N ), f, reducer_view );
|
|
|
|
Scalar lor_view_scalar = lor_view();
|
|
ASSERT_EQ( lor_view_scalar, reference_lor );
|
|
|
|
Scalar lor_view_view = reducer_view.reference();
|
|
ASSERT_EQ( lor_view_view, reference_lor );
|
|
}
|
|
}
|
|
|
|
static void execute_float() {
|
|
test_sum( 10001 );
|
|
test_prod( 35 );
|
|
test_min( 10003 );
|
|
test_minloc( 10003 );
|
|
test_max( 10007 );
|
|
test_maxloc( 10007 );
|
|
test_minmaxloc( 10007 );
|
|
}
|
|
|
|
static void execute_integer() {
|
|
test_sum( 10001 );
|
|
test_prod( 35 );
|
|
test_min( 10003 );
|
|
test_minloc( 10003 );
|
|
test_max( 10007 );
|
|
test_maxloc( 10007 );
|
|
test_minmaxloc( 10007 );
|
|
test_BAnd( 35 );
|
|
test_BOr( 35 );
|
|
test_LAnd( 35 );
|
|
test_LOr( 35 );
|
|
}
|
|
|
|
static void execute_basic() {
|
|
test_sum( 10001 );
|
|
test_prod( 35 );
|
|
}
|
|
};
|
|
|
|
|
|
TEST_F( TEST_CATEGORY, long_reduce )
|
|
{
|
|
TestReduce< long, TEST_EXECSPACE >( 0 );
|
|
TestReduce< long, TEST_EXECSPACE >( 1000000 );
|
|
}
|
|
|
|
TEST_F( TEST_CATEGORY, double_reduce )
|
|
{
|
|
TestReduce< double, TEST_EXECSPACE >( 0 );
|
|
TestReduce< double, TEST_EXECSPACE >( 1000000 );
|
|
}
|
|
|
|
TEST_F( TEST_CATEGORY, reducers )
|
|
{
|
|
TestReducers< int, TEST_EXECSPACE >::execute_integer();
|
|
TestReducers< size_t, TEST_EXECSPACE >::execute_integer();
|
|
TestReducers< double, TEST_EXECSPACE >::execute_float();
|
|
TestReducers< Kokkos::complex<double>, TEST_EXECSPACE >::execute_basic();
|
|
}
|
|
|
|
TEST_F( TEST_CATEGORY, long_reduce_dynamic )
|
|
{
|
|
TestReduceDynamic< long, TEST_EXECSPACE >( 0 );
|
|
TestReduceDynamic< long, TEST_EXECSPACE >( 1000000 );
|
|
}
|
|
|
|
TEST_F( TEST_CATEGORY, double_reduce_dynamic )
|
|
{
|
|
TestReduceDynamic< double, TEST_EXECSPACE >( 0 );
|
|
TestReduceDynamic< double, TEST_EXECSPACE >( 1000000 );
|
|
}
|
|
|
|
TEST_F( TEST_CATEGORY, long_reduce_dynamic_view )
|
|
{
|
|
TestReduceDynamicView< long, TEST_EXECSPACE >( 0 );
|
|
TestReduceDynamicView< long, TEST_EXECSPACE >( 1000000 );
|
|
}
|
|
} // namespace Test
|