Files
lammps/lib/kokkos/benchmarks/policy_performance/policy_perf_test.hpp
2017-07-31 10:34:21 -06:00

355 lines
16 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#include <Kokkos_Core.hpp>
template < class ViewType >
struct ParallelScanFunctor {
using value_type = double;
ViewType v;
ParallelScanFunctor( const ViewType & v_ )
: v(v_)
{}
KOKKOS_INLINE_FUNCTION
void operator()( const int idx, value_type& val, const bool& final ) const
{
// inclusive scan
val += v(idx);
if ( final ) {
v(idx) = val;
}
}
};
template<class ScheduleType,class IndexType,class ViewType1, class ViewType2, class ViewType3>
void test_policy(int team_range, int thread_range, int vector_range,
int outer_repeat, int thread_repeat, int inner_repeat,
int team_size, int vector_size, int test_type,
ViewType1 &v1, ViewType2 &v2, ViewType3 &v3,
double &result, double &result_expect, double &time) {
typedef Kokkos::TeamPolicy<ScheduleType,IndexType> t_policy;
typedef typename t_policy::member_type t_team;
Kokkos::Timer timer;
for(int orep = 0; orep<outer_repeat; orep++) {
if (test_type == 100) {
Kokkos::parallel_for("100 outer for", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
v1(idx) = idx;
// prevent compiler optimizing loop away
});
}
if (test_type == 110) {
Kokkos::parallel_for("110 outer for", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
for (int tr = 0; tr<thread_repeat; ++tr) {
// Each team launches a parallel_for; thread_range is partitioned among team members
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
v2( idx, t ) = t;
// prevent compiler optimizing loop away
});
}
});
}
if (test_type == 111) {
Kokkos::parallel_for("111 outer for", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
for (int tr = 0; tr<thread_repeat; ++tr) {
// Each team launches a parallel_for; thread_range is partitioned among team members
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
for (int vr = 0; vr<inner_repeat; ++vr)
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team,vector_range), [&] (const int vi) {
v3( idx, t, vi ) = vi;
// prevent compiler optimizing loop away
});
});
}
});
}
if (test_type == 112) {
Kokkos::parallel_for("112 outer for", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
for (int tr = 0; tr<thread_repeat; ++tr) {
// Each team launches a parallel_for; thread_range is partitioned among team members
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
double vector_result = 0.0;
for (int vr = 0; vr<inner_repeat; ++vr) {
vector_result = 0.0;
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(team,vector_range), [&] (const int vi, double &vval) {
vval += 1;
}, vector_result);
}
v2( idx, t ) = vector_result;
// prevent compiler optimizing loop away
});
}
});
}
if (test_type == 120) {
Kokkos::parallel_for("120 outer for", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double team_result = 0.0;
for (int tr = 0; tr<thread_repeat; ++tr) {
team_result = 0.0;
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double &lval) {
lval += 1;
}, team_result);
}
v1(idx) = team_result;
// prevent compiler optimizing loop away
});
}
if (test_type == 121) {
Kokkos::parallel_for("121 outer for", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double team_result = 0.0;
for (int tr = 0; tr<thread_repeat; ++tr) {
team_result = 0.0;
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double &lval) {
lval += 1;
for (int vr = 0; vr<inner_repeat; ++vr) {
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team,vector_range), [&] (const int vi) {
v3( idx, t, vi ) = vi;
// prevent compiler optimizing loop away
});
}
}, team_result);
}
v3( idx, 0, 0 ) = team_result;
// prevent compiler optimizing loop away
});
}
if (test_type == 122) {
Kokkos::parallel_for("122 outer for", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double team_result = 0.0;
for (int tr = 0; tr<thread_repeat; ++tr) {
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double &lval) {
double vector_result = 0.0;
for (int vr = 0; vr<inner_repeat; ++vr)
vector_result = 0.0;
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(team,vector_range), [&] (const int vi, double &vval) {
vval += 1;
}, vector_result);
lval += vector_result;
}, team_result);
}
v1(idx) = team_result;
// prevent compiler optimizing loop away
});
}
if (test_type == 200) {
Kokkos::parallel_reduce("200 outer reduce", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
lval+=team.team_size()*team.league_rank() + team.team_rank();
},result);
result_expect = 0.5* (team_range*team_size)*(team_range*team_size-1);
// sum ( seq( [0, team_range*team_size) )
}
if (test_type == 210) {
Kokkos::parallel_reduce("210 outer reduce", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double thread_for = 1.0;
for(int tr = 0; tr<thread_repeat; tr++) {
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
v2(idx,t) = t;
// prevent compiler optimizing loop away
});
}
lval+=(team.team_size()*team.league_rank() + team.team_rank() + thread_for);
},result);
result_expect = 0.5* (team_range*team_size)*(team_range*team_size-1) + (team_range*team_size);
// sum ( seq( [0, team_range*team_size) + 1 per team_member (total of team_range*team_size) )
}
if (test_type == 211) {
Kokkos::parallel_reduce("211 outer reduce", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double thread_for = 1.0;
for(int tr = 0; tr<thread_repeat; tr++) {
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
for (int vr = 0; vr<inner_repeat; ++vr)
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, vector_range), [&] (const int vi) {
v3(idx, t, vi) = vi;
// prevent compiler optimizing loop away
});
});
}
lval+=idx+thread_for;
},result);
result_expect = 0.5*(team_range*team_size)*(team_range*team_size-1) + (team_range*team_size);
// sum ( seq( [0, team_range*team_size) + 1 per team_member (total of team_range*team_size) )
}
if (test_type == 212) {
Kokkos::parallel_reduce("212 outer reduce", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double vector_result = 0.0;
for(int tr = 0; tr<thread_repeat; tr++) {
// This parallel_for is executed by each team; the thread_range is partitioned among the team members
Kokkos::parallel_for(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t) {
v2(idx,t) = t;
// prevent compiler optimizing loop away
for (int vr = 0; vr<inner_repeat; ++vr) {
vector_result = 0.0;
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(team, vector_range), [&] (const int vi, double &vval) {
vval += vi;
}, vector_result );
}
});
}
lval+= idx + vector_result;
},result);
result_expect = 0.5*(team_range*team_size)*(team_range*team_size-1) + (0.5*vector_range*(vector_range-1)*team_range*team_size);
// sum ( seq( [0, team_range*team_size) + sum( seq( [0, vector_range) ) per team_member (total of team_range*team_size) )
}
if (test_type == 220) {
Kokkos::parallel_reduce("220 outer reduce", t_policy(team_range,team_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
double team_result = 0.0;
for(int tr = 0; tr<thread_repeat; tr++) {
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double& tval) {
tval += t;
},team_result);
}
lval+=team_result*team.league_rank(); // constant * league_rank
},result);
result_expect = 0.5*(team_range)*(team_range-1) * team_size * 0.5*(thread_range)*(thread_range-1);
// sum ( seq( [0, team_range) * constant ); constant = sum( seq( [0, thread_range) )*team_size (1 per member, result for each team)
}
if (test_type == 221) {
Kokkos::parallel_reduce("221 outer reduce", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
long idx = team.league_rank()*team.team_size() + team.team_rank();
double team_result = 0;
for(int tr = 0; tr<thread_repeat; tr++) {
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double& tval) {
double vector_for = 1.0;
for (int vr = 0; vr<inner_repeat; ++vr) {
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, vector_range), [&] (const int vi) {
v3(idx, t, vi) = vi;
// prevent compiler optimizing loop away
});
}
tval += t + vector_for;
},team_result);
}
lval+=team_result*team.league_rank();
},result);
result_expect = 0.5* (team_range)*(team_range-1) * team_size * (0.5*(thread_range) * (thread_range-1) + thread_range);
// sum ( seq( [0, team_range) * constant ) + 1 per member per team; constant = sum( seq( [0, thread_range) )*team_size (1 per member, result for each team)
}
if (test_type == 222) {
Kokkos::parallel_reduce("222 outer reduce", t_policy(team_range,team_size,vector_size),
KOKKOS_LAMBDA (const t_team& team, double& lval) {
double team_result = 0.0;
for(int tr = 0; tr<thread_repeat; tr++) {
Kokkos::parallel_reduce(Kokkos::TeamThreadRange(team,thread_range), [&] (const int t, double& tval) {
double vector_result = 0.0;
for (int vr = 0; vr<inner_repeat; ++vr) {
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(team, vector_range), [&] (const int vi, double& vval) {
vval += vi;
}, vector_result);
}
tval += t + vector_result;
},team_result);
}
lval+=team_result*team.league_rank();
},result);
result_expect = 0.5* (team_range)*(team_range-1) * team_size * (0.5*(thread_range) * (thread_range-1) + thread_range*0.5*(vector_range)*(vector_range-1));
// sum ( seq( [0, team_range) * constant ) + 1 + sum( seq([0,vector_range) ) per member per team; constant = sum( seq( [0, thread_range) )*team_size (1 per member, result for each team)
}
// parallel_for RangePolicy: range = team_size*team_range
if (test_type == 300) {
Kokkos::parallel_for("300 outer for", team_size*team_range,
KOKKOS_LAMBDA (const int idx) {
v1(idx) = idx;
// prevent compiler from optimizing away the loop
});
}
// parallel_reduce RangePolicy: range = team_size*team_range
if (test_type == 400) {
Kokkos::parallel_reduce("400 outer reduce", team_size*team_range,
KOKKOS_LAMBDA (const int idx, double& val) {
val += idx;
}, result);
result_expect = 0.5*(team_size*team_range)*(team_size*team_range-1);
}
// parallel_scan RangePolicy: range = team_size*team_range
if (test_type == 500) {
Kokkos::parallel_scan("500 outer scan", team_size*team_range,
ParallelScanFunctor<ViewType1>(v1)
#if 0
// This does not compile with pre Cuda 8.0 - see Github Issue #913 for explanation
KOKKOS_LAMBDA (const int idx, double& val, const bool& final) {
// inclusive scan
val += v1(idx);
if ( final ) {
v1(idx) = val;
}
}
#endif
);
// result = v1( team_size*team_range - 1 ); // won't work with Cuda - need to copy result back to host to print
// result_expect = 0.5*(team_size*team_range)*(team_size*team_range-1);
}
} // end outer for loop
time = timer.seconds();
} //end test_policy