Files
lammps/lib/gpu/lal_sph_heatconduction.cu
2024-01-21 10:02:41 -05:00

258 lines
8.9 KiB
Plaintext

// **************************************************************************
// sph_heatconduction.cu
// ---------------------
// Trung Dac Nguyen (U Chicago)
//
// Device code for acceleration of the sph/heatconduction pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin : September 2023
// email : ndactrung@gmail.com
// ***************************************************************************
#if defined(NV_KERNEL) || defined(USE_HIP)
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
_texture( pos_tex,float4);
_texture( vel_tex,float4);
#else
_texture_2d( pos_tex,int4);
_texture_2d( vel_tex,int4);
#endif
#else
#define pos_tex x_
#define vel_tex v_
#endif
#if (SHUFFLE_AVAIL == 0)
#define store_dE(dEacc, ii, inum, tid, t_per_atom, offset, dE) \
if (t_per_atom>1) { \
simdsync(); \
simd_reduce_add1(t_per_atom, red_acc, offset, tid, dEacc); \
} \
if (offset==0 && ii<inum) { \
dE[ii]=dEacc; \
}
#else
#define store_drhoE(dEacc, ii, inum, tid, t_per_atom, offset, dE) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
dEacc += shfl_down(dEacc, s, t_per_atom); \
} \
} \
if (offset==0 && ii<inum) { \
dE[ii]=dEacc; \
}
#endif
/* ------------------------------------------------------------------------ */
__kernel void k_sph_heatconduction(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict extra,
const __global numtyp4 *restrict coeff,
const __global numtyp *restrict mass,
const int lj_types,
const __global numtyp *restrict sp_lj,
const __global int * dev_nbor,
const __global int * dev_packed,
__global acctyp3 *restrict ans,
__global acctyp *restrict engv,
__global acctyp *restrict dE,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const __global numtyp4 *restrict v_,
const int dimension, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
int n_stride;
#if (SHUFFLE_AVAIL == 0)
local_allocate_store_pair();
#endif
acctyp dEacc = (acctyp)0;
if (ii<inum) {
int i, numj, nbor, nbor_end;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int itype=ix.w;
numtyp mass_itype = mass[itype];
const numtyp4 extrai = extra[i];
numtyp rhoi = extrai.x;
numtyp esphi = extrai.y;
for ( ; nbor<nbor_end; nbor+=n_stride) {
ucl_prefetch(dev_packed+nbor+n_stride);
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<coeff[mtype].z) { // cutsq[itype][jtype]
numtyp mass_jtype = mass[jtype];
const numtyp coeffx=coeff[mtype].x; // alpha[itype][jtype]
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
const numtyp4 extraj = extra[j];
numtyp rhoj = extraj.x;
numtyp esphj = extraj.y;
numtyp h = coeffy; // cut[itype][jtype]
numtyp ih = ucl_recip(h); // (numtyp)1.0 / h;
numtyp ihsq = ih * ih;
numtyp wfd = h - ucl_sqrt(rsq);
if (dimension == 3) {
// Lucy Kernel, 3d
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
} else {
// Lucy Kernel, 2d
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
}
// total thermal energy increment
numtyp D = coeffx; // alpha[itype][jtype] diffusion coefficient
numtyp deltaE = (numtyp)2.0 * mass_itype * mass_jtype / (mass_itype + mass_jtype);
deltaE *= (rhoi + rhoj) / (rhoi * rhoj);
deltaE *= D * (esphi - esphj) * wfd;
// change in thermal energy, desph[i]
dEacc += deltaE;
}
} // for nbor
} // if ii
store_drhoE(dEacc,ii,inum,tid,t_per_atom,offset,dE);
}
__kernel void k_sph_heatconduction_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict extra,
const __global numtyp4 *restrict coeff_in,
const __global numtyp *restrict mass,
const __global numtyp *restrict sp_lj_in,
const __global int * dev_nbor,
const __global int * dev_packed,
__global acctyp3 *restrict ans,
__global acctyp *restrict engv,
__global acctyp *restrict dE,
const int eflag, const int vflag,
const int inum, const int nbor_pitch,
const __global numtyp4 *restrict v_,
const int dimension, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
#ifndef ONETYPE
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
coeff[tid]=coeff_in[tid];
}
__syncthreads();
#else
const numtyp coeffx=coeff_in[ONETYPE].x; // alpha[itype][jtype]
const numtyp coeffy=coeff_in[ONETYPE].y; // cut[itype][jtype]
const numtyp cutsq_p=coeff_in[ONETYPE].z; // cutsq[itype][jtype]
#endif
int n_stride;
#if (SHUFFLE_AVAIL == 0)
local_allocate_store_pair();
#endif
acctyp dEacc = (acctyp)0;
if (ii<inum) {
int i, numj, nbor, nbor_end;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int iw=ix.w;
numtyp mass_itype = mass[iw];
#ifndef ONETYPE
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
#endif
const numtyp4 extrai = extra[i];
numtyp rhoi = extrai.x;
numtyp esphi = extrai.y;
for ( ; nbor<nbor_end; nbor+=n_stride) {
ucl_prefetch(dev_packed+nbor+n_stride);
int j=dev_packed[nbor];
#ifndef ONETYPE
j &= NEIGHMASK;
#endif
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype = jx.w;
#ifndef ONETYPE
int mtype=itype+jx.w;
const numtyp cutsq_p=coeff[mtype].z;
#endif
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutsq_p) {
numtyp mass_jtype = mass[jtype];
#ifndef ONETYPE
const numtyp coeffx=coeff[mtype].x; // alpha[itype][jtype]
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
#endif
const numtyp4 extraj = extra[j];
numtyp rhoj = extraj.x;
numtyp esphj = extraj.y;
numtyp h = coeffy; // cut[itype][jtype]
numtyp ih = ih = ucl_recip(h); // (numtyp)1.0 / h;
numtyp ihsq = ih * ih;
numtyp wfd = h - ucl_sqrt(rsq);
if (dimension == 3) {
// Lucy Kernel, 3d
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
} else {
// Lucy Kernel, 2d
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
}
// total thermal energy increment
numtyp D = coeffx; // alpha[itype][jtype] diffusion coefficient
numtyp deltaE = (numtyp)2.0 * mass_itype * mass_jtype / (mass_itype + mass_jtype);
deltaE *= (rhoi + rhoj) / (rhoi * rhoj);
deltaE *= D * (esphi - esphj) * wfd;
// change in thermal energy, desph[i]
dEacc += deltaE;
}
} // for nbor
} // if ii
store_drhoE(dEacc,ii,inum,tid,t_per_atom,offset,dE);
}