This update contains several small new features or usability improvements.
Descriptions and authorship information can be accessed from the pull
requests listed below.
Allow setting sigma parameter directly for metadynamics
https://github.com/Colvars/colvars/pull/325
Remove default values for lowerWall and upperWall legacy keywords
https://github.com/Colvars/colvars/pull/324
biasActualColvar option to bypass extended-Lagragian for a bias
https://github.com/Colvars/colvars/pull/321
Flexible restart-reading
https://github.com/Colvars/colvars/pull/320
891 lines
29 KiB
C++
891 lines
29 KiB
C++
// -*- c++ -*-
|
|
|
|
// This file is part of the Collective Variables module (Colvars).
|
|
// The original version of Colvars and its updates are located at:
|
|
// https://github.com/Colvars/colvars
|
|
// Please update all Colvars source files before making any changes.
|
|
// If you wish to distribute your changes, please submit them to the
|
|
// Colvars repository at GitHub.
|
|
|
|
#include "colvarmodule.h"
|
|
#include "colvarproxy.h"
|
|
#include "colvar.h"
|
|
#include "colvarbias_abf.h"
|
|
|
|
|
|
colvarbias_abf::colvarbias_abf(char const *key)
|
|
: colvarbias(key),
|
|
b_UI_estimator(false),
|
|
b_CZAR_estimator(false),
|
|
pabf_freq(0),
|
|
system_force(NULL),
|
|
gradients(NULL),
|
|
samples(NULL),
|
|
pmf(NULL),
|
|
z_gradients(NULL),
|
|
z_samples(NULL),
|
|
czar_gradients(NULL),
|
|
czar_pmf(NULL),
|
|
last_gradients(NULL),
|
|
last_samples(NULL)
|
|
{
|
|
}
|
|
|
|
int colvarbias_abf::init(std::string const &conf)
|
|
{
|
|
colvarbias::init(conf);
|
|
|
|
colvarproxy *proxy = cvm::main()->proxy;
|
|
|
|
enable(f_cvb_scalar_variables);
|
|
enable(f_cvb_calc_pmf);
|
|
|
|
// TODO relax this in case of VMD plugin
|
|
if (cvm::temperature() == 0.0)
|
|
cvm::log("WARNING: ABF should not be run without a thermostat or at 0 Kelvin!\n");
|
|
|
|
// ************* parsing general ABF options ***********************
|
|
|
|
get_keyval_feature((colvarparse *)this, conf, "applyBias", f_cvb_apply_force, true);
|
|
if (!is_enabled(f_cvb_apply_force)){
|
|
cvm::log("WARNING: ABF biases will *not* be applied!\n");
|
|
}
|
|
|
|
get_keyval(conf, "updateBias", update_bias, true);
|
|
if (update_bias) {
|
|
enable(f_cvb_history_dependent);
|
|
} else {
|
|
cvm::log("WARNING: ABF biases will *not* be updated!\n");
|
|
}
|
|
|
|
get_keyval(conf, "hideJacobian", hide_Jacobian, false);
|
|
if (hide_Jacobian) {
|
|
cvm::log("Jacobian (geometric) forces will be handled internally.\n");
|
|
} else {
|
|
cvm::log("Jacobian (geometric) forces will be included in reported free energy gradients.\n");
|
|
}
|
|
|
|
get_keyval(conf, "fullSamples", full_samples, 200);
|
|
if ( full_samples <= 1 ) full_samples = 1;
|
|
min_samples = full_samples / 2;
|
|
// full_samples - min_samples >= 1 is guaranteed
|
|
|
|
get_keyval(conf, "inputPrefix", input_prefix, std::vector<std::string>());
|
|
get_keyval(conf, "outputFreq", output_freq, cvm::restart_out_freq);
|
|
get_keyval(conf, "historyFreq", history_freq, 0);
|
|
b_history_files = (history_freq > 0);
|
|
|
|
// shared ABF
|
|
get_keyval(conf, "shared", shared_on, false);
|
|
if (shared_on) {
|
|
if ((proxy->replica_enabled() != COLVARS_OK) ||
|
|
(proxy->num_replicas() <= 1)) {
|
|
return cvm::error("Error: shared ABF requires more than one replica.",
|
|
INPUT_ERROR);
|
|
}
|
|
cvm::log("shared ABF will be applied among "+
|
|
cvm::to_str(proxy->num_replicas()) + " replicas.\n");
|
|
if (cvm::proxy->smp_enabled() == COLVARS_OK) {
|
|
cvm::error("Error: shared ABF is currently not available with SMP parallelism; "
|
|
"please set \"SMP off\" at the top of the Colvars configuration file.\n",
|
|
COLVARS_NOT_IMPLEMENTED);
|
|
return COLVARS_NOT_IMPLEMENTED;
|
|
}
|
|
|
|
// If shared_freq is not set, we default to output_freq
|
|
get_keyval(conf, "sharedFreq", shared_freq, output_freq);
|
|
}
|
|
|
|
// ************* checking the associated colvars *******************
|
|
|
|
if (num_variables() == 0) {
|
|
cvm::error("Error: no collective variables specified for the ABF bias.\n");
|
|
return COLVARS_ERROR;
|
|
}
|
|
|
|
if (update_bias) {
|
|
// Request calculation of total force
|
|
if(enable(f_cvb_get_total_force)) return cvm::get_error();
|
|
}
|
|
|
|
bool b_extended = false;
|
|
size_t i;
|
|
for (i = 0; i < num_variables(); i++) {
|
|
|
|
if (colvars[i]->value().type() != colvarvalue::type_scalar) {
|
|
cvm::error("Error: ABF bias can only use scalar-type variables.\n");
|
|
}
|
|
colvars[i]->enable(f_cv_grid); // Could be a child dependency of a f_cvb_use_grids feature
|
|
if (hide_Jacobian) {
|
|
colvars[i]->enable(f_cv_hide_Jacobian);
|
|
}
|
|
|
|
// If any colvar is extended-system, we need to collect the extended
|
|
// system gradient
|
|
if (colvars[i]->is_enabled(f_cv_extended_Lagrangian))
|
|
b_extended = true;
|
|
|
|
// Cannot mix and match coarse time steps with ABF because it gives
|
|
// wrong total force averages - total force needs to be averaged over
|
|
// every time step
|
|
if (colvars[i]->get_time_step_factor() != time_step_factor) {
|
|
cvm::error("Error: " + colvars[i]->description + " has a value of timeStepFactor ("
|
|
+ cvm::to_str(colvars[i]->get_time_step_factor()) + ") different from that of "
|
|
+ description + " (" + cvm::to_str(time_step_factor) + ").\n");
|
|
return COLVARS_ERROR;
|
|
}
|
|
|
|
// Here we could check for orthogonality of the Cartesian coordinates
|
|
// and make it just a warning if some parameter is set?
|
|
}
|
|
|
|
if (get_keyval(conf, "maxForce", max_force)) {
|
|
if (max_force.size() != num_variables()) {
|
|
cvm::error("Error: Number of parameters to maxForce does not match number of colvars.");
|
|
}
|
|
for (i = 0; i < num_variables(); i++) {
|
|
if (max_force[i] < 0.0) {
|
|
cvm::error("Error: maxForce should be non-negative.");
|
|
}
|
|
}
|
|
cap_force = true;
|
|
} else {
|
|
cap_force = false;
|
|
}
|
|
|
|
bin.assign(num_variables(), 0);
|
|
force_bin.assign(num_variables(), 0);
|
|
system_force = new cvm::real [num_variables()];
|
|
|
|
// Construct empty grids based on the colvars
|
|
if (cvm::debug()) {
|
|
cvm::log("Allocating count and free energy gradient grids.\n");
|
|
}
|
|
|
|
samples = new colvar_grid_count(colvars);
|
|
gradients = new colvar_grid_gradient(colvars);
|
|
gradients->samples = samples;
|
|
samples->has_parent_data = true;
|
|
|
|
// Data for eAB F z-based estimator
|
|
if ( b_extended ) {
|
|
get_keyval(conf, "CZARestimator", b_CZAR_estimator, true);
|
|
// CZAR output files for stratified eABF
|
|
get_keyval(conf, "writeCZARwindowFile", b_czar_window_file, false,
|
|
colvarparse::parse_silent);
|
|
|
|
z_bin.assign(num_variables(), 0);
|
|
z_samples = new colvar_grid_count(colvars);
|
|
z_samples->request_actual_value();
|
|
z_gradients = new colvar_grid_gradient(colvars);
|
|
z_gradients->request_actual_value();
|
|
z_gradients->samples = z_samples;
|
|
z_samples->has_parent_data = true;
|
|
czar_gradients = new colvar_grid_gradient(colvars);
|
|
}
|
|
|
|
// For now, we integrate on-the-fly iff the grid is < 3D
|
|
if ( num_variables() <= 3 ) {
|
|
pmf = new integrate_potential(colvars, gradients);
|
|
if ( b_CZAR_estimator ) {
|
|
czar_pmf = new integrate_potential(colvars, czar_gradients);
|
|
}
|
|
get_keyval(conf, "integrate", b_integrate, true); // Integrate for output
|
|
if ( num_variables() > 1 ) {
|
|
// Projected ABF
|
|
get_keyval(conf, "pABFintegrateFreq", pabf_freq, 0);
|
|
// Parameters for integrating initial (and final) gradient data
|
|
get_keyval(conf, "integrateInitMaxIterations", integrate_initial_iterations, 1e4);
|
|
get_keyval(conf, "integrateInitTol", integrate_initial_tol, 1e-6);
|
|
// for updating the integrated PMF on the fly
|
|
get_keyval(conf, "integrateMaxIterations", integrate_iterations, 100);
|
|
get_keyval(conf, "integrateTol", integrate_tol, 1e-4);
|
|
}
|
|
} else {
|
|
b_integrate = false;
|
|
}
|
|
|
|
// For shared ABF, we store a second set of grids.
|
|
// This used to be only if "shared" was defined,
|
|
// but now we allow calling share externally (e.g. from Tcl).
|
|
last_samples = new colvar_grid_count(colvars);
|
|
last_gradients = new colvar_grid_gradient(colvars);
|
|
last_gradients->samples = last_samples;
|
|
last_samples->has_parent_data = true;
|
|
shared_last_step = -1;
|
|
|
|
// If custom grids are provided, read them
|
|
if ( input_prefix.size() > 0 ) {
|
|
read_gradients_samples();
|
|
// Update divergence to account for input data
|
|
pmf->set_div();
|
|
}
|
|
|
|
// if extendedLangrangian is on, then call UI estimator
|
|
if (b_extended) {
|
|
get_keyval(conf, "UIestimator", b_UI_estimator, false);
|
|
|
|
if (b_UI_estimator) {
|
|
std::vector<double> UI_lowerboundary;
|
|
std::vector<double> UI_upperboundary;
|
|
std::vector<double> UI_width;
|
|
std::vector<double> UI_krestr;
|
|
|
|
bool UI_restart = (input_prefix.size() > 0);
|
|
|
|
for (i = 0; i < num_variables(); i++)
|
|
{
|
|
UI_lowerboundary.push_back(colvars[i]->lower_boundary);
|
|
UI_upperboundary.push_back(colvars[i]->upper_boundary);
|
|
UI_width.push_back(colvars[i]->width);
|
|
UI_krestr.push_back(colvars[i]->force_constant());
|
|
}
|
|
eabf_UI = UIestimator::UIestimator(UI_lowerboundary,
|
|
UI_upperboundary,
|
|
UI_width,
|
|
UI_krestr, // force constant in eABF
|
|
output_prefix, // the prefix of output files
|
|
cvm::restart_out_freq,
|
|
UI_restart, // whether restart from a .count and a .grad file
|
|
input_prefix, // the prefixes of input files
|
|
cvm::temperature());
|
|
}
|
|
}
|
|
|
|
cvm::log("Finished ABF setup.\n");
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
/// Destructor
|
|
colvarbias_abf::~colvarbias_abf()
|
|
{
|
|
if (samples) {
|
|
delete samples;
|
|
samples = NULL;
|
|
}
|
|
|
|
if (gradients) {
|
|
delete gradients;
|
|
gradients = NULL;
|
|
}
|
|
|
|
if (pmf) {
|
|
delete pmf;
|
|
pmf = NULL;
|
|
}
|
|
|
|
if (z_samples) {
|
|
delete z_samples;
|
|
z_samples = NULL;
|
|
}
|
|
|
|
if (z_gradients) {
|
|
delete z_gradients;
|
|
z_gradients = NULL;
|
|
}
|
|
|
|
if (czar_gradients) {
|
|
delete czar_gradients;
|
|
czar_gradients = NULL;
|
|
}
|
|
|
|
if (czar_pmf) {
|
|
delete czar_pmf;
|
|
czar_pmf = NULL;
|
|
}
|
|
|
|
// shared ABF
|
|
// We used to only do this if "shared" was defined,
|
|
// but now we can call shared externally
|
|
if (last_samples) {
|
|
delete last_samples;
|
|
last_samples = NULL;
|
|
}
|
|
|
|
if (last_gradients) {
|
|
delete last_gradients;
|
|
last_gradients = NULL;
|
|
}
|
|
|
|
if (system_force) {
|
|
delete [] system_force;
|
|
system_force = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/// Update the FE gradient, compute and apply biasing force
|
|
/// also output data to disk if needed
|
|
|
|
int colvarbias_abf::update()
|
|
{
|
|
if (cvm::debug()) cvm::log("Updating ABF bias " + this->name);
|
|
|
|
size_t i;
|
|
for (i = 0; i < num_variables(); i++) {
|
|
bin[i] = samples->current_bin_scalar(i);
|
|
}
|
|
if (cvm::proxy->total_forces_same_step()) {
|
|
// e.g. in LAMMPS, total forces are current
|
|
force_bin = bin;
|
|
}
|
|
|
|
if (cvm::step_relative() > 0 || cvm::proxy->total_forces_same_step()) {
|
|
|
|
if (update_bias) {
|
|
// if (b_adiabatic_reweighting) {
|
|
// // Update gradients non-locally based on conditional distribution of
|
|
// // fictitious variable TODO
|
|
//
|
|
// } else
|
|
if (samples->index_ok(force_bin)) {
|
|
// Only if requested and within bounds of the grid...
|
|
|
|
for (i = 0; i < num_variables(); i++) {
|
|
// get total forces (lagging by 1 timestep) from colvars
|
|
// and subtract previous ABF force if necessary
|
|
update_system_force(i);
|
|
}
|
|
gradients->acc_force(force_bin, system_force);
|
|
if ( b_integrate ) {
|
|
pmf->update_div_neighbors(force_bin);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( z_gradients && update_bias ) {
|
|
for (i = 0; i < num_variables(); i++) {
|
|
z_bin[i] = z_samples->current_bin_scalar(i);
|
|
}
|
|
if ( z_samples->index_ok(z_bin) ) {
|
|
for (i = 0; i < num_variables(); i++) {
|
|
// If we are outside the range of xi, the force has not been obtained above
|
|
// the function is just an accessor, so cheap to call again anyway
|
|
update_system_force(i);
|
|
}
|
|
z_gradients->acc_force(z_bin, system_force);
|
|
}
|
|
}
|
|
|
|
if ( b_integrate ) {
|
|
if ( pabf_freq && cvm::step_relative() % pabf_freq == 0 ) {
|
|
cvm::real err;
|
|
int iter = pmf->integrate(integrate_iterations, integrate_tol, err);
|
|
if ( iter == integrate_iterations ) {
|
|
cvm::log("Warning: PMF integration did not converge to " + cvm::to_str(integrate_tol)
|
|
+ " in " + cvm::to_str(integrate_iterations)
|
|
+ " steps. Residual error: " + cvm::to_str(err));
|
|
}
|
|
pmf->set_zero_minimum(); // TODO: do this only when necessary
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cvm::proxy->total_forces_same_step()) {
|
|
// e.g. in NAMD, total forces will be available for next timestep
|
|
// hence we store the current colvar bin
|
|
force_bin = bin;
|
|
}
|
|
|
|
// Reset biasing forces from previous timestep
|
|
for (i = 0; i < num_variables(); i++) {
|
|
colvar_forces[i].reset();
|
|
}
|
|
|
|
// Compute and apply the new bias, if applicable
|
|
if (is_enabled(f_cvb_apply_force) && samples->index_ok(bin)) {
|
|
|
|
cvm::real count = samples->value(bin);
|
|
cvm::real fact = 1.0;
|
|
|
|
// Factor that ensures smooth introduction of the force
|
|
if ( count < full_samples ) {
|
|
fact = (count < min_samples) ? 0.0 :
|
|
(cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
|
|
}
|
|
|
|
std::vector<cvm::real> grad(num_variables());
|
|
|
|
if ( pabf_freq ) {
|
|
// In projected ABF, the force is the PMF gradient estimate
|
|
pmf->vector_gradient_finite_diff(bin, grad);
|
|
} else {
|
|
// Normal ABF
|
|
gradients->vector_value(bin, grad);
|
|
}
|
|
|
|
// if ( b_adiabatic_reweighting) {
|
|
// // Average of force according to conditional distribution of fictitious variable
|
|
// // need freshly integrated PMF, gradient TODO
|
|
// } else
|
|
if ( fact != 0.0 ) {
|
|
if ( (num_variables() == 1) && colvars[0]->periodic_boundaries() ) {
|
|
// Enforce a zero-mean bias on periodic, 1D coordinates
|
|
// in other words: boundary condition is that the biasing potential is periodic
|
|
// This is enforced naturally if using integrated PMF
|
|
colvar_forces[0].real_value = fact * (grad[0] - gradients->average ());
|
|
} else {
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
// subtracting the mean force (opposite of the FE gradient) means adding the gradient
|
|
colvar_forces[i].real_value = fact * grad[i];
|
|
}
|
|
}
|
|
if (cap_force) {
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
if ( colvar_forces[i].real_value * colvar_forces[i].real_value > max_force[i] * max_force[i] ) {
|
|
colvar_forces[i].real_value = (colvar_forces[i].real_value > 0 ? max_force[i] : -1.0 * max_force[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// update the output prefix; TODO: move later to setup_output() function
|
|
if (cvm::main()->num_biases_feature(colvardeps::f_cvb_calc_pmf) == 1) {
|
|
// This is the only bias computing PMFs
|
|
output_prefix = cvm::output_prefix();
|
|
} else {
|
|
output_prefix = cvm::output_prefix() + "." + this->name;
|
|
}
|
|
|
|
if (output_freq && (cvm::step_absolute() % output_freq) == 0) {
|
|
if (cvm::debug()) cvm::log("ABF bias trying to write gradients and samples to disk");
|
|
write_gradients_samples(output_prefix);
|
|
}
|
|
|
|
if (b_history_files && (cvm::step_absolute() % history_freq) == 0) {
|
|
// file already exists iff cvm::step_relative() > 0
|
|
// otherwise, backup and replace
|
|
write_gradients_samples(output_prefix + ".hist", (cvm::step_relative() > 0));
|
|
}
|
|
|
|
if (shared_on && shared_last_step >= 0 && cvm::step_absolute() % shared_freq == 0) {
|
|
// Share gradients and samples for shared ABF.
|
|
replica_share();
|
|
}
|
|
|
|
// Prepare for the first sharing.
|
|
if (shared_last_step < 0) {
|
|
// Copy the current gradient and count values into last.
|
|
last_gradients->copy_grid(*gradients);
|
|
last_samples->copy_grid(*samples);
|
|
shared_last_step = cvm::step_absolute();
|
|
cvm::log("Prepared sample and gradient buffers at step "+cvm::to_str(cvm::step_absolute())+".");
|
|
}
|
|
|
|
// update UI estimator every step
|
|
if (b_UI_estimator)
|
|
{
|
|
std::vector<double> x(num_variables(),0);
|
|
std::vector<double> y(num_variables(),0);
|
|
for (size_t i = 0; i < num_variables(); i++)
|
|
{
|
|
x[i] = colvars[i]->actual_value();
|
|
y[i] = colvars[i]->value();
|
|
}
|
|
eabf_UI.update_output_filename(output_prefix);
|
|
eabf_UI.update(cvm::step_absolute(), x, y);
|
|
}
|
|
|
|
/// Add the bias energy for 1D ABF
|
|
bias_energy = calc_energy(NULL);
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
int colvarbias_abf::replica_share() {
|
|
|
|
colvarproxy *proxy = cvm::main()->proxy;
|
|
|
|
if (proxy->replica_enabled() != COLVARS_OK) {
|
|
cvm::error("Error: shared ABF: No replicas.\n");
|
|
return COLVARS_ERROR;
|
|
}
|
|
// We must have stored the last_gradients and last_samples.
|
|
if (shared_last_step < 0 ) {
|
|
cvm::error("Error: shared ABF: Tried to apply shared ABF before any sampling had occurred.\n");
|
|
return COLVARS_ERROR;
|
|
}
|
|
|
|
// Share gradients for shared ABF.
|
|
cvm::log("shared ABF: Sharing gradient and samples among replicas at step "+cvm::to_str(cvm::step_absolute()) );
|
|
|
|
// Count of data items.
|
|
size_t data_n = gradients->raw_data_num();
|
|
size_t samp_start = data_n*sizeof(cvm::real);
|
|
size_t msg_total = data_n*sizeof(size_t) + samp_start;
|
|
char* msg_data = new char[msg_total];
|
|
|
|
if (proxy->replica_index() == 0) {
|
|
int p;
|
|
// Replica 0 collects the delta gradient and count from the others.
|
|
for (p = 1; p < proxy->num_replicas(); p++) {
|
|
// Receive the deltas.
|
|
proxy->replica_comm_recv(msg_data, msg_total, p);
|
|
|
|
// Map the deltas from the others into the grids.
|
|
last_gradients->raw_data_in((cvm::real*)(&msg_data[0]));
|
|
last_samples->raw_data_in((size_t*)(&msg_data[samp_start]));
|
|
|
|
// Combine the delta gradient and count of the other replicas
|
|
// with Replica 0's current state (including its delta).
|
|
gradients->add_grid( *last_gradients );
|
|
samples->add_grid( *last_samples );
|
|
}
|
|
|
|
// Now we must send the combined gradient to the other replicas.
|
|
gradients->raw_data_out((cvm::real*)(&msg_data[0]));
|
|
samples->raw_data_out((size_t*)(&msg_data[samp_start]));
|
|
for (p = 1; p < proxy->num_replicas(); p++) {
|
|
proxy->replica_comm_send(msg_data, msg_total, p);
|
|
}
|
|
|
|
} else {
|
|
// All other replicas send their delta gradient and count.
|
|
// Calculate the delta gradient and count.
|
|
last_gradients->delta_grid(*gradients);
|
|
last_samples->delta_grid(*samples);
|
|
|
|
// Cast the raw char data to the gradient and samples.
|
|
last_gradients->raw_data_out((cvm::real*)(&msg_data[0]));
|
|
last_samples->raw_data_out((size_t*)(&msg_data[samp_start]));
|
|
proxy->replica_comm_send(msg_data, msg_total, 0);
|
|
|
|
// We now receive the combined gradient from Replica 0.
|
|
proxy->replica_comm_recv(msg_data, msg_total, 0);
|
|
// We sync to the combined gradient computed by Replica 0.
|
|
gradients->raw_data_in((cvm::real*)(&msg_data[0]));
|
|
samples->raw_data_in((size_t*)(&msg_data[samp_start]));
|
|
}
|
|
|
|
// Without a barrier it's possible that one replica starts
|
|
// share 2 when other replicas haven't finished share 1.
|
|
proxy->replica_comm_barrier();
|
|
// Done syncing the replicas.
|
|
delete[] msg_data;
|
|
|
|
// Copy the current gradient and count values into last.
|
|
last_gradients->copy_grid(*gradients);
|
|
last_samples->copy_grid(*samples);
|
|
shared_last_step = cvm::step_absolute();
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
|
|
void colvarbias_abf::write_gradients_samples(const std::string &prefix, bool append)
|
|
{
|
|
std::string samples_out_name = prefix + ".count";
|
|
std::string gradients_out_name = prefix + ".grad";
|
|
std::ios::openmode mode = (append ? std::ios::app : std::ios::out);
|
|
|
|
std::ostream *samples_os =
|
|
cvm::proxy->output_stream(samples_out_name, mode);
|
|
if (!samples_os) return;
|
|
samples->write_multicol(*samples_os);
|
|
cvm::proxy->close_output_stream(samples_out_name);
|
|
|
|
// In dimension higher than 2, dx is easier to handle and visualize
|
|
if (num_variables() > 2) {
|
|
std::string samples_dx_out_name = prefix + ".count.dx";
|
|
std::ostream *samples_dx_os = cvm::proxy->output_stream(samples_dx_out_name, mode);
|
|
if (!samples_os) return;
|
|
samples->write_opendx(*samples_dx_os);
|
|
*samples_dx_os << std::endl;
|
|
cvm::proxy->close_output_stream(samples_dx_out_name);
|
|
}
|
|
|
|
std::ostream *gradients_os =
|
|
cvm::proxy->output_stream(gradients_out_name, mode);
|
|
if (!gradients_os) return;
|
|
gradients->write_multicol(*gradients_os);
|
|
cvm::proxy->close_output_stream(gradients_out_name);
|
|
|
|
if (b_integrate) {
|
|
// Do numerical integration (to high precision) and output a PMF
|
|
cvm::real err;
|
|
pmf->integrate(integrate_initial_iterations, integrate_initial_tol, err);
|
|
pmf->set_zero_minimum();
|
|
|
|
std::string pmf_out_name = prefix + ".pmf";
|
|
std::ostream *pmf_os = cvm::proxy->output_stream(pmf_out_name, mode);
|
|
if (!pmf_os) return;
|
|
pmf->write_multicol(*pmf_os);
|
|
|
|
// In dimension higher than 2, dx is easier to handle and visualize
|
|
if (num_variables() > 2) {
|
|
std::string pmf_dx_out_name = prefix + ".pmf.dx";
|
|
std::ostream *pmf_dx_os = cvm::proxy->output_stream(pmf_dx_out_name, mode);
|
|
if (!pmf_dx_os) return;
|
|
pmf->write_opendx(*pmf_dx_os);
|
|
*pmf_dx_os << std::endl;
|
|
cvm::proxy->close_output_stream(pmf_dx_out_name);
|
|
}
|
|
|
|
*pmf_os << std::endl;
|
|
cvm::proxy->close_output_stream(pmf_out_name);
|
|
}
|
|
|
|
if (b_CZAR_estimator) {
|
|
// Write eABF CZAR-related quantities
|
|
|
|
std::string z_samples_out_name = prefix + ".zcount";
|
|
|
|
std::ostream *z_samples_os =
|
|
cvm::proxy->output_stream(z_samples_out_name, mode);
|
|
if (!z_samples_os) return;
|
|
z_samples->write_multicol(*z_samples_os);
|
|
cvm::proxy->close_output_stream(z_samples_out_name);
|
|
|
|
if (b_czar_window_file) {
|
|
std::string z_gradients_out_name = prefix + ".zgrad";
|
|
|
|
std::ostream *z_gradients_os =
|
|
cvm::proxy->output_stream(z_gradients_out_name, mode);
|
|
if (!z_gradients_os) return;
|
|
z_gradients->write_multicol(*z_gradients_os);
|
|
cvm::proxy->close_output_stream(z_gradients_out_name);
|
|
}
|
|
|
|
// Calculate CZAR estimator of gradients
|
|
for (std::vector<int> ix = czar_gradients->new_index();
|
|
czar_gradients->index_ok(ix); czar_gradients->incr(ix)) {
|
|
for (size_t n = 0; n < czar_gradients->multiplicity(); n++) {
|
|
czar_gradients->set_value(ix, z_gradients->value_output(ix, n)
|
|
- cvm::temperature() * cvm::boltzmann() * z_samples->log_gradient_finite_diff(ix, n), n);
|
|
}
|
|
}
|
|
|
|
std::string czar_gradients_out_name = prefix + ".czar.grad";
|
|
|
|
std::ostream *czar_gradients_os =
|
|
cvm::proxy->output_stream(czar_gradients_out_name, mode);
|
|
if (!czar_gradients_os) return;
|
|
czar_gradients->write_multicol(*czar_gradients_os);
|
|
cvm::proxy->close_output_stream(czar_gradients_out_name);
|
|
|
|
if (b_integrate) {
|
|
// Do numerical integration (to high precision) and output a PMF
|
|
cvm::real err;
|
|
czar_pmf->set_div();
|
|
czar_pmf->integrate(integrate_initial_iterations, integrate_initial_tol, err);
|
|
czar_pmf->set_zero_minimum();
|
|
|
|
std::string czar_pmf_out_name = prefix + ".czar.pmf";
|
|
std::ostream *czar_pmf_os = cvm::proxy->output_stream(czar_pmf_out_name, mode);
|
|
if (!czar_pmf_os) return;
|
|
czar_pmf->write_multicol(*czar_pmf_os);
|
|
|
|
// In dimension higher than 2, dx is easier to handle and visualize
|
|
if (num_variables() > 2) {
|
|
std::string czar_pmf_dx_out_name = prefix + ".czar.pmf.dx";
|
|
std::ostream *czar_pmf_dx_os = cvm::proxy->output_stream(czar_pmf_dx_out_name, mode);
|
|
if (!czar_pmf_dx_os) return;
|
|
czar_pmf->write_opendx(*czar_pmf_dx_os);
|
|
*czar_pmf_dx_os << std::endl;
|
|
cvm::proxy->close_output_stream(czar_pmf_dx_out_name);
|
|
}
|
|
|
|
*czar_pmf_os << std::endl;
|
|
cvm::proxy->close_output_stream(czar_pmf_out_name);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// For Tcl implementation of selection rules.
|
|
/// Give the total number of bins for a given bias.
|
|
int colvarbias_abf::bin_num() {
|
|
return samples->number_of_points(0);
|
|
}
|
|
/// Calculate the bin index for a given bias.
|
|
int colvarbias_abf::current_bin() {
|
|
return samples->current_bin_scalar(0);
|
|
}
|
|
/// Give the count at a given bin index.
|
|
int colvarbias_abf::bin_count(int bin_index) {
|
|
if (bin_index < 0 || bin_index >= bin_num()) {
|
|
cvm::error("Error: Tried to get bin count from invalid bin index "+cvm::to_str(bin_index));
|
|
return -1;
|
|
}
|
|
std::vector<int> ix(1,(int)bin_index);
|
|
return samples->value(ix);
|
|
}
|
|
|
|
|
|
void colvarbias_abf::read_gradients_samples()
|
|
{
|
|
std::string samples_in_name, gradients_in_name, z_samples_in_name, z_gradients_in_name;
|
|
|
|
for ( size_t i = 0; i < input_prefix.size(); i++ ) {
|
|
samples_in_name = input_prefix[i] + ".count";
|
|
gradients_in_name = input_prefix[i] + ".grad";
|
|
z_samples_in_name = input_prefix[i] + ".zcount";
|
|
z_gradients_in_name = input_prefix[i] + ".zgrad";
|
|
// For user-provided files, the per-bias naming scheme may not apply
|
|
|
|
std::ifstream is;
|
|
|
|
cvm::log("Reading sample count from " + samples_in_name + " and gradient from " + gradients_in_name);
|
|
is.open(samples_in_name.c_str());
|
|
if (!is.is_open()) cvm::error("Error opening ABF samples file " + samples_in_name + " for reading");
|
|
samples->read_multicol(is, true);
|
|
is.close();
|
|
is.clear();
|
|
|
|
is.open(gradients_in_name.c_str());
|
|
if (!is.is_open()) {
|
|
cvm::error("Error opening ABF gradient file " +
|
|
gradients_in_name + " for reading", INPUT_ERROR);
|
|
} else {
|
|
gradients->read_multicol(is, true);
|
|
is.close();
|
|
}
|
|
|
|
if (b_CZAR_estimator) {
|
|
// Read eABF z-averaged data for CZAR
|
|
cvm::log("Reading z-histogram from " + z_samples_in_name + " and z-gradient from " + z_gradients_in_name);
|
|
|
|
is.clear();
|
|
is.open(z_samples_in_name.c_str());
|
|
if (!is.is_open()) cvm::error("Error opening eABF z-histogram file " + z_samples_in_name + " for reading");
|
|
z_samples->read_multicol(is, true);
|
|
is.close();
|
|
is.clear();
|
|
|
|
is.open(z_gradients_in_name.c_str());
|
|
if (!is.is_open()) cvm::error("Error opening eABF z-gradient file " + z_gradients_in_name + " for reading");
|
|
z_gradients->read_multicol(is, true);
|
|
is.close();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
std::ostream & colvarbias_abf::write_state_data(std::ostream& os)
|
|
{
|
|
std::ios::fmtflags flags(os.flags());
|
|
|
|
os.setf(std::ios::fmtflags(0), std::ios::floatfield); // default floating-point format
|
|
os << "\nsamples\n";
|
|
samples->write_raw(os, 8);
|
|
os.flags(flags);
|
|
|
|
os << "\ngradient\n";
|
|
gradients->write_raw(os, 8);
|
|
|
|
if (b_CZAR_estimator) {
|
|
os.setf(std::ios::fmtflags(0), std::ios::floatfield); // default floating-point format
|
|
os << "\nz_samples\n";
|
|
z_samples->write_raw(os, 8);
|
|
os.flags(flags);
|
|
os << "\nz_gradient\n";
|
|
z_gradients->write_raw(os, 8);
|
|
}
|
|
|
|
os.flags(flags);
|
|
return os;
|
|
}
|
|
|
|
|
|
std::istream & colvarbias_abf::read_state_data(std::istream& is)
|
|
{
|
|
if ( input_prefix.size() > 0 ) {
|
|
cvm::error("ERROR: cannot provide both inputPrefix and a colvars state file.\n", INPUT_ERROR);
|
|
}
|
|
|
|
if (! read_state_data_key(is, "samples")) {
|
|
return is;
|
|
}
|
|
if (! samples->read_raw(is)) {
|
|
return is;
|
|
}
|
|
|
|
if (! read_state_data_key(is, "gradient")) {
|
|
return is;
|
|
}
|
|
if (! gradients->read_raw(is)) {
|
|
return is;
|
|
}
|
|
if (b_integrate) {
|
|
// Update divergence to account for restart data
|
|
pmf->set_div();
|
|
}
|
|
|
|
if (b_CZAR_estimator) {
|
|
|
|
if (! read_state_data_key(is, "z_samples")) {
|
|
return is;
|
|
}
|
|
if (! z_samples->read_raw(is)) {
|
|
return is;
|
|
}
|
|
|
|
if (! read_state_data_key(is, "z_gradient")) {
|
|
return is;
|
|
}
|
|
if (! z_gradients->read_raw(is)) {
|
|
return is;
|
|
}
|
|
}
|
|
|
|
return is;
|
|
}
|
|
|
|
int colvarbias_abf::write_output_files()
|
|
{
|
|
write_gradients_samples(output_prefix);
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
int colvarbias_abf::calc_energy(std::vector<colvarvalue> const *values)
|
|
{
|
|
if (values) {
|
|
return cvm::error("colvarbias_abf::calc_energy() with an argument "
|
|
"is currently not implemented.\n",
|
|
COLVARS_NOT_IMPLEMENTED);
|
|
}
|
|
|
|
if (num_variables() != 1) return 0.0;
|
|
|
|
// Get the home bin.
|
|
int home0 = gradients->current_bin_scalar(0);
|
|
if (home0 < 0) return 0.0;
|
|
int gradient_len = (int)(gradients->number_of_points(0));
|
|
int home = (home0 < gradient_len) ? home0 : (gradient_len-1);
|
|
|
|
// Integrate the gradient up to the home bin.
|
|
cvm::real sum = 0.0;
|
|
for (int i = 0; i < home; i++) {
|
|
std::vector<int> ix(1,i);
|
|
|
|
// Include the full_samples factor if necessary.
|
|
unsigned int count = samples->value(ix);
|
|
cvm::real fact = 1.0;
|
|
if ( count < full_samples ) {
|
|
fact = (count < min_samples) ? 0.0 :
|
|
(cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
|
|
}
|
|
if (count > 0) sum += fact*gradients->value(ix)/count*gradients->widths[0];
|
|
}
|
|
|
|
// Integrate the gradient up to the current position in the home interval, a fractional portion of a bin.
|
|
std::vector<int> ix(1,home);
|
|
cvm::real frac = gradients->current_bin_scalar_fraction(0);
|
|
unsigned int count = samples->value(ix);
|
|
cvm::real fact = 1.0;
|
|
if ( count < full_samples ) {
|
|
fact = (count < min_samples) ? 0.0 :
|
|
(cvm::real(count - min_samples)) / (cvm::real(full_samples - min_samples));
|
|
}
|
|
if (count > 0)
|
|
sum += fact*gradients->value(ix)/count*gradients->widths[0]*frac;
|
|
|
|
// The applied potential is the negative integral of force samples.
|
|
return -sum;
|
|
}
|