This update contains several small new features or usability improvements.
Descriptions and authorship information can be accessed from the pull
requests listed below.
Allow setting sigma parameter directly for metadynamics
https://github.com/Colvars/colvars/pull/325
Remove default values for lowerWall and upperWall legacy keywords
https://github.com/Colvars/colvars/pull/324
biasActualColvar option to bypass extended-Lagragian for a bias
https://github.com/Colvars/colvars/pull/321
Flexible restart-reading
https://github.com/Colvars/colvars/pull/320
425 lines
12 KiB
C++
425 lines
12 KiB
C++
// -*- c++ -*-
|
|
|
|
// This file is part of the Collective Variables module (Colvars).
|
|
// The original version of Colvars and its updates are located at:
|
|
// https://github.com/Colvars/colvars
|
|
// Please update all Colvars source files before making any changes.
|
|
// If you wish to distribute your changes, please submit them to the
|
|
// Colvars repository at GitHub.
|
|
|
|
#include <cstdlib>
|
|
|
|
#include "colvarmodule.h"
|
|
#include "colvarbias.h"
|
|
#include "colvarbias_alb.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#if _MSC_VER <= 1700
|
|
#define copysign(A,B) _copysign(A,B)
|
|
double fmax(double A, double B) { return ( A > B ? A : B ); }
|
|
double fmin(double A, double B) { return ( A < B ? A : B ); }
|
|
#endif
|
|
#endif
|
|
|
|
/* Note about nomenclature. Force constant is called a coupling
|
|
* constant here to emphasize its changing in the code. Outwards,
|
|
* everything is called a force constant to keep it consistent with
|
|
* the rest of colvars.
|
|
*
|
|
*/
|
|
|
|
colvarbias_alb::colvarbias_alb(char const *key)
|
|
: colvarbias(key), update_calls(0), b_equilibration(true)
|
|
{
|
|
}
|
|
|
|
|
|
int colvarbias_alb::init(std::string const &conf)
|
|
{
|
|
colvarbias::init(conf);
|
|
|
|
enable(f_cvb_scalar_variables);
|
|
|
|
size_t i;
|
|
|
|
// get the initial restraint centers
|
|
colvar_centers.resize(num_variables());
|
|
|
|
means.resize(num_variables());
|
|
ssd.resize(num_variables()); //sum of squares of differences from mean
|
|
|
|
//setup force vectors
|
|
max_coupling_range.resize(num_variables());
|
|
max_coupling_rate.resize(num_variables());
|
|
coupling_accum.resize(num_variables());
|
|
set_coupling.resize(num_variables());
|
|
current_coupling.resize(num_variables());
|
|
coupling_rate.resize(num_variables());
|
|
|
|
enable(f_cvb_apply_force);
|
|
|
|
for (i = 0; i < num_variables(); i++) {
|
|
colvar_centers[i].type(colvars[i]->value());
|
|
//zero moments
|
|
means[i] = ssd[i] = 0;
|
|
|
|
//zero force some of the force vectors that aren't initialized
|
|
coupling_accum[i] = current_coupling[i] = 0;
|
|
|
|
}
|
|
if (get_keyval(conf, "centers", colvar_centers, colvar_centers)) {
|
|
for (i = 0; i < num_variables(); i++) {
|
|
colvar_centers[i].apply_constraints();
|
|
}
|
|
} else {
|
|
colvar_centers.clear();
|
|
cvm::fatal_error("Error: must define the initial centers of adaptive linear bias .\n");
|
|
}
|
|
|
|
if (colvar_centers.size() != num_variables())
|
|
cvm::fatal_error("Error: number of centers does not match "
|
|
"that of collective variables.\n");
|
|
|
|
if (!get_keyval(conf, "UpdateFrequency", update_freq, 0))
|
|
cvm::fatal_error("Error: must set updateFrequency for adaptive linear bias.\n");
|
|
|
|
//we split the time between updating and equilibrating
|
|
update_freq /= 2;
|
|
|
|
if (update_freq <= 1)
|
|
cvm::fatal_error("Error: must set updateFrequency to greater than 2.\n");
|
|
|
|
enable(f_cvb_history_dependent);
|
|
|
|
get_keyval(conf, "outputCenters", b_output_centers, false);
|
|
get_keyval(conf, "outputGradient", b_output_grad, false);
|
|
get_keyval(conf, "outputCoupling", b_output_coupling, true);
|
|
get_keyval(conf, "hardForceRange", b_hard_coupling_range, true);
|
|
|
|
//initial guess
|
|
if (!get_keyval(conf, "forceConstant", set_coupling, set_coupling))
|
|
for (i =0 ; i < num_variables(); i++)
|
|
set_coupling[i] = 0.;
|
|
|
|
//how we're going to increase to that point
|
|
for (i = 0; i < num_variables(); i++)
|
|
coupling_rate[i] = (set_coupling[i] - current_coupling[i]) / update_freq;
|
|
|
|
|
|
if (!get_keyval(conf, "forceRange", max_coupling_range, max_coupling_range)) {
|
|
//set to default
|
|
for (i = 0; i < num_variables(); i++) {
|
|
if (cvm::temperature() > 0)
|
|
max_coupling_range[i] = 3 * cvm::temperature() * cvm::boltzmann();
|
|
else
|
|
max_coupling_range[i] = 3 * cvm::boltzmann();
|
|
}
|
|
}
|
|
|
|
if (!get_keyval(conf, "rateMax", max_coupling_rate, max_coupling_rate)) {
|
|
//set to default
|
|
for (i = 0; i < num_variables(); i++) {
|
|
max_coupling_rate[i] = max_coupling_range[i] / (10 * update_freq);
|
|
}
|
|
}
|
|
|
|
|
|
if (cvm::debug())
|
|
cvm::log(" bias.\n");
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
colvarbias_alb::~colvarbias_alb()
|
|
{
|
|
}
|
|
|
|
|
|
int colvarbias_alb::update()
|
|
{
|
|
|
|
bias_energy = 0.0;
|
|
update_calls++;
|
|
|
|
if (cvm::debug())
|
|
cvm::log("Updating the adaptive linear bias \""+this->name+"\".\n");
|
|
|
|
//log the moments of the CVs
|
|
// Force and energy calculation
|
|
bool finished_equil_flag = 1;
|
|
cvm::real delta;
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
colvar_forces[i] = -1.0 * restraint_force(restraint_convert_k(current_coupling[i], colvars[i]->width),
|
|
colvars[i],
|
|
colvar_centers[i]);
|
|
bias_energy += restraint_potential(restraint_convert_k(current_coupling[i], colvars[i]->width),
|
|
colvars[i],
|
|
colvar_centers[i]);
|
|
|
|
if (!b_equilibration) {
|
|
//Welford, West, and Hanso online variance method
|
|
|
|
delta = static_cast<cvm::real>(colvars[i]->value()) - means[i];
|
|
means[i] += delta / update_calls;
|
|
ssd[i] += delta * (static_cast<cvm::real>(colvars[i]->value()) - means[i]);
|
|
|
|
} else {
|
|
//check if we've reached the setpoint
|
|
cvm::real const coupling_diff = current_coupling[i] - set_coupling[i];
|
|
if ((coupling_rate[i] == 0) ||
|
|
((coupling_diff*coupling_diff) < (coupling_rate[i]*coupling_rate[i]))) {
|
|
finished_equil_flag &= 1; //we continue equilibrating as long as we haven't reached all the set points
|
|
}
|
|
else {
|
|
current_coupling[i] += coupling_rate[i];
|
|
finished_equil_flag = 0;
|
|
}
|
|
|
|
|
|
//update max_coupling_range
|
|
if (!b_hard_coupling_range && fabs(current_coupling[i]) > max_coupling_range[i]) {
|
|
std::ostringstream logStream;
|
|
logStream << "Coupling constant for "
|
|
<< colvars[i]->name
|
|
<< " has exceeded coupling range of "
|
|
<< max_coupling_range[i]
|
|
<< ".\n";
|
|
|
|
max_coupling_range[i] *= 1.25;
|
|
logStream << "Expanding coupling range to " << max_coupling_range[i] << ".\n";
|
|
cvm::log(logStream.str());
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
if (b_equilibration && finished_equil_flag) {
|
|
b_equilibration = false;
|
|
update_calls = 0;
|
|
}
|
|
|
|
|
|
//now we update coupling constant, if necessary
|
|
if (!b_equilibration && update_calls == update_freq) {
|
|
|
|
//use estimated variance to take a step
|
|
cvm::real step_size = 0;
|
|
cvm::real temp;
|
|
|
|
//reset means and sum of squares of differences
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
|
|
temp = 2. * (means[i] / (static_cast<cvm::real> (colvar_centers[i])) - 1) * ssd[i] / (update_calls - 1);
|
|
|
|
if (cvm::temperature() > 0)
|
|
step_size = temp / (cvm::temperature() * cvm::boltzmann());
|
|
else
|
|
step_size = temp / cvm::boltzmann();
|
|
|
|
means[i] = 0;
|
|
ssd[i] = 0;
|
|
|
|
//stochastic if we do that update or not
|
|
if (num_variables() == 1 || rand() < RAND_MAX / ((int) num_variables())) {
|
|
coupling_accum[i] += step_size * step_size;
|
|
current_coupling[i] = set_coupling[i];
|
|
set_coupling[i] += max_coupling_range[i] / sqrt(coupling_accum[i]) * step_size;
|
|
coupling_rate[i] = (set_coupling[i] - current_coupling[i]) / update_freq;
|
|
//set to the minimum rate and then put the sign back on it
|
|
coupling_rate[i] = copysign(fmin(fabs(coupling_rate[i]), max_coupling_rate[i]), coupling_rate[i]);
|
|
} else {
|
|
coupling_rate[i] = 0;
|
|
}
|
|
|
|
}
|
|
|
|
update_calls = 0;
|
|
b_equilibration = true;
|
|
|
|
}
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
int colvarbias_alb::set_state_params(std::string const &conf)
|
|
{
|
|
int error_code = colvarbias::set_state_params(conf);
|
|
|
|
if (error_code != COLVARS_OK) {
|
|
return error_code;
|
|
}
|
|
|
|
if (!get_keyval(conf, "setCoupling", set_coupling))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "currentCoupling", current_coupling))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "maxCouplingRange", max_coupling_range))
|
|
cvm::fatal_error("Error: maxCouplingRange is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "couplingRate", coupling_rate))
|
|
cvm::fatal_error("Error: current setCoupling is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "couplingAccum", coupling_accum))
|
|
cvm::fatal_error("Error: couplingAccum is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "mean", means))
|
|
cvm::fatal_error("Error: current mean is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "ssd", ssd))
|
|
cvm::fatal_error("Error: current ssd is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "updateCalls", update_calls))
|
|
cvm::fatal_error("Error: current updateCalls is missing from the restart.\n");
|
|
|
|
if (!get_keyval(conf, "b_equilibration", b_equilibration))
|
|
cvm::fatal_error("Error: current updateCalls is missing from the restart.\n");
|
|
|
|
return COLVARS_OK;
|
|
}
|
|
|
|
|
|
std::string const colvarbias_alb::get_state_params() const
|
|
{
|
|
std::ostringstream os;
|
|
os << " setCoupling ";
|
|
size_t i;
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << set_coupling[i] << "\n";
|
|
}
|
|
os << " currentCoupling ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << current_coupling[i] << "\n";
|
|
}
|
|
os << " maxCouplingRange ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << max_coupling_range[i] << "\n";
|
|
}
|
|
os << " couplingRate ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << coupling_rate[i] << "\n";
|
|
}
|
|
os << " couplingAccum ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << coupling_accum[i] << "\n";
|
|
}
|
|
os << " mean ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << means[i] << "\n";
|
|
}
|
|
os << " ssd ";
|
|
for (i = 0; i < num_variables(); i++) {
|
|
os << std::setprecision(cvm::en_prec)
|
|
<< std::setw(cvm::en_width) << ssd[i] << "\n";
|
|
}
|
|
os << " updateCalls " << update_calls << "\n";
|
|
if (b_equilibration)
|
|
os << " b_equilibration yes\n";
|
|
else
|
|
os << " b_equilibration no\n";
|
|
|
|
return os.str();
|
|
}
|
|
|
|
|
|
std::ostream & colvarbias_alb::write_traj_label(std::ostream &os)
|
|
{
|
|
os << " ";
|
|
|
|
if (b_output_energy)
|
|
os << " E_"
|
|
<< cvm::wrap_string(this->name, cvm::en_width-2);
|
|
|
|
if (b_output_coupling)
|
|
for (size_t i = 0; i < current_coupling.size(); i++) {
|
|
os << " ForceConst_" << i
|
|
<<std::setw(cvm::en_width - 6 - (i / 10 + 1))
|
|
<< "";
|
|
}
|
|
|
|
if (b_output_grad)
|
|
for (size_t i = 0; i < means.size(); i++) {
|
|
os << "Grad_"
|
|
<< cvm::wrap_string(colvars[i]->name, cvm::cv_width - 4);
|
|
}
|
|
|
|
if (b_output_centers)
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
size_t const this_cv_width = (colvars[i]->value()).output_width(cvm::cv_width);
|
|
os << " x0_"
|
|
<< cvm::wrap_string(colvars[i]->name, this_cv_width-3);
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
std::ostream & colvarbias_alb::write_traj(std::ostream &os)
|
|
{
|
|
os << " ";
|
|
|
|
if (b_output_energy)
|
|
os << " "
|
|
<< std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
|
|
<< bias_energy;
|
|
|
|
if (b_output_coupling)
|
|
for (size_t i = 0; i < current_coupling.size(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::en_prec) << std::setw(cvm::en_width)
|
|
<< current_coupling[i];
|
|
}
|
|
|
|
|
|
if (b_output_centers)
|
|
for (size_t i = 0; i < num_variables(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
|
<< colvar_centers[i];
|
|
}
|
|
|
|
if (b_output_grad)
|
|
for (size_t i = 0; i < means.size(); i++) {
|
|
os << " "
|
|
<< std::setprecision(cvm::cv_prec) << std::setw(cvm::cv_width)
|
|
<< -2.0 * (means[i] / (static_cast<cvm::real>(colvar_centers[i])) - 1) * ssd[i] / (fmax(update_calls, 2.0) - 1);
|
|
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
cvm::real colvarbias_alb::restraint_potential(cvm::real k,
|
|
colvar const *x,
|
|
colvarvalue const &xcenter) const
|
|
{
|
|
return k * (x->value() - xcenter);
|
|
}
|
|
|
|
|
|
colvarvalue colvarbias_alb::restraint_force(cvm::real k,
|
|
colvar const * /* x */,
|
|
colvarvalue const & /* xcenter */) const
|
|
{
|
|
return k;
|
|
}
|
|
|
|
|
|
cvm::real colvarbias_alb::restraint_convert_k(cvm::real k,
|
|
cvm::real dist_measure) const
|
|
{
|
|
return k / dist_measure;
|
|
}
|
|
|