Files
lammps/src/GPU/pair_resquared_gpu.cpp
2022-04-15 15:29:43 -04:00

304 lines
10 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */
#include "pair_resquared_gpu.h"
#include "atom.h"
#include "atom_vec_ellipsoid.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "gpu_extra.h"
#include "math_extra.h"
#include "memory.h"
#include "neigh_list.h"
#include "neighbor.h"
#include "suffix.h"
#include <cmath>
using namespace LAMMPS_NS;
// External functions from cuda library for atom decomposition
int re_gpu_init(const int ntypes, double **shape, double **well, double **cutsq, double **sigma,
double **epsilon, int **form, double **host_lj1, double **host_lj2,
double **host_lj3, double **host_lj4, double **offset, double *special_lj,
const int nlocal, const int nall, const int max_nbors, const int maxspecial,
const double cell_size, int &gpu_mode, FILE *screen);
void re_gpu_clear();
int **re_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x,
int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial,
tagint **special, const bool eflag, const bool vflag, const bool eatom,
const bool vatom, int &host_start, int **ilist, int **jnum,
const double cpu_time, bool &success, double **host_quat);
int *re_gpu_compute(const int ago, const int inum, const int nall, double **host_x, int *host_type,
int *ilist, int *numj, int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start, const double cpu_time,
bool &success, double **host_quat);
double re_gpu_bytes();
enum { SPHERE_SPHERE, SPHERE_ELLIPSE, ELLIPSE_SPHERE, ELLIPSE_ELLIPSE };
/* ---------------------------------------------------------------------- */
PairRESquaredGPU::PairRESquaredGPU(LAMMPS *lmp) : PairRESquared(lmp), gpu_mode(GPU_FORCE)
{
reinitflag = 0;
avec = dynamic_cast<AtomVecEllipsoid *>(atom->style_match("ellipsoid"));
if (!avec) error->all(FLERR, "Pair resquared/gpu requires atom style ellipsoid");
quat_nmax = 0;
quat = nullptr;
suffix_flag |= Suffix::GPU;
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairRESquaredGPU::~PairRESquaredGPU()
{
re_gpu_clear();
cpu_time = 0.0;
memory->destroy(quat);
}
/* ---------------------------------------------------------------------- */
void PairRESquaredGPU::compute(int eflag, int vflag)
{
ev_init(eflag, vflag);
int nall = atom->nlocal + atom->nghost;
int inum, host_start;
bool success = true;
int *ilist, *numneigh, **firstneigh;
if (nall > quat_nmax) {
quat_nmax = static_cast<int>(1.1 * nall);
memory->grow(quat, quat_nmax, 4, "pair:quat");
}
AtomVecEllipsoid::Bonus *bonus = avec->bonus;
int *ellipsoid = atom->ellipsoid;
for (int i = 0; i < nall; i++) {
int qi = ellipsoid[i];
if (qi > -1) {
quat[i][0] = bonus[qi].quat[0];
quat[i][1] = bonus[qi].quat[1];
quat[i][2] = bonus[qi].quat[2];
quat[i][3] = bonus[qi].quat[3];
}
}
if (gpu_mode != GPU_FORCE) {
double sublo[3], subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi);
}
inum = atom->nlocal;
firstneigh =
re_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag,
atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom,
host_start, &ilist, &numneigh, cpu_time, success, quat);
} else {
inum = list->inum;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
ilist = re_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, list->ilist, numneigh,
firstneigh, eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time,
success, quat);
}
if (!success) error->one(FLERR, "Insufficient memory on accelerator");
if (host_start < inum) {
cpu_time = platform::walltime();
cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh);
cpu_time = platform::walltime() - cpu_time;
}
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairRESquaredGPU::init_style()
{
if (!atom->ellipsoid_flag) error->all(FLERR, "Pair resquared/gpu requires atom style ellipsoid");
// per-type shape precalculations
// require that atom shapes are identical within each type
// if shape = 0 for point particle, set shape = 1 as required by Gay-Berne
for (int i = 1; i <= atom->ntypes; i++) {
if (!atom->shape_consistency(i, shape1[i][0], shape1[i][1], shape1[i][2]))
error->all(FLERR, "Pair resquared/gpu requires atoms with same type have same shape");
if (setwell[i]) {
shape2[i][0] = shape1[i][0] * shape1[i][0];
shape2[i][1] = shape1[i][1] * shape1[i][1];
shape2[i][2] = shape1[i][2] * shape1[i][2];
lshape[i] = shape1[i][0] * shape1[i][1] * shape1[i][2];
}
}
// Repeat cutsq calculation because done after call to init_style
double maxcut = -1.0;
double cut;
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
cut = init_one(i, j);
cut *= cut;
if (cut > maxcut) maxcut = cut;
cutsq[i][j] = cutsq[j][i] = cut;
} else
cutsq[i][j] = cutsq[j][i] = 0.0;
}
}
double cell_size = sqrt(maxcut) + neighbor->skin;
int maxspecial = 0;
if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial;
int mnf = 5e-2 * neighbor->oneatom;
int success =
re_gpu_init(atom->ntypes + 1, shape1, well, cutsq, sigma, epsilon, form, lj1, lj2, lj3, lj4,
offset, force->special_lj, atom->nlocal, atom->nlocal + atom->nghost, mnf,
maxspecial, cell_size, gpu_mode, screen);
GPU_EXTRA::check_flag(success, error, world);
if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL);
quat_nmax = static_cast<int>(1.1 * (atom->nlocal + atom->nghost));
memory->grow(quat, quat_nmax, 4, "pair:quat");
}
/* ---------------------------------------------------------------------- */
double PairRESquaredGPU::memory_usage()
{
double bytes = Pair::memory_usage();
return bytes + memory->usage(quat, quat_nmax) + re_gpu_bytes();
}
/* ---------------------------------------------------------------------- */
void PairRESquaredGPU::cpu_compute(int start, int inum, int eflag, int /* vflag */, int *ilist,
int *numneigh, int **firstneigh)
{
int i, j, ii, jj, jnum, itype, jtype;
double evdwl, one_eng, rsq, r2inv, r6inv, forcelj, factor_lj;
double fforce[3], ttor[3], rtor[3], r12[3];
int *jlist;
RE2Vars wi, wj;
double **x = atom->x;
double **f = atom->f;
double **tor = atom->torque;
int *type = atom->type;
double *special_lj = force->special_lj;
// loop over neighbors of my atoms
for (ii = start; ii < inum; ii++) {
i = ilist[ii];
itype = type[i];
// not a LJ sphere
if (lshape[itype] != 0.0) precompute_i(i, wi);
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
// r12 = center to center vector
r12[0] = x[j][0] - x[i][0];
r12[1] = x[j][1] - x[i][1];
r12[2] = x[j][2] - x[i][2];
rsq = MathExtra::dot3(r12, r12);
jtype = type[j];
// compute if less than cutoff
if (rsq < cutsq[itype][jtype]) {
switch (form[itype][jtype]) {
case SPHERE_SPHERE:
r2inv = 1.0 / rsq;
r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]);
forcelj *= -r2inv;
if (eflag)
one_eng =
r6inv * (r6inv * lj3[itype][jtype] - lj4[itype][jtype]) - offset[itype][jtype];
fforce[0] = r12[0] * forcelj;
fforce[1] = r12[1] * forcelj;
fforce[2] = r12[2] * forcelj;
break;
case SPHERE_ELLIPSE:
precompute_i(j, wj);
one_eng = resquared_lj(j, i, wj, r12, rsq, fforce, rtor, false);
break;
case ELLIPSE_SPHERE:
one_eng = resquared_lj(i, j, wi, r12, rsq, fforce, ttor, true);
tor[i][0] += ttor[0] * factor_lj;
tor[i][1] += ttor[1] * factor_lj;
tor[i][2] += ttor[2] * factor_lj;
break;
default:
precompute_i(j, wj);
one_eng = resquared_analytic(i, j, wi, wj, r12, rsq, fforce, ttor, rtor);
tor[i][0] += ttor[0] * factor_lj;
tor[i][1] += ttor[1] * factor_lj;
tor[i][2] += ttor[2] * factor_lj;
break;
}
fforce[0] *= factor_lj;
fforce[1] *= factor_lj;
fforce[2] *= factor_lj;
f[i][0] += fforce[0];
f[i][1] += fforce[1];
f[i][2] += fforce[2];
if (eflag) evdwl = factor_lj * one_eng;
if (evflag)
ev_tally_xyz_full(i, evdwl, 0.0, fforce[0], fforce[1], fforce[2], -r12[0], -r12[1],
-r12[2]);
}
}
}
}