Files
lammps/lib/kokkos/containers/performance_tests/TestUnorderedMapPerformance.hpp
2020-03-25 14:08:39 -06:00

257 lines
8.7 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 3.0
// Copyright (2020) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP
#define KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP
#include <impl/Kokkos_Timer.hpp>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
namespace Perf {
template <typename Device, bool Near>
struct UnorderedMapTest {
typedef Device execution_space;
typedef Kokkos::UnorderedMap<uint32_t, uint32_t, execution_space> map_type;
typedef typename map_type::histogram_type histogram_type;
struct value_type {
uint32_t failed_count;
uint32_t max_list;
};
uint32_t capacity;
uint32_t inserts;
uint32_t collisions;
double seconds;
map_type map;
histogram_type histogram;
UnorderedMapTest(uint32_t arg_capacity, uint32_t arg_inserts,
uint32_t arg_collisions)
: capacity(arg_capacity),
inserts(arg_inserts),
collisions(arg_collisions),
seconds(0),
map(capacity),
histogram(map.get_histogram()) {
Kokkos::Timer wall_clock;
wall_clock.reset();
value_type v = {};
int loop_count = 0;
do {
++loop_count;
v = value_type();
Kokkos::parallel_reduce(inserts, *this, v);
if (v.failed_count > 0u) {
const uint32_t new_capacity = map.capacity() +
((map.capacity() * 3ull) / 20u) +
v.failed_count / collisions;
map.rehash(new_capacity);
}
} while (v.failed_count > 0u);
seconds = wall_clock.seconds();
switch (loop_count) {
case 1u: std::cout << " \033[0;32m" << loop_count << "\033[0m "; break;
case 2u: std::cout << " \033[1;31m" << loop_count << "\033[0m "; break;
default: std::cout << " \033[0;31m" << loop_count << "\033[0m "; break;
}
std::cout << std::setprecision(2) << std::fixed << std::setw(5)
<< (1e9 * (seconds / (inserts))) << "; " << std::flush;
histogram.calculate();
Device().fence();
}
void print(std::ostream& metrics_out, std::ostream& length_out,
std::ostream& distance_out, std::ostream& block_distance_out) {
metrics_out << map.capacity() << " , ";
metrics_out << inserts / collisions << " , ";
metrics_out << (100.0 * inserts / collisions) / map.capacity() << " , ";
metrics_out << inserts << " , ";
metrics_out << (map.failed_insert() ? "true" : "false") << " , ";
metrics_out << collisions << " , ";
metrics_out << 1e9 * (seconds / inserts) << " , ";
metrics_out << seconds << std::endl;
length_out << map.capacity() << " , ";
length_out << ((100.0 * inserts / collisions) / map.capacity()) << " , ";
length_out << collisions << " , ";
histogram.print_length(length_out);
distance_out << map.capacity() << " , ";
distance_out << ((100.0 * inserts / collisions) / map.capacity()) << " , ";
distance_out << collisions << " , ";
histogram.print_distance(distance_out);
block_distance_out << map.capacity() << " , ";
block_distance_out << ((100.0 * inserts / collisions) / map.capacity())
<< " , ";
block_distance_out << collisions << " , ";
histogram.print_block_distance(block_distance_out);
}
KOKKOS_INLINE_FUNCTION
void init(value_type& v) const {
v.failed_count = 0;
v.max_list = 0;
}
KOKKOS_INLINE_FUNCTION
void join(volatile value_type& dst, const volatile value_type& src) const {
dst.failed_count += src.failed_count;
dst.max_list = src.max_list < dst.max_list ? dst.max_list : src.max_list;
}
KOKKOS_INLINE_FUNCTION
void operator()(uint32_t i, value_type& v) const {
const uint32_t key = Near ? i / collisions : i % (inserts / collisions);
typename map_type::insert_result result = map.insert(key, i);
v.failed_count += !result.failed() ? 0 : 1;
v.max_list = result.list_position() < v.max_list ? v.max_list
: result.list_position();
}
};
template <typename Device, bool Near>
void run_performance_tests(std::string const& base_file_name) {
#if 0
std::string metrics_file_name = base_file_name + std::string("-metrics.csv");
std::string length_file_name = base_file_name + std::string("-length.csv");
std::string distance_file_name = base_file_name + std::string("-distance.csv");
std::string block_distance_file_name = base_file_name + std::string("-block_distance.csv");
std::ofstream metrics_out( metrics_file_name.c_str(), std::ofstream::out );
std::ofstream length_out( length_file_name.c_str(), std::ofstream::out );
std::ofstream distance_out( distance_file_name.c_str(), std::ofstream::out );
std::ofstream block_distance_out( block_distance_file_name.c_str(), std::ofstream::out );
/*
const double test_ratios[] = {
0.50
, 0.75
, 0.80
, 0.85
, 0.90
, 0.95
, 1.00
, 1.25
, 2.00
};
*/
const double test_ratios[] = { 1.00 };
const int num_ratios = sizeof(test_ratios) / sizeof(double);
/*
const uint32_t collisions[] {
1
, 4
, 16
, 64
};
*/
const uint32_t collisions[] = { 16 };
const int num_collisions = sizeof(collisions) / sizeof(uint32_t);
// set up file headers
metrics_out << "Capacity , Unique , Percent Full , Attempted Inserts , Failed Inserts , Collision Ratio , Nanoseconds/Inserts, Seconds" << std::endl;
length_out << "Capacity , Percent Full , ";
distance_out << "Capacity , Percent Full , ";
block_distance_out << "Capacity , Percent Full , ";
for (int i=0; i<100; ++i) {
length_out << i << " , ";
distance_out << i << " , ";
block_distance_out << i << " , ";
}
length_out << "\b\b\b " << std::endl;
distance_out << "\b\b\b " << std::endl;
block_distance_out << "\b\b\b " << std::endl;
Kokkos::Timer wall_clock ;
for (int i=0; i < num_collisions ; ++i) {
wall_clock.reset();
std::cout << "Collisions: " << collisions[i] << std::endl;
for (int j = 0; j < num_ratios; ++j) {
std::cout << std::setprecision(1) << std::fixed << std::setw(5) << (100.0*test_ratios[j]) << "% " << std::flush;
for (uint32_t capacity = 1<<14; capacity < 1<<25; capacity = capacity << 1) {
uint32_t inserts = static_cast<uint32_t>(test_ratios[j]*(capacity));
std::cout << capacity << std::flush;
UnorderedMapTest<Device, Near> test(capacity, inserts*collisions[i], collisions[i]);
Device().fence();
test.print(metrics_out, length_out, distance_out, block_distance_out);
}
std::cout << "\b\b " << std::endl;
}
std::cout << " " << wall_clock.seconds() << " secs" << std::endl;
}
metrics_out.close();
length_out.close();
distance_out.close();
block_distance_out.close();
#else
(void)base_file_name;
std::cout << "skipping test" << std::endl;
#endif
}
} // namespace Perf
#endif // KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP