489 lines
15 KiB
C++
489 lines
15 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Eugen Rozic (University College London)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_cosine_squared.h"
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "update.h"
|
|
#include "integrate.h"
|
|
#include "respa.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
#include "utils.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairCosineSquared::PairCosineSquared(LAMMPS *lmp) : Pair(lmp)
|
|
{
|
|
writedata = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairCosineSquared::~PairCosineSquared()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
|
|
memory->destroy(epsilon);
|
|
memory->destroy(sigma);
|
|
memory->destroy(w);
|
|
memory->destroy(cut);
|
|
memory->destroy(wcaflag);
|
|
|
|
memory->destroy(lj12_e);
|
|
memory->destroy(lj6_e);
|
|
memory->destroy(lj12_f);
|
|
memory->destroy(lj6_f);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ntypes;
|
|
memory->create(setflag, n+1, n+1, "pair:setflag");
|
|
memory->create(cutsq, n+1, n+1, "pair:cutsq");
|
|
|
|
memory->create(cut, n+1, n+1, "pair:cut");
|
|
memory->create(epsilon, n+1, n+1, "pair:epsilon");
|
|
memory->create(sigma, n+1, n+1, "pair:sigma");
|
|
memory->create(w, n+1, n+1, "pair:w");
|
|
memory->create(wcaflag, n+1, n+1, "pair:wcaflag");
|
|
|
|
memory->create(lj12_e, n+1, n+1, "pair:lj12_e");
|
|
memory->create(lj6_e, n+1, n+1, "pair:lj6_e");
|
|
memory->create(lj12_f, n+1, n+1, "pair:lj12_f");
|
|
memory->create(lj6_f, n+1, n+1, "pair:lj6_f");
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
for (int j = i; j <= n; j++) {
|
|
setflag[i][j] = 0;
|
|
wcaflag[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::settings(int narg, char **arg)
|
|
{
|
|
if (narg != 1) {
|
|
error->all(FLERR, "Illegal pair_style command (wrong number of params)");
|
|
}
|
|
|
|
cut_global = force->numeric(FLERR, arg[0]);
|
|
|
|
// reset cutoffs that have been explicitly set
|
|
|
|
if (allocated) {
|
|
int i, j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i+1; j <= atom->ntypes; j++)
|
|
if (setflag[i][j])
|
|
cut[i][j] = cut_global;
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::coeff(int narg, char **arg)
|
|
{
|
|
if (narg < 4 || narg > 6)
|
|
error->all(FLERR, "Incorrect args for pair coefficients (too few or too many)");
|
|
|
|
if (!allocated)
|
|
allocate();
|
|
|
|
int ilo, ihi, jlo, jhi;
|
|
force->bounds(FLERR, arg[0], atom->ntypes, ilo, ihi);
|
|
force->bounds(FLERR, arg[1], atom->ntypes, jlo, jhi);
|
|
|
|
double epsilon_one = force->numeric(FLERR, arg[2]);
|
|
double sigma_one = force->numeric(FLERR, arg[3]);
|
|
|
|
double cut_one = cut_global;
|
|
double wca_one = 0;
|
|
if (narg == 6) {
|
|
cut_one = force->numeric(FLERR, arg[4]);
|
|
if (strcmp(arg[5], "wca") == 0) {
|
|
wca_one = 1;
|
|
} else {
|
|
error->all(FLERR, "Incorrect args for pair coefficients (unknown option)");
|
|
}
|
|
} else if (narg == 5) {
|
|
if (strcmp(arg[4], "wca") == 0) {
|
|
wca_one = 1;
|
|
} else {
|
|
cut_one = force->numeric(FLERR, arg[4]);
|
|
}
|
|
}
|
|
|
|
if (cut_one < sigma_one) {
|
|
error->all(FLERR, "Incorrect args for pair coefficients (cutoff < sigma)");
|
|
} else if (cut_one == sigma_one) {
|
|
if (wca_one == 0) {
|
|
error->all(FLERR, "Incorrect args for pair coefficients (cutoff = sigma w/o wca)");
|
|
} else {
|
|
error->warning(FLERR, "Cosine/squared set to WCA only (cutoff = sigma)");
|
|
}
|
|
}
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
for (int j = MAX(jlo,i); j <= jhi; j++) {
|
|
epsilon[i][j] = epsilon_one;
|
|
sigma[i][j] = sigma_one;
|
|
cut[i][j] = cut_one;
|
|
wcaflag[i][j] = wca_one;
|
|
setflag[i][j] = 1;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (count == 0)
|
|
error->all(FLERR, "Incorrect args for pair coefficients (none set)");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style (unnecessary)
|
|
------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
void PairCosineSquared::init_style()
|
|
{
|
|
neighbor->request(this,instance_me);
|
|
}
|
|
*/
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairCosineSquared::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0)
|
|
error->all(FLERR, "Mixing not supported in pair_style cosine/squared");
|
|
|
|
epsilon[j][i] = epsilon[i][j];
|
|
sigma[j][i] = sigma[i][j];
|
|
cut[j][i] = cut[i][j];
|
|
wcaflag[j][i] = wcaflag[i][j];
|
|
|
|
w[j][i] = w[i][j] = cut[i][j] - sigma[i][j];
|
|
|
|
if (wcaflag[i][j]) {
|
|
lj12_e[j][i] = lj12_e[i][j] = epsilon[i][j] * pow(sigma[i][j], 12.0);
|
|
lj6_e[j][i] = lj6_e[i][j] = 2.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
|
|
lj12_f[j][i] = lj12_f[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j], 12.0);
|
|
lj6_f[j][i] = lj6_f[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
|
|
}
|
|
|
|
// Note: cutsq is set in pair.cpp
|
|
|
|
return cut[i][j];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
this is here to throw errors & warnings for given options
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::modify_params(int narg, char **arg)
|
|
{
|
|
Pair::modify_params(narg, arg);
|
|
|
|
int iarg = 0;
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg], "mix") == 0) {
|
|
error->all(FLERR, "pair_modify mix not supported for pair_style cosine/squared");
|
|
} else if (strcmp(arg[iarg], "shift") == 0) {
|
|
error->warning(FLERR, "pair_modify shift has no effect on pair_style cosine/squared");
|
|
offset_flag = 0;
|
|
} else if (strcmp(arg[iarg], "tail") == 0) {
|
|
error->warning(FLERR, "pair_modify tail has no effect on pair_style cosine/squared");
|
|
tail_flag = 0;
|
|
}
|
|
iarg++;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::write_restart(FILE *fp)
|
|
{
|
|
write_restart_settings(fp);
|
|
|
|
int i, j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
fwrite(&setflag[i][j], sizeof(int), 1, fp);
|
|
if (setflag[i][j]) {
|
|
fwrite(&epsilon[i][j], sizeof(double), 1, fp);
|
|
fwrite(&sigma[i][j], sizeof(double), 1, fp);
|
|
fwrite(&cut[i][j], sizeof(double), 1, fp);
|
|
fwrite(&wcaflag[i][j], sizeof(int), 1, fp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::read_restart(FILE *fp)
|
|
{
|
|
read_restart_settings(fp);
|
|
allocate();
|
|
|
|
int i,j;
|
|
int me = comm->me;
|
|
for (i = 1; i <= atom->ntypes; i++) {
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
if (me == 0)
|
|
utils::sfread(FLERR,&setflag[i][j], sizeof(int), 1, fp,NULL,error);
|
|
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
|
|
if (setflag[i][j]) {
|
|
if (me == 0) {
|
|
utils::sfread(FLERR,&epsilon[i][j], sizeof(double), 1, fp,NULL,error);
|
|
utils::sfread(FLERR,&sigma[i][j], sizeof(double), 1, fp,NULL,error);
|
|
utils::sfread(FLERR,&cut[i][j], sizeof(double), 1, fp,NULL,error);
|
|
utils::sfread(FLERR,&wcaflag[i][j], sizeof(int), 1, fp,NULL,error);
|
|
}
|
|
MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&sigma[i][j], 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&wcaflag[i][j], 1, MPI_INT, 0, world);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::write_restart_settings(FILE *fp)
|
|
{
|
|
fwrite(&cut_global, sizeof(double), 1, fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::read_restart_settings(FILE *fp)
|
|
{
|
|
int me = comm->me;
|
|
if (me == 0) {
|
|
utils::sfread(FLERR,&cut_global, sizeof(double), 1, fp,NULL,error);
|
|
}
|
|
MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->ntypes; i++)
|
|
fprintf(fp, "%d %g %g %g %d\n", i, epsilon[i][i], sigma[i][i],
|
|
cut[i][i], wcaflag[i][i]);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes all pairs to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::write_data_all(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->ntypes; i++)
|
|
for (int j = i; j <= atom->ntypes; j++)
|
|
fprintf(fp, "%d %d %g %g %g %d\n", i, j, epsilon[i][j], sigma[i][j],
|
|
cut[i][j], wcaflag[i][j]);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairCosineSquared::compute(int eflag, int vflag)
|
|
{
|
|
int i, j, ii, jj, inum, jnum, itype, jtype;
|
|
int *ilist, *jlist, *numneigh, **firstneigh;
|
|
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
|
|
double r, rsq, r2inv, r6inv;
|
|
double factor_lj, force_lj, force_cos, cosone;
|
|
|
|
evdwl = 0.0;
|
|
if (eflag || vflag)
|
|
ev_setup(eflag, vflag);
|
|
else
|
|
evflag = vflag_fdotr = 0;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
double *special_lj = force->special_lj;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// loop over neighbors of my atoms
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
factor_lj = special_lj[sbmask(j)];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
|
|
/*
|
|
This is exactly what the "single" method does, in fact it could be called
|
|
here instead of repeating the code but here energy calculation is optional
|
|
so a little bit of calculation is possibly saved
|
|
*/
|
|
|
|
r = sqrt(rsq);
|
|
|
|
if (r <= sigma[itype][jtype]) {
|
|
if (wcaflag[itype][jtype]) {
|
|
r2inv = 1.0/rsq;
|
|
r6inv = r2inv*r2inv*r2inv;
|
|
force_lj = r6inv*(lj12_f[itype][jtype]*r6inv - lj6_f[itype][jtype]);
|
|
fpair = factor_lj*force_lj*r2inv;
|
|
if (eflag) {
|
|
evdwl = factor_lj*r6inv*
|
|
(lj12_e[itype][jtype]*r6inv - lj6_e[itype][jtype]);
|
|
if (sigma[itype][jtype] == cut[itype][jtype]) {
|
|
// this is the WCA-only case (it requires this shift by definition)
|
|
evdwl += factor_lj*epsilon[itype][jtype];
|
|
}
|
|
}
|
|
} else {
|
|
fpair = 0.0;
|
|
if (eflag) {
|
|
evdwl = -factor_lj*epsilon[itype][jtype];
|
|
}
|
|
}
|
|
} else {
|
|
force_cos = -(MY_PI*epsilon[itype][jtype] / (2.0*w[itype][jtype])) *
|
|
sin(MY_PI*(r-sigma[itype][jtype]) / w[itype][jtype]);
|
|
fpair = factor_lj*force_cos / r;
|
|
if (eflag) {
|
|
cosone = cos(MY_PI*(r-sigma[itype][jtype]) / (2.0*w[itype][jtype]));
|
|
evdwl = -factor_lj*epsilon[itype][jtype]*cosone*cosone;
|
|
}
|
|
}
|
|
|
|
f[i][0] += delx*fpair;
|
|
f[i][1] += dely*fpair;
|
|
f[i][2] += delz*fpair;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] -= delx*fpair;
|
|
f[j][1] -= dely*fpair;
|
|
f[j][2] -= delz*fpair;
|
|
}
|
|
|
|
if (evflag)
|
|
ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vflag_fdotr)
|
|
virial_fdotr_compute();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
This is used be pair_write;
|
|
it is called only if rsq < cutsq[itype][jtype], no need to check that
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairCosineSquared::single(int /* i */, int /* j */, int itype, int jtype, double rsq,
|
|
double /* factor_coul */, double factor_lj,
|
|
double &fforce)
|
|
{
|
|
double r, r2inv, r6inv, cosone, force, energy;
|
|
|
|
r = sqrt(rsq);
|
|
|
|
if (r <= sigma[itype][jtype]) {
|
|
if (wcaflag[itype][jtype]) {
|
|
r2inv = 1.0/rsq;
|
|
r6inv = r2inv*r2inv*r2inv;
|
|
force = r6inv*(lj12_f[itype][jtype]*r6inv - lj6_f[itype][jtype])*r2inv;
|
|
energy = r6inv*(lj12_e[itype][jtype]*r6inv - lj6_e[itype][jtype]);
|
|
if (sigma[itype][jtype] == cut[itype][jtype]) {
|
|
// this is the WCA-only case (it requires this shift by definition)
|
|
energy += epsilon[itype][jtype];
|
|
}
|
|
} else {
|
|
force = 0.0;
|
|
energy = -epsilon[itype][jtype];
|
|
}
|
|
} else {
|
|
cosone = cos(MY_PI*(r-sigma[itype][jtype]) / (2.0*w[itype][jtype]));
|
|
force = -(MY_PI*epsilon[itype][jtype] / (2.0*w[itype][jtype])) *
|
|
sin(MY_PI*(r-sigma[itype][jtype]) / w[itype][jtype]) / r;
|
|
energy = -epsilon[itype][jtype]*cosone*cosone;
|
|
}
|
|
fforce = factor_lj*force;
|
|
return factor_lj*energy;
|
|
}
|
|
|