Files
lammps/src/USER-MISC/pair_cosine_squared.cpp
Eisuke Kawashima 649a8cc01a Fix typo
2020-03-14 13:57:48 +09:00

489 lines
15 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Eugen Rozic (University College London)
------------------------------------------------------------------------- */
#include "pair_cosine_squared.h"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
#include "utils.h"
using namespace LAMMPS_NS;
using namespace MathConst;
/* ---------------------------------------------------------------------- */
PairCosineSquared::PairCosineSquared(LAMMPS *lmp) : Pair(lmp)
{
writedata = 1;
}
/* ---------------------------------------------------------------------- */
PairCosineSquared::~PairCosineSquared()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(epsilon);
memory->destroy(sigma);
memory->destroy(w);
memory->destroy(cut);
memory->destroy(wcaflag);
memory->destroy(lj12_e);
memory->destroy(lj6_e);
memory->destroy(lj12_f);
memory->destroy(lj6_f);
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairCosineSquared::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag, n+1, n+1, "pair:setflag");
memory->create(cutsq, n+1, n+1, "pair:cutsq");
memory->create(cut, n+1, n+1, "pair:cut");
memory->create(epsilon, n+1, n+1, "pair:epsilon");
memory->create(sigma, n+1, n+1, "pair:sigma");
memory->create(w, n+1, n+1, "pair:w");
memory->create(wcaflag, n+1, n+1, "pair:wcaflag");
memory->create(lj12_e, n+1, n+1, "pair:lj12_e");
memory->create(lj6_e, n+1, n+1, "pair:lj6_e");
memory->create(lj12_f, n+1, n+1, "pair:lj12_f");
memory->create(lj6_f, n+1, n+1, "pair:lj6_f");
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
setflag[i][j] = 0;
wcaflag[i][j] = 0;
}
}
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairCosineSquared::settings(int narg, char **arg)
{
if (narg != 1) {
error->all(FLERR, "Illegal pair_style command (wrong number of params)");
}
cut_global = force->numeric(FLERR, arg[0]);
// reset cutoffs that have been explicitly set
if (allocated) {
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i+1; j <= atom->ntypes; j++)
if (setflag[i][j])
cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairCosineSquared::coeff(int narg, char **arg)
{
if (narg < 4 || narg > 6)
error->all(FLERR, "Incorrect args for pair coefficients (too few or too many)");
if (!allocated)
allocate();
int ilo, ihi, jlo, jhi;
force->bounds(FLERR, arg[0], atom->ntypes, ilo, ihi);
force->bounds(FLERR, arg[1], atom->ntypes, jlo, jhi);
double epsilon_one = force->numeric(FLERR, arg[2]);
double sigma_one = force->numeric(FLERR, arg[3]);
double cut_one = cut_global;
double wca_one = 0;
if (narg == 6) {
cut_one = force->numeric(FLERR, arg[4]);
if (strcmp(arg[5], "wca") == 0) {
wca_one = 1;
} else {
error->all(FLERR, "Incorrect args for pair coefficients (unknown option)");
}
} else if (narg == 5) {
if (strcmp(arg[4], "wca") == 0) {
wca_one = 1;
} else {
cut_one = force->numeric(FLERR, arg[4]);
}
}
if (cut_one < sigma_one) {
error->all(FLERR, "Incorrect args for pair coefficients (cutoff < sigma)");
} else if (cut_one == sigma_one) {
if (wca_one == 0) {
error->all(FLERR, "Incorrect args for pair coefficients (cutoff = sigma w/o wca)");
} else {
error->warning(FLERR, "Cosine/squared set to WCA only (cutoff = sigma)");
}
}
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
epsilon[i][j] = epsilon_one;
sigma[i][j] = sigma_one;
cut[i][j] = cut_one;
wcaflag[i][j] = wca_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0)
error->all(FLERR, "Incorrect args for pair coefficients (none set)");
}
/* ----------------------------------------------------------------------
init specific to this pair style (unnecessary)
------------------------------------------------------------------------- */
/*
void PairCosineSquared::init_style()
{
neighbor->request(this,instance_me);
}
*/
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairCosineSquared::init_one(int i, int j)
{
if (setflag[i][j] == 0)
error->all(FLERR, "Mixing not supported in pair_style cosine/squared");
epsilon[j][i] = epsilon[i][j];
sigma[j][i] = sigma[i][j];
cut[j][i] = cut[i][j];
wcaflag[j][i] = wcaflag[i][j];
w[j][i] = w[i][j] = cut[i][j] - sigma[i][j];
if (wcaflag[i][j]) {
lj12_e[j][i] = lj12_e[i][j] = epsilon[i][j] * pow(sigma[i][j], 12.0);
lj6_e[j][i] = lj6_e[i][j] = 2.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
lj12_f[j][i] = lj12_f[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j], 12.0);
lj6_f[j][i] = lj6_f[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
}
// Note: cutsq is set in pair.cpp
return cut[i][j];
}
/* ----------------------------------------------------------------------
this is here to throw errors & warnings for given options
------------------------------------------------------------------------- */
void PairCosineSquared::modify_params(int narg, char **arg)
{
Pair::modify_params(narg, arg);
int iarg = 0;
while (iarg < narg) {
if (strcmp(arg[iarg], "mix") == 0) {
error->all(FLERR, "pair_modify mix not supported for pair_style cosine/squared");
} else if (strcmp(arg[iarg], "shift") == 0) {
error->warning(FLERR, "pair_modify shift has no effect on pair_style cosine/squared");
offset_flag = 0;
} else if (strcmp(arg[iarg], "tail") == 0) {
error->warning(FLERR, "pair_modify tail has no effect on pair_style cosine/squared");
tail_flag = 0;
}
iarg++;
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairCosineSquared::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&epsilon[i][j], sizeof(double), 1, fp);
fwrite(&sigma[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
fwrite(&wcaflag[i][j], sizeof(int), 1, fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairCosineSquared::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++) {
for (j = i; j <= atom->ntypes; j++) {
if (me == 0)
utils::sfread(FLERR,&setflag[i][j], sizeof(int), 1, fp,NULL,error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR,&epsilon[i][j], sizeof(double), 1, fp,NULL,error);
utils::sfread(FLERR,&sigma[i][j], sizeof(double), 1, fp,NULL,error);
utils::sfread(FLERR,&cut[i][j], sizeof(double), 1, fp,NULL,error);
utils::sfread(FLERR,&wcaflag[i][j], sizeof(int), 1, fp,NULL,error);
}
MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&sigma[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&wcaflag[i][j], 1, MPI_INT, 0, world);
}
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairCosineSquared::write_restart_settings(FILE *fp)
{
fwrite(&cut_global, sizeof(double), 1, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairCosineSquared::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) {
utils::sfread(FLERR,&cut_global, sizeof(double), 1, fp,NULL,error);
}
MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world);
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void PairCosineSquared::write_data(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
fprintf(fp, "%d %g %g %g %d\n", i, epsilon[i][i], sigma[i][i],
cut[i][i], wcaflag[i][i]);
}
/* ----------------------------------------------------------------------
proc 0 writes all pairs to data file
------------------------------------------------------------------------- */
void PairCosineSquared::write_data_all(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
for (int j = i; j <= atom->ntypes; j++)
fprintf(fp, "%d %d %g %g %g %d\n", i, j, epsilon[i][j], sigma[i][j],
cut[i][j], wcaflag[i][j]);
}
/* ---------------------------------------------------------------------- */
void PairCosineSquared::compute(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
int *ilist, *jlist, *numneigh, **firstneigh;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double r, rsq, r2inv, r6inv;
double factor_lj, force_lj, force_cos, cosone;
evdwl = 0.0;
if (eflag || vflag)
ev_setup(eflag, vflag);
else
evflag = vflag_fdotr = 0;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
/*
This is exactly what the "single" method does, in fact it could be called
here instead of repeating the code but here energy calculation is optional
so a little bit of calculation is possibly saved
*/
r = sqrt(rsq);
if (r <= sigma[itype][jtype]) {
if (wcaflag[itype][jtype]) {
r2inv = 1.0/rsq;
r6inv = r2inv*r2inv*r2inv;
force_lj = r6inv*(lj12_f[itype][jtype]*r6inv - lj6_f[itype][jtype]);
fpair = factor_lj*force_lj*r2inv;
if (eflag) {
evdwl = factor_lj*r6inv*
(lj12_e[itype][jtype]*r6inv - lj6_e[itype][jtype]);
if (sigma[itype][jtype] == cut[itype][jtype]) {
// this is the WCA-only case (it requires this shift by definition)
evdwl += factor_lj*epsilon[itype][jtype];
}
}
} else {
fpair = 0.0;
if (eflag) {
evdwl = -factor_lj*epsilon[itype][jtype];
}
}
} else {
force_cos = -(MY_PI*epsilon[itype][jtype] / (2.0*w[itype][jtype])) *
sin(MY_PI*(r-sigma[itype][jtype]) / w[itype][jtype]);
fpair = factor_lj*force_cos / r;
if (eflag) {
cosone = cos(MY_PI*(r-sigma[itype][jtype]) / (2.0*w[itype][jtype]));
evdwl = -factor_lj*epsilon[itype][jtype]*cosone*cosone;
}
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
if (evflag)
ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
if (vflag_fdotr)
virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
This is used be pair_write;
it is called only if rsq < cutsq[itype][jtype], no need to check that
------------------------------------------------------------------------- */
double PairCosineSquared::single(int /* i */, int /* j */, int itype, int jtype, double rsq,
double /* factor_coul */, double factor_lj,
double &fforce)
{
double r, r2inv, r6inv, cosone, force, energy;
r = sqrt(rsq);
if (r <= sigma[itype][jtype]) {
if (wcaflag[itype][jtype]) {
r2inv = 1.0/rsq;
r6inv = r2inv*r2inv*r2inv;
force = r6inv*(lj12_f[itype][jtype]*r6inv - lj6_f[itype][jtype])*r2inv;
energy = r6inv*(lj12_e[itype][jtype]*r6inv - lj6_e[itype][jtype]);
if (sigma[itype][jtype] == cut[itype][jtype]) {
// this is the WCA-only case (it requires this shift by definition)
energy += epsilon[itype][jtype];
}
} else {
force = 0.0;
energy = -epsilon[itype][jtype];
}
} else {
cosone = cos(MY_PI*(r-sigma[itype][jtype]) / (2.0*w[itype][jtype]));
force = -(MY_PI*epsilon[itype][jtype] / (2.0*w[itype][jtype])) *
sin(MY_PI*(r-sigma[itype][jtype]) / w[itype][jtype]) / r;
energy = -epsilon[itype][jtype]*cosone*cosone;
}
fforce = factor_lj*force;
return factor_lj*energy;
}