428 lines
15 KiB
Plaintext
428 lines
15 KiB
Plaintext
// **************************************************************************
|
||
// sph_lj.cu
|
||
// -------------------
|
||
// Trung Dac Nguyen (U Chicago)
|
||
//
|
||
// Device code for acceleration of the sph/lj pair style
|
||
//
|
||
// __________________________________________________________________________
|
||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||
// __________________________________________________________________________
|
||
//
|
||
// begin : September 2023
|
||
// email : ndactrung@gmail.com
|
||
// ***************************************************************************
|
||
|
||
#if defined(NV_KERNEL) || defined(USE_HIP)
|
||
#include "lal_aux_fun1.h"
|
||
#ifndef _DOUBLE_DOUBLE
|
||
_texture( pos_tex,float4);
|
||
_texture( vel_tex,float4);
|
||
#else
|
||
_texture_2d( pos_tex,int4);
|
||
_texture_2d( vel_tex,int4);
|
||
#endif
|
||
#else
|
||
#define pos_tex x_
|
||
#define vel_tex v_
|
||
#endif
|
||
|
||
#if (SHUFFLE_AVAIL == 0)
|
||
|
||
#define store_drhoE(drhoEacc, ii, inum, tid, t_per_atom, offset, i, drhoE) \
|
||
if (t_per_atom>1) { \
|
||
simdsync(); \
|
||
simd_reduce_add2(t_per_atom, red_acc, offset, tid, \
|
||
drhoEacc.x, drhoEacc.y); \
|
||
} \
|
||
if (offset==0 && ii<inum) { \
|
||
drhoE[i]=drhoEacc.x; \
|
||
drhoE[i+inum]=drhoEacc.y; \
|
||
}
|
||
#else
|
||
#define store_drhoE(drhoEacc, ii, inum, tid, t_per_atom, offset, i, drhoE) \
|
||
if (t_per_atom>1) { \
|
||
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
|
||
drhoEacc.x += shfl_down(drhoEacc.x, s, t_per_atom); \
|
||
drhoEacc.y += shfl_down(drhoEacc.y, s, t_per_atom); \
|
||
} \
|
||
} \
|
||
if (offset==0 && ii<inum) { \
|
||
drhoE[i]=drhoEacc.x; \
|
||
drhoE[i+inum]=drhoEacc.y; \
|
||
}
|
||
#endif
|
||
|
||
/* ------------------------------------------------------------------------ */
|
||
/* Lennard-Jones EOS,
|
||
Francis H. Ree
|
||
"Analytic representation of thermodynamic data for the Lennard‐Jones fluid",
|
||
Journal of Chemical Physics 73 pp. 5401-5403 (1980)
|
||
return p = pc[0], c = pc[1]
|
||
*/
|
||
|
||
ucl_inline void LJEOS2(const numtyp rho, const numtyp e, const numtyp cv, numtyp pc[2])
|
||
{
|
||
numtyp T = e/cv;
|
||
numtyp beta = ucl_recip(T); // (numtyp)1.0 / T;
|
||
numtyp beta_sqrt = ucl_sqrt(beta);
|
||
numtyp x = rho * ucl_sqrt(beta_sqrt);
|
||
|
||
numtyp xsq = x * x;
|
||
numtyp xpow3 = xsq * x;
|
||
numtyp xpow4 = xsq * xsq;
|
||
|
||
/* differential of Helmholtz free energy w.r.t. x */
|
||
numtyp diff_A_NkT = (numtyp)3.629 + (numtyp)7.264*x -
|
||
beta*((numtyp)3.492 - (numtyp)18.698*x + (numtyp)35.505*xsq - (numtyp)31.816*xpow3 +
|
||
(numtyp)11.195*xpow4) - beta_sqrt*((numtyp)5.369 + (numtyp)13.16*x +
|
||
(numtyp)18.525*xsq - (numtyp)17.076*xpow3 + (numtyp)9.32*xpow4) +
|
||
(numtyp)10.4925*xsq + (numtyp)11.46*xpow3 + (numtyp)2.176*xpow4*xpow4*x;
|
||
|
||
/* differential of Helmholtz free energy w.r.t. x^2 */
|
||
numtyp d2A_dx2 = (numtyp)7.264 + (numtyp)20.985*x +
|
||
beta*((numtyp)18.698 - (numtyp)71.01*x + (numtyp)95.448*xsq - (numtyp)44.78*xpow3) -
|
||
beta_sqrt*((numtyp)13.16 + (numtyp)37.05*x - (numtyp)51.228*xsq + (numtyp)37.28*xpow3) +
|
||
(numtyp)34.38*xsq + (numtyp)19.584*xpow4*xpow4;
|
||
|
||
// p = rho k T * (1 + rho * d(A/(NkT))/drho)
|
||
// dx/drho = rho/x
|
||
pc[0] = rho * T * ((numtyp)1.0 + diff_A_NkT * x); // pressure
|
||
numtyp csq = T * ((numtyp)1.0 + (numtyp)2.0 * diff_A_NkT * x + d2A_dx2 * x * x); // soundspeed squared
|
||
if (csq > (numtyp)0.0) {
|
||
pc[1] = ucl_sqrt(csq); // soundspeed
|
||
} else {
|
||
pc[1] = (numtyp)0.0;
|
||
}
|
||
}
|
||
|
||
|
||
__kernel void k_sph_lj(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict extra,
|
||
const __global numtyp4 *restrict coeff,
|
||
const __global numtyp *restrict mass,
|
||
const int lj_types,
|
||
const __global numtyp *restrict sp_lj,
|
||
const __global int * dev_nbor,
|
||
const __global int * dev_packed,
|
||
__global acctyp3 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
__global acctyp *restrict drhoE,
|
||
const int eflag, const int vflag,
|
||
const int inum, const int nbor_pitch,
|
||
const __global numtyp4 *restrict v_,
|
||
const int dimension, const int t_per_atom) {
|
||
int tid, ii, offset, i;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
int n_stride;
|
||
local_allocate_store_pair();
|
||
|
||
acctyp3 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp energy, virial[6];
|
||
if (EVFLAG) {
|
||
energy=(acctyp)0;
|
||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||
}
|
||
acctyp2 drhoEacc;
|
||
drhoEacc.x = drhoEacc.y = (acctyp)0;
|
||
|
||
if (ii<inum) {
|
||
int numj, nbor, nbor_end;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
int itype=ix.w;
|
||
numtyp mass_itype = mass[itype];
|
||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||
|
||
const numtyp4 extrai = extra[i];
|
||
numtyp rhoi = extrai.x;
|
||
numtyp esphi = extrai.y;
|
||
numtyp cvi = extrai.z;
|
||
|
||
// compute pressure of particle i with LJ EOS
|
||
numtyp fci[2];
|
||
LJEOS2(rhoi, esphi, cvi, fci);
|
||
numtyp fi = fci[0];
|
||
numtyp ci = fci[1];
|
||
fi /= (rhoi * rhoi);
|
||
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||
|
||
int j=dev_packed[nbor];
|
||
j &= NEIGHMASK;
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
int jtype=jx.w;
|
||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
int mtype=itype*lj_types+jtype;
|
||
if (rsq<coeff[mtype].z) { // cutsq[itype][jtype]
|
||
numtyp mass_jtype = mass[jtype];
|
||
const numtyp coeffx=coeff[mtype].x; // viscosity[itype][jtype]
|
||
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
|
||
|
||
const numtyp4 extraj = extra[j];
|
||
numtyp rhoj = extraj.x;
|
||
numtyp esphj = extraj.y;
|
||
numtyp cvj = extraj.z;
|
||
|
||
numtyp h = coeffy; // cut[itype][jtype]
|
||
numtyp ih = ucl_recip(h); // (numtyp)1.0 / h;
|
||
numtyp ihsq = ih * ih;
|
||
numtyp ihcub = ihsq * ih;
|
||
|
||
numtyp wfd = h - ucl_sqrt(rsq);
|
||
if (dimension == 3) {
|
||
// Lucy Kernel, 3d
|
||
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
|
||
} else {
|
||
// Lucy Kernel, 2d
|
||
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
|
||
}
|
||
|
||
// function call to LJ EOS
|
||
numtyp fcj[2];
|
||
LJEOS2(rhoj, esphj, cvj, fcj);
|
||
numtyp fj = fcj[0];
|
||
numtyp cj = fcj[1];
|
||
fj /= (rhoj * rhoj);
|
||
|
||
// apply long-range correction to model a LJ fluid with cutoff
|
||
// this implies that the modelled LJ fluid has cutoff == SPH cutoff
|
||
numtyp lrc = (numtyp)-11.1701 * (ihcub * ihcub * ihcub - (numtyp)1.5 * ihcub);
|
||
fi += lrc;
|
||
fj += lrc;
|
||
|
||
// dot product of velocity delta and distance vector
|
||
numtyp delvx = iv.x - jv.x;
|
||
numtyp delvy = iv.y - jv.y;
|
||
numtyp delvz = iv.z - jv.z;
|
||
numtyp delVdotDelR = delx*delvx + dely*delvy + delz*delvz;
|
||
|
||
// artificial viscosity (Monaghan 1992)
|
||
numtyp fvisc = (numtyp)0;
|
||
if (delVdotDelR < (numtyp)0) {
|
||
numtyp mu = h * delVdotDelR / (rsq + (numtyp)0.01 * h * h);
|
||
fvisc = -coeffx * (ci + cj) * mu / (rhoi + rhoj); // viscosity[itype][jtype]
|
||
}
|
||
|
||
// total pair force & thermal energy increment
|
||
numtyp force = -mass_itype * mass_jtype * (fi + fj + fvisc) * wfd;
|
||
numtyp deltaE = (numtyp)-0.5 * force * delVdotDelR;
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
// and change in density, drho[i]
|
||
drhoEacc.x += mass_jtype * delVdotDelR * wfd;
|
||
|
||
// change in thermal energy, desph[i]
|
||
drhoEacc.y += deltaE;
|
||
|
||
if (EVFLAG && eflag) {
|
||
numtyp e = (numtyp)0;
|
||
energy+=e;
|
||
}
|
||
if (EVFLAG && vflag) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
}
|
||
} // for nbor
|
||
} // if ii
|
||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||
ans,engv);
|
||
store_drhoE(drhoEacc,ii,inum,tid,t_per_atom,offset,i,drhoE);
|
||
}
|
||
|
||
__kernel void k_sph_lj_fast(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict extra,
|
||
const __global numtyp4 *restrict coeff_in,
|
||
const __global numtyp *restrict mass,
|
||
const __global numtyp *restrict sp_lj_in,
|
||
const __global int * dev_nbor,
|
||
const __global int * dev_packed,
|
||
__global acctyp3 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
__global acctyp *restrict drhoE,
|
||
const int eflag, const int vflag,
|
||
const int inum, const int nbor_pitch,
|
||
const __global numtyp4 *restrict v_,
|
||
const int dimension, const int t_per_atom) {
|
||
int tid, ii, offset, i;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
#ifndef ONETYPE
|
||
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||
coeff[tid]=coeff_in[tid];
|
||
}
|
||
__syncthreads();
|
||
#else
|
||
const numtyp coeffx=coeff_in[ONETYPE].x; // viscosity[itype][jtype]
|
||
const numtyp coeffy=coeff_in[ONETYPE].y; // cut[itype][jtype]
|
||
const numtyp cutsq_p=coeff_in[ONETYPE].z; // cutsq[itype][jtype]
|
||
#endif
|
||
|
||
int n_stride;
|
||
local_allocate_store_pair();
|
||
|
||
acctyp3 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp energy, virial[6];
|
||
if (EVFLAG) {
|
||
energy=(acctyp)0;
|
||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||
}
|
||
acctyp2 drhoEacc;
|
||
drhoEacc.x = drhoEacc.y = (acctyp)0;
|
||
|
||
if (ii<inum) {
|
||
int numj, nbor, nbor_end;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
int iw=ix.w;
|
||
numtyp mass_itype = mass[iw];
|
||
#ifndef ONETYPE
|
||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||
#endif
|
||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||
|
||
const numtyp4 extrai = extra[i];
|
||
numtyp rhoi = extrai.x;
|
||
numtyp esphi = extrai.y;
|
||
numtyp cvi = extrai.z;
|
||
|
||
// compute pressure of particle i with LJ EOS
|
||
numtyp fci[2];
|
||
LJEOS2(rhoi, esphi, cvi, fci);
|
||
numtyp fi = fci[0];
|
||
numtyp ci = fci[1];
|
||
fi /= (rhoi * rhoi);
|
||
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||
|
||
int j=dev_packed[nbor];
|
||
#ifndef ONETYPE
|
||
j &= NEIGHMASK;
|
||
#endif
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
int jtype=jx.w;
|
||
#ifndef ONETYPE
|
||
int mtype=itype+jx.w;
|
||
const numtyp cutsq_p=coeff[mtype].z; // cutsq[itype][jtype];
|
||
#endif
|
||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
if (rsq<cutsq_p) {
|
||
numtyp mass_jtype = mass[jtype];
|
||
#ifndef ONETYPE
|
||
const numtyp coeffx=coeff[mtype].x; // viscosity[itype][jtype]
|
||
const numtyp coeffy=coeff[mtype].y; // cut[itype][jtype]
|
||
#endif
|
||
const numtyp4 extraj = extra[j];
|
||
numtyp rhoj = extraj.x;
|
||
numtyp esphj = extraj.y;
|
||
numtyp cvj = extraj.z;
|
||
|
||
numtyp h = coeffy; // cut[itype][jtype]
|
||
numtyp ih = ucl_recip(h); // (numtyp)1.0 / h;
|
||
numtyp ihsq = ih * ih;
|
||
numtyp ihcub = ihsq * ih;
|
||
|
||
numtyp wfd = h - ucl_sqrt(rsq);
|
||
if (dimension == 3) {
|
||
// Lucy Kernel, 3d
|
||
wfd = (numtyp)-25.066903536973515383 * wfd * wfd * ihsq * ihsq * ihsq * ih;
|
||
} else {
|
||
// Lucy Kernel, 2d
|
||
wfd = (numtyp)-19.098593171027440292 * wfd * wfd * ihsq * ihsq * ihsq;
|
||
}
|
||
|
||
// function call to LJ EOS
|
||
numtyp fcj[2];
|
||
LJEOS2(rhoj, esphj, cvj, fcj);
|
||
numtyp fj = fcj[0];
|
||
numtyp cj = fcj[1];
|
||
fj /= (rhoj * rhoj);
|
||
|
||
// apply long-range correction to model a LJ fluid with cutoff
|
||
// this implies that the modelled LJ fluid has cutoff == SPH cutoff
|
||
numtyp lrc = (numtyp)-11.1701 * (ihcub * ihcub * ihcub - (numtyp)1.5 * ihcub);
|
||
fi += lrc;
|
||
fj += lrc;
|
||
|
||
// dot product of velocity delta and distance vector
|
||
numtyp delvx = iv.x - jv.x;
|
||
numtyp delvy = iv.y - jv.y;
|
||
numtyp delvz = iv.z - jv.z;
|
||
numtyp delVdotDelR = delx*delvx + dely*delvy + delz*delvz;
|
||
|
||
// artificial viscosity (Monaghan 1992)
|
||
numtyp fvisc = (numtyp)0;
|
||
if (delVdotDelR < (numtyp)0) {
|
||
numtyp mu = h * delVdotDelR / (rsq + (numtyp)0.01 * h * h);
|
||
fvisc = -coeffx * (ci + cj) * mu / (rhoi + rhoj); // viscosity[itype][jtype]
|
||
}
|
||
|
||
// total pair force & thermal energy increment
|
||
numtyp force = -mass_itype * mass_jtype * (fi + fj + fvisc) * wfd;
|
||
numtyp deltaE = (numtyp)-0.5 * force * delVdotDelR;
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
// and change in density, drho[i]
|
||
drhoEacc.x += mass_jtype * delVdotDelR * wfd;
|
||
|
||
// change in thermal energy, desph[i]
|
||
drhoEacc.y += deltaE;
|
||
|
||
if (EVFLAG && eflag) {
|
||
numtyp e = (numtyp)0;
|
||
energy+=e;
|
||
}
|
||
if (EVFLAG && vflag) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
}
|
||
} // for nbor
|
||
} // if ii
|
||
|
||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv);
|
||
store_drhoE(drhoEacc,ii,inum,tid,t_per_atom,offset,i,drhoE);
|
||
}
|
||
|