- no auto-download of user-pace src yet - lib/pace/*.cpp,*.h are provided explicitly yet. - implement CMake integration in USER-PACE.cmake and in CMakeLists.txt
247 lines
7.5 KiB
C++
247 lines
7.5 KiB
C++
/*
|
|
* Performant implementation of atomic cluster expansion and interface to LAMMPS
|
|
*
|
|
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
|
|
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
|
|
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
|
|
*
|
|
* ^1: Ruhr-University Bochum, Bochum, Germany
|
|
* ^2: University of Cambridge, Cambridge, United Kingdom
|
|
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
|
|
* ^4: University of British Columbia, Vancouver, BC, Canada
|
|
*
|
|
*
|
|
* See the LICENSE file.
|
|
* This FILENAME is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
// Created by Christoph Ortner on 20.12.2020
|
|
|
|
#ifndef ACE_RECURSIVE_H
|
|
#define ACE_RECURSIVE_H
|
|
|
|
#include "ace_abstract_basis.h"
|
|
#include "ace_arraynd.h"
|
|
#include "ace_array2dlm.h"
|
|
#include "ace_c_basis.h"
|
|
#include "ace_complex.h"
|
|
#include "ace_timing.h"
|
|
#include "ace_types.h"
|
|
#include "ace_evaluator.h"
|
|
|
|
#include <list>
|
|
#include <utility>
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
using namespace std;
|
|
|
|
|
|
typedef pair<vector<int>, vector<int> > TPARTITION;
|
|
typedef list<TPARTITION> TPARTITIONS;
|
|
|
|
typedef map<vector<int>, int> TDAGMAP;
|
|
|
|
class ACEDAG {
|
|
|
|
TPARTITIONS find_2partitions(vector<int> v);
|
|
|
|
void insert_node(TDAGMAP &dagmap,
|
|
vector<int> node,
|
|
vector<DOUBLE_TYPE> c);
|
|
|
|
// the following fields are used only for *construction*, not evaluation
|
|
int dag_idx; // current index of dag node
|
|
Array2D<int> nodes_pre; //TODO: YL: better to use vector<>
|
|
Array2D<DOUBLE_TYPE> coeffs_pre; //TODO: YL: better to use vector<>
|
|
Array1D<bool> haschild; //TODO: YL: better to use vector<>
|
|
|
|
/* which heuristic to choose for DAG construction?
|
|
* 0 : the simple original heuristic
|
|
* 1 : prioritize 2-correlation nodes and build the rest from those
|
|
*/
|
|
int heuristic = 0;
|
|
|
|
public:
|
|
|
|
ACEDAG() = default;
|
|
|
|
void init(Array2D<int> Aspec, Array2D<int> AAspec,
|
|
Array1D<int> orders, Array2D<DOUBLE_TYPE> coeffs,
|
|
int heuristic );
|
|
|
|
Array1D<ACEComplex> AAbuf;
|
|
Array1D<ACEComplex> w;
|
|
|
|
Array2D<int> Aspec;
|
|
|
|
// nodes in the graph
|
|
Array2D<int> nodes;
|
|
Array2D<DOUBLE_TYPE> coeffs;
|
|
|
|
// total number of nodes in the dag
|
|
int num_nodes;
|
|
// number of interior nodes (with children)
|
|
int num2_int;
|
|
// number of leaf nodes (nc = no child)
|
|
int num2_leaf;
|
|
|
|
|
|
// number of 1-particle basis functions
|
|
// (these will be stored in the first num1 entries of AAbuf)
|
|
int get_num1() { return Aspec.get_dim(0); };
|
|
// total number of n-correlation basis functions n > 1.
|
|
int get_num2() { return num_nodes - get_num1(); };
|
|
int get_num2_int() { return num2_int; }; // with children
|
|
int get_num2_leaf() { return num2_leaf; }; // without children
|
|
|
|
// debugging tool
|
|
void print();
|
|
};
|
|
|
|
|
|
/**
|
|
* Recursive Variant of the ACETildeEvaluator; should be 100% compatible
|
|
*/
|
|
class ACERecursiveEvaluator : public ACEEvaluator {
|
|
|
|
/**
|
|
* Weights \f$ \omega_{i \mu n 0 0} \f$ for rank = 1, see Eq.(10) from implementation notes,
|
|
* 'i' is fixed for the current atom, shape: [nelements][nradbase]
|
|
*/
|
|
Array2D<DOUBLE_TYPE> weights_rank1 = Array2D<DOUBLE_TYPE>("weights_rank1");
|
|
|
|
/**
|
|
* Weights \f$ \omega_{i \mu n l m} \f$ for rank > 1, see Eq.(10) from implementation notes,
|
|
* 'i' is fixed for the current atom, shape: [nelements][nradbase][l=0..lmax, m]
|
|
*/
|
|
Array4DLM<ACEComplex> weights = Array4DLM<ACEComplex>("weights");
|
|
|
|
/**
|
|
* cache for gradients of \f$ g(r)\f$: grad_phi(jj,n)=A2DLM(l,m)
|
|
* shape:[max_jnum][nradbase]
|
|
*/
|
|
Array2D<DOUBLE_TYPE> DG_cache = Array2D<DOUBLE_TYPE>("DG_cache");
|
|
|
|
|
|
/**
|
|
* cache for \f$ R_{nl}(r)\f$
|
|
* shape:[max_jnum][nradbase][0..lmax]
|
|
*/
|
|
Array3D<DOUBLE_TYPE> R_cache = Array3D<DOUBLE_TYPE>("R_cache");
|
|
/**
|
|
* cache for derivatives of \f$ R_{nl}(r)\f$
|
|
* shape:[max_jnum][nradbase][0..lmax]
|
|
*/
|
|
Array3D<DOUBLE_TYPE> DR_cache = Array3D<DOUBLE_TYPE>("DR_cache");
|
|
/**
|
|
* cache for \f$ Y_{lm}(\hat{r})\f$
|
|
* shape:[max_jnum][0..lmax][m]
|
|
*/
|
|
Array3DLM<ACEComplex> Y_cache = Array3DLM<ACEComplex>("Y_cache");
|
|
/**
|
|
* cache for \f$ \nabla Y_{lm}(\hat{r})\f$
|
|
* shape:[max_jnum][0..lmax][m]
|
|
*/
|
|
Array3DLM<ACEDYcomponent> DY_cache = Array3DLM<ACEDYcomponent>("dY_dense_cache");
|
|
|
|
/**
|
|
* cache for derivatives of hard-core repulsion
|
|
* shape:[max_jnum]
|
|
*/
|
|
Array1D<DOUBLE_TYPE> DCR_cache = Array1D<DOUBLE_TYPE>("DCR_cache");
|
|
|
|
/**
|
|
* Partial derivatives \f$ dB_{i \mu n l m t}^{(r)} \f$ with sequential numbering over [func_ind][ms_ind][r],
|
|
* shape:[func_ms_r_ind]
|
|
*/
|
|
Array1D<ACEComplex> dB_flatten = Array1D<ACEComplex>("dB_flatten");
|
|
|
|
/**
|
|
* pointer to the ACEBasisSet object
|
|
*/
|
|
ACECTildeBasisSet *basis_set = nullptr;
|
|
|
|
/**
|
|
* Initialize internal arrays according to basis set sizes
|
|
* @param basis_set
|
|
*/
|
|
void init(ACECTildeBasisSet *basis_set, int heuristic);
|
|
|
|
/* convert the PACE to the ACE.jl format to prepare for DAG construction*/
|
|
Array2D<int> jl_Aspec;
|
|
Array2D<int> jl_AAspec;
|
|
Array1D<int> jl_AAspec_flat;
|
|
Array1D<int> jl_orders;
|
|
Array2D<DOUBLE_TYPE> jl_coeffs;
|
|
void acejlformat();
|
|
|
|
/* the main event : the computational graph */
|
|
ACEDAG dag;
|
|
|
|
bool recursive = true;
|
|
|
|
public:
|
|
|
|
|
|
ACERecursiveEvaluator() = default;
|
|
|
|
explicit ACERecursiveEvaluator(ACECTildeBasisSet &bas,
|
|
bool recursive = true) {
|
|
set_recursive(recursive);
|
|
set_basis(bas);
|
|
}
|
|
|
|
/**
|
|
* set the basis function to the ACE evaluator
|
|
* @param bas
|
|
*/
|
|
void set_basis(ACECTildeBasisSet &bas, int heuristic = 0);
|
|
|
|
/**
|
|
* The key method to compute energy and forces for atom 'i'.
|
|
* Method will update the "e_atom" variable and "neighbours_forces(jj, alpha)" array
|
|
*
|
|
* @param i atom index
|
|
* @param x atomic positions array of the real and ghost atoms, shape: [atom_ind][3]
|
|
* @param type atomic types array of the real and ghost atoms, shape: [atom_ind]
|
|
* @param jnum number of neighbours of atom_i
|
|
* @param jlist array of neighbour indices, shape: [jnum]
|
|
*/
|
|
void compute_atom(int i, DOUBLE_TYPE **x, const SPECIES_TYPE *type, const int jnum, const int *jlist) override;
|
|
|
|
/**
|
|
* Resize all caches over neighbours atoms
|
|
* @param max_jnum maximum number of neighbours
|
|
*/
|
|
void resize_neighbours_cache(int max_jnum) override;
|
|
|
|
/******* public functions related to recursive evaluator ********/
|
|
|
|
// print out the DAG for visual inspection
|
|
void print_dag() {dag.print();}
|
|
|
|
// print out the jl format for visual inspection
|
|
// should be converted into a proper test
|
|
void test_acejlformat();
|
|
|
|
void set_recursive(bool tf) { recursive = tf; }
|
|
|
|
/********************************/
|
|
|
|
};
|
|
|
|
|
|
#endif //ACE_RECURSIVE_H
|