250 lines
7.4 KiB
C++
250 lines
7.4 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Mario Orsi & Wei Ding (QMUL), m.orsi@qmul.ac.uk
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include "angle_dipole.h"
|
|
#include "atom.h"
|
|
#include "neighbor.h"
|
|
#include "domain.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleDipole::AngleDipole(LAMMPS *lmp) : Angle(lmp)
|
|
{
|
|
k = NULL;
|
|
gamma0 = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleDipole::~AngleDipole()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(k);
|
|
memory->destroy(gamma0);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::compute(int eflag, int vflag)
|
|
{
|
|
int iRef,iDip,iDummy,n,type;
|
|
double delx,dely,delz;
|
|
double eangle,tangle,fi[3],fj[3];
|
|
double r,cosGamma,deltaGamma,kdg,rmu;
|
|
|
|
eangle = 0.0;
|
|
ev_init(eflag,vflag);
|
|
|
|
double **x = atom->x; // position vector
|
|
double **mu = atom->mu; // point-dipole components and moment magnitude
|
|
double **torque = atom->torque;
|
|
int **anglelist = neighbor->anglelist;
|
|
int nanglelist = neighbor->nanglelist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
|
|
double **f = atom->f;
|
|
double delTx, delTy, delTz;
|
|
double fx, fy, fz, fmod, fmod_sqrtff;
|
|
|
|
if (!newton_bond)
|
|
error->all(FLERR,"'newton' flag for bonded interactions must be 'on'");
|
|
|
|
for (n = 0; n < nanglelist; n++) {
|
|
iDip = anglelist[n][0]; // dipole whose orientation is to be restrained
|
|
iRef = anglelist[n][1]; // reference atom toward which dipole will point
|
|
iDummy = anglelist[n][2]; // dummy atom - irrelevant to the interaction
|
|
type = anglelist[n][3];
|
|
|
|
delx = x[iRef][0] - x[iDip][0];
|
|
dely = x[iRef][1] - x[iDip][1];
|
|
delz = x[iRef][2] - x[iDip][2];
|
|
|
|
r = sqrt(delx*delx + dely*dely + delz*delz);
|
|
|
|
rmu = r * mu[iDip][3];
|
|
cosGamma = (mu[iDip][0]*delx+mu[iDip][1]*dely+mu[iDip][2]*delz) / rmu;
|
|
deltaGamma = cosGamma - cos(gamma0[type]);
|
|
kdg = k[type] * deltaGamma;
|
|
|
|
if (eflag) eangle = kdg * deltaGamma; // energy
|
|
|
|
tangle = 2.0 * kdg / rmu;
|
|
|
|
delTx = tangle * (dely*mu[iDip][2] - delz*mu[iDip][1]);
|
|
delTy = tangle * (delz*mu[iDip][0] - delx*mu[iDip][2]);
|
|
delTz = tangle * (delx*mu[iDip][1] - dely*mu[iDip][0]);
|
|
|
|
torque[iDip][0] += delTx;
|
|
torque[iDip][1] += delTy;
|
|
torque[iDip][2] += delTz;
|
|
|
|
// Force couple that counterbalances dipolar torque
|
|
fx = dely*delTz - delz*delTy; // direction (fi): - r x (-T)
|
|
fy = delz*delTx - delx*delTz;
|
|
fz = delx*delTy - dely*delTx;
|
|
|
|
fmod = sqrt(delTx*delTx + delTy*delTy + delTz*delTz) / r; // magnitude
|
|
fmod_sqrtff = fmod / sqrt(fx*fx + fy*fy + fz*fz);
|
|
|
|
fi[0] = fx * fmod_sqrtff;
|
|
fi[1] = fy * fmod_sqrtff;
|
|
fi[2] = fz * fmod_sqrtff;
|
|
|
|
fj[0] = -fi[0];
|
|
fj[1] = -fi[1];
|
|
fj[2] = -fi[2];
|
|
|
|
f[iDip][0] += fj[0];
|
|
f[iDip][1] += fj[1];
|
|
f[iDip][2] += fj[2];
|
|
|
|
f[iRef][0] += fi[0];
|
|
f[iRef][1] += fi[1];
|
|
f[iRef][2] += fi[2];
|
|
|
|
if (evflag) // virial = rij.fi = 0 (fj = -fi & fk = 0)
|
|
ev_tally(iRef,iDip,iDummy,nlocal,newton_bond,eangle,fj,fi,
|
|
0.0,0.0,0.0,0.0,0.0,0.0);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->nangletypes;
|
|
|
|
memory->create(k,n+1,"angle:k");
|
|
memory->create(gamma0,n+1,"angle:gamma0");
|
|
|
|
memory->create(setflag,n+1,"angle:setflag");
|
|
for (int i = 1; i <= n; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 3) error->all(FLERR,"Incorrect args for angle coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi;
|
|
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
|
|
|
|
double k_one = force->numeric(FLERR,arg[1]);
|
|
double gamma0_one = force->numeric(FLERR,arg[2]);
|
|
|
|
// convert gamma0 from degrees to radians
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
k[i] = k_one;
|
|
gamma0[i] = gamma0_one/180.0 * MY_PI;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
used by SHAKE
|
|
------------------------------------------------------------------------- */
|
|
|
|
double AngleDipole::equilibrium_angle(int i)
|
|
{
|
|
return gamma0[i];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&gamma0[1],sizeof(double),atom->nangletypes,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
fread(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&gamma0[1],sizeof(double),atom->nangletypes,fp);
|
|
}
|
|
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&gamma0[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
|
|
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleDipole::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->nangletypes; i++)
|
|
fprintf(fp,"%d %g %g\n",i,k[i],gamma0[i]);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
used by ComputeAngleLocal
|
|
------------------------------------------------------------------------- */
|
|
|
|
double AngleDipole::single(int type, int iRef, int iDip, int /*iDummy*/)
|
|
{
|
|
double **x = atom->x; // position vector
|
|
double **mu = atom->mu; // point-dipole components and moment magnitude
|
|
|
|
double delx = x[iRef][0] - x[iDip][0];
|
|
double dely = x[iRef][1] - x[iDip][1];
|
|
double delz = x[iRef][2] - x[iDip][2];
|
|
|
|
domain->minimum_image(delx,dely,delz);
|
|
|
|
double r = sqrt(delx*delx + dely*dely + delz*delz);
|
|
double rmu = r * mu[iDip][3];
|
|
double cosGamma = (mu[iDip][0]*delx+mu[iDip][1]*dely+mu[iDip][2]*delz) / rmu;
|
|
double deltaGamma = cosGamma - cos(gamma0[type]);
|
|
double kdg = k[type] * deltaGamma;
|
|
|
|
return kdg * deltaGamma; // energy
|
|
}
|