Files
lammps/lib/gpu/gb_gpu_memory.cpp
W. Michael Brown 71ff7b8096 Updating all code to use full neighbor lists for all host forces
computations. Changed the load balancing scheme. Added timing estimates
for GPU and driver overhead, cpu idle time.
2011-03-28 13:18:39 -04:00

356 lines
12 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
------------------------------------------------------------------------- */
#ifdef USE_OPENCL
#include "gb_gpu_cl.h"
#include "gb_gpu_nbor_cl.h"
#else
#include "gb_gpu_ptx.h"
#endif
#include "gb_gpu_memory.h"
#include <cassert>
#define GB_GPU_MemoryT GB_GPU_Memory<numtyp, acctyp>
extern PairGPUDevice<PRECISION,ACC_PRECISION> pair_gpu_device;
template <class numtyp, class acctyp>
GB_GPU_MemoryT::GB_GPU_Memory() : _allocated(false), _compiled(false),
_max_bytes(0.0) {
device=&pair_gpu_device;
ans=new PairGPUAns<numtyp,acctyp>();
nbor=new PairGPUNbor;
}
template <class numtyp, class acctyp>
GB_GPU_MemoryT::~GB_GPU_Memory() {
clear();
delete ans;
delete nbor;
}
template <class numtyp, class acctyp>
int GB_GPU_MemoryT::bytes_per_atom(const int max_nbors) const {
return device->atom.bytes_per_atom()+ans->bytes_per_atom()+
nbor->bytes_per_atom(max_nbors);
}
template <class numtyp, class acctyp>
bool GB_GPU_MemoryT::init(const int ntypes, const double gamma,
const double upsilon, const double mu,
double **host_shape, double **host_well,
double **host_cutsq, double **host_sigma,
double **host_epsilon, double *host_lshape,
int **h_form, double **host_lj1, double **host_lj2,
double **host_lj3, double **host_lj4,
double **host_offset, const double *host_special_lj,
const int nlocal, const int nall,
const int max_nbors, const double cell_size,
const double gpu_split, FILE *_screen) {
nbor_time_avail=false;
screen=_screen;
bool gpu_nbor=false;
if (device->gpu_mode()==PairGPUDevice<numtyp,acctyp>::GPU_NEIGH)
gpu_nbor=true;
int _gpu_host=0;
int host_nlocal=hd_balancer.first_host_count(nlocal,gpu_split,gpu_nbor);
if (host_nlocal>0)
_gpu_host=1;
if (!device->init(*ans,false,true,nlocal,host_nlocal,nall,nbor,0,
_gpu_host,max_nbors,cell_size,true))
return false;
ucl_device=device->gpu;
atom=&device->atom;
_block_size=BLOCK_1D;
if (static_cast<size_t>(_block_size)>ucl_device->group_size())
_block_size=ucl_device->group_size();
compile_kernels(*ucl_device);
// Initialize host-device load balancer
hd_balancer.init(device,gpu_nbor,gpu_split);
// Initialize timers for the selected GPU
time_pair.init(*ucl_device);
time_pair.zero();
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
if (lj_types<=MAX_SHARED_TYPES && _block_size>=MAX_SHARED_TYPES) {
lj_types=MAX_SHARED_TYPES;
shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for copying type data
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*ucl_device,
UCL_WRITE_OPTIMIZED);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
sigma_epsilon.alloc(lj_types*lj_types,*ucl_device,UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,sigma_epsilon,host_write,
host_sigma,host_epsilon);
cut_form.alloc(lj_types*lj_types,*ucl_device,UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,cut_form,host_write,
host_cutsq,h_form);
lj1.alloc(lj_types*lj_types,*ucl_device,UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj1,host_write,host_lj1,host_lj2,
host_cutsq,h_form);
lj3.alloc(lj_types*lj_types,*ucl_device,UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj3,host_write,host_lj3,host_lj4,
host_offset);
dev_error.alloc(1,*ucl_device);
dev_error.zero();
_allocated=true;
host_form=h_form;
// Initialize timers for the selected GPU
time_kernel.init(*ucl_device);
time_gayberne.init(*ucl_device);
time_kernel2.init(*ucl_device);
time_gayberne2.init(*ucl_device);
time_kernel.zero();
time_gayberne.zero();
time_kernel2.zero();
time_gayberne2.zero();
// Allocate, cast and asynchronous memcpy of constant data
// Copy data for bonded interactions
gamma_upsilon_mu.alloc(7,*ucl_device,UCL_READ_ONLY);
host_write[0]=static_cast<numtyp>(gamma);
host_write[1]=static_cast<numtyp>(upsilon);
host_write[2]=static_cast<numtyp>(mu);
host_write[3]=static_cast<numtyp>(host_special_lj[0]);
host_write[4]=static_cast<numtyp>(host_special_lj[1]);
host_write[5]=static_cast<numtyp>(host_special_lj[2]);
host_write[6]=static_cast<numtyp>(host_special_lj[3]);
ucl_copy(gamma_upsilon_mu,host_write,7,false);
lshape.alloc(ntypes,*ucl_device,UCL_READ_ONLY);
UCL_H_Vec<double> d_view;
d_view.view(host_lshape,lshape.numel(),*ucl_device);
ucl_copy(lshape,d_view,false);
// Copy shape, well, sigma, epsilon, and cutsq onto GPU
// - cast if necessary
shape.alloc(ntypes,*ucl_device,UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_shape[i][0];
host_write[i*4+1]=host_shape[i][1];
host_write[i*4+2]=host_shape[i][2];
}
UCL_H_Vec<numtyp4> view4;
view4.view((numtyp4*)host_write.begin(),shape.numel(),*ucl_device);
ucl_copy(shape,view4,false);
well.alloc(ntypes,*ucl_device,UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_well[i][0];
host_write[i*4+1]=host_well[i][1];
host_write[i*4+2]=host_well[i][2];
}
view4.view((numtyp4*)host_write.begin(),well.numel(),*ucl_device);
ucl_copy(well,view4,false);
// See if we want fast GB-sphere or sphere-sphere calculations
multiple_forms=false;
for (int i=1; i<ntypes; i++)
for (int j=i; j<ntypes; j++)
if (host_form[i][j]!=ELLIPSE_ELLIPSE)
multiple_forms=true;
if (multiple_forms && host_nlocal>0) {
std::cerr << "Cannot use Gayberne with multiple forms and GPU neighbor.\n";
exit(1);
}
if (multiple_forms)
ans->dev_ans.zero();
_max_bytes=ans->gpu_bytes()+nbor->gpu_bytes();
// Memory for ilist ordered by particle type
return (host_olist.alloc(nbor->max_atoms(),*ucl_device)==UCL_SUCCESS);
}
template <class numtyp, class acctyp>
void GB_GPU_MemoryT::estimate_gpu_overhead() {
device->estimate_gpu_overhead(2,_gpu_overhead,_driver_overhead);
}
template <class numtyp, class acctyp>
void GB_GPU_MemoryT::clear() {
if (!_allocated)
return;
UCL_H_Vec<int> err_flag(1,*ucl_device);
ucl_copy(err_flag,dev_error,false);
if (err_flag[0] == 2)
std::cerr << "BAD MATRIX INVERSION IN FORCE COMPUTATION.\n";
err_flag.clear();
_allocated=false;
// Output any timing information
acc_timers();
double single[9], times[9];
single[0]=atom->transfer_time()+ans->transfer_time();
single[1]=nbor->time_nbor.total_seconds();
single[2]=time_kernel.total_seconds()+time_kernel2.total_seconds()+
nbor->time_kernel.total_seconds();
single[3]=time_gayberne.total_seconds()+time_gayberne2.total_seconds();
if (multiple_forms)
single[4]=time_pair.total_seconds();
else
single[4]=0;
single[5]=atom->cast_time()+ans->cast_time();
single[6]=_gpu_overhead;
single[7]=_driver_overhead;
single[8]=ans->cpu_idle_time();
MPI_Reduce(single,times,6,MPI_DOUBLE,MPI_SUM,0,device->replica());
double avg_split=hd_balancer.all_avg_split();
_max_bytes+=dev_error.row_bytes()+lj1.row_bytes()+lj3.row_bytes()+
sigma_epsilon.row_bytes()+cut_form.row_bytes()+
shape.row_bytes()+well.row_bytes()+lshape.row_bytes()+
gamma_upsilon_mu.row_bytes()+atom->max_gpu_bytes();
double mpi_max_bytes;
MPI_Reduce(&_max_bytes,&mpi_max_bytes,1,MPI_DOUBLE,MPI_MAX,0,
device->replica());
double max_mb=mpi_max_bytes/(1024*1024);
if (device->replica_me()==0)
if (screen && times[3]>0.0) {
int replica_size=device->replica_size();
fprintf(screen,"\n\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
fprintf(screen," GPU Time Info (average): ");
fprintf(screen,"\n-------------------------------------");
fprintf(screen,"--------------------------------\n");
if (device->procs_per_gpu()==1) {
fprintf(screen,"Data Transfer: %.4f s.\n",times[0]/replica_size);
fprintf(screen,"Data Cast/Pack: %.4f s.\n",times[5]/replica_size);
fprintf(screen,"Neighbor copy: %.4f s.\n",times[1]/replica_size);
if (nbor->gpu_nbor())
fprintf(screen,"Neighbor build: %.4f s.\n",times[2]/replica_size);
else
fprintf(screen,"Neighbor unpack: %.4f s.\n",times[2]/replica_size);
fprintf(screen,"Force calc: %.4f s.\n",times[3]/replica_size);
fprintf(screen,"LJ calc: %.4f s.\n",times[4]/replica_size);
}
fprintf(screen,"GPU Overhead: %.4f s.\n",times[6]/replica_size);
fprintf(screen,"Average split: %.4f.\n",avg_split);
fprintf(screen,"Max Mem / Proc: %.2f MB.\n",max_mb);
fprintf(screen,"CPU Driver_Time: %.4f s.\n",times[7]/replica_size);
fprintf(screen,"CPU Idle_Time: %.4f s.\n",times[8]/replica_size);
fprintf(screen,"-------------------------------------");
fprintf(screen,"--------------------------------\n\n");
fprintf(screen,"Average split: %.4f.\n",avg_split);
fprintf(screen,"Max Mem / Proc: %.2f MB.\n",max_mb);
}
_max_bytes=0.0;
dev_error.clear();
lj1.clear();
lj3.clear();
sigma_epsilon.clear();
cut_form.clear();
shape.clear();
well.clear();
lshape.clear();
gamma_upsilon_mu.clear();
host_olist.clear();
time_kernel.clear();
time_gayberne.clear();
time_kernel2.clear();
time_gayberne2.clear();
time_pair.clear();
hd_balancer.clear();
if (_compiled) {
k_gb_nbor_fast.clear();
k_gb_nbor.clear();
k_gayberne.clear();
k_sphere_gb.clear();
k_lj_fast.clear();
k_lj.clear();
delete pair_program;
delete gb_program;
delete gb_lj_program;
_compiled=false;
}
device->clear();
}
template <class numtyp, class acctyp>
double GB_GPU_MemoryT::host_memory_usage() const {
return device->atom.host_memory_usage()+nbor->host_memory_usage()+
4*sizeof(numtyp)+sizeof(GB_GPU_Memory<numtyp,acctyp>)+
nbor->max_atoms()*sizeof(int);
}
template <class numtyp, class acctyp>
void GB_GPU_MemoryT::compile_kernels(UCL_Device &dev) {
if (_compiled)
return;
std::string flags="-cl-fast-relaxed-math -cl-mad-enable "+
std::string(OCL_PRECISION_COMPILE);
pair_program=new UCL_Program(dev);
pair_program->load_string(gb_gpu_kernel_nbor,flags.c_str());
k_gb_nbor_fast.set_function(*pair_program,"kernel_gb_nbor_fast");
k_gb_nbor.set_function(*pair_program,"kernel_gb_nbor");
gb_program=new UCL_Program(dev);
gb_program->load_string(gb_gpu_kernel,flags.c_str());
k_gayberne.set_function(*gb_program,"kernel_gayberne");
gb_lj_program=new UCL_Program(dev);
gb_lj_program->load_string(gb_gpu_kernel_lj,flags.c_str());
k_sphere_gb.set_function(*gb_lj_program,"kernel_sphere_gb");
k_lj_fast.set_function(*gb_lj_program,"kernel_lj_fast");
k_lj.set_function(*gb_lj_program,"kernel_lj");
_compiled=true;
}
template class GB_GPU_Memory<PRECISION,ACC_PRECISION>;