Files
lammps/src/KOKKOS/pair_gran_hooke_history_kokkos.cpp
2022-11-29 10:25:43 -07:00

586 lines
20 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "pair_gran_hooke_history_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "error.h"
#include "fix_neigh_history_kokkos.h"
#include "force.h"
#include "kokkos.h"
#include "memory_kokkos.h"
#include "modify.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "update.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
template<class DeviceType>
PairGranHookeHistoryKokkos<DeviceType>::PairGranHookeHistoryKokkos(LAMMPS *lmp) : PairGranHookeHistory(lmp)
{
kokkosable = 1;
atomKK = (AtomKokkos *) atom;
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
datamask_read = X_MASK | V_MASK | OMEGA_MASK | F_MASK | TORQUE_MASK | TYPE_MASK | MASK_MASK | ENERGY_MASK | VIRIAL_MASK | RMASS_MASK | RADIUS_MASK;
datamask_modify = F_MASK | TORQUE_MASK | ENERGY_MASK | VIRIAL_MASK;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
PairGranHookeHistoryKokkos<DeviceType>::~PairGranHookeHistoryKokkos()
{
if (copymode) return;
if (allocated) {
memoryKK->destroy_kokkos(k_eatom,eatom);
memoryKK->destroy_kokkos(k_vatom,vatom);
eatom = nullptr;
vatom = nullptr;
}
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
template<class DeviceType>
void PairGranHookeHistoryKokkos<DeviceType>::init_style()
{
// if history is stored and first init, create Fix to store history
// it replaces FixDummy, created in the constructor
// this is so its order in the fix list is preserved
if (history && fix_history == nullptr) {
auto cmd = std::string("NEIGH_HISTORY_HH") + std::to_string(instance_me) + " all ";
if (execution_space == Device)
cmd += "NEIGH_HISTORY/KK/DEVICE 3";
else
cmd += "NEIGH_HISTORY/KK/HOST 3";
fix_history = (FixNeighHistory *)
modify->replace_fix("NEIGH_HISTORY_HH_DUMMY"+std::to_string(instance_me),cmd,1);
fix_history->pair = this;
fix_historyKK = (FixNeighHistoryKokkos<DeviceType> *)fix_history;
}
PairGranHookeHistory::init_style();
// adjust neighbor list request for KOKKOS
neighflag = lmp->kokkos->neighflag;
auto request = neighbor->find_request(this);
request->set_kokkos_host(std::is_same<DeviceType,LMPHostType>::value &&
!std::is_same<DeviceType,LMPDeviceType>::value);
request->set_kokkos_device(std::is_same<DeviceType,LMPDeviceType>::value);
if (neighflag == FULL)
error->all(FLERR,"Must use half neighbor list with gran/hooke/history/kk");
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void PairGranHookeHistoryKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
{
copymode = 1;
eflag = eflag_in;
vflag = vflag_in;
if (neighflag == FULL) no_virial_fdotr_compute = 1;
ev_init(eflag,vflag,0);
int shearupdate = 1;
if (update->setupflag) shearupdate = 0;
// reallocate per-atom arrays if necessary
if (eflag_atom) {
memoryKK->destroy_kokkos(k_eatom,eatom);
memoryKK->create_kokkos(k_eatom,eatom,maxeatom,"pair:eatom");
d_eatom = k_eatom.view<DeviceType>();
}
if (vflag_atom) {
memoryKK->destroy_kokkos(k_vatom,vatom);
memoryKK->create_kokkos(k_vatom,vatom,maxvatom,"pair:vatom");
d_vatom = k_vatom.view<DeviceType>();
}
atomKK->sync(execution_space,datamask_read);
if (eflag || vflag) atomKK->modified(execution_space,datamask_modify);
else atomKK->modified(execution_space,F_MASK | TORQUE_MASK);
x = atomKK->k_x.view<DeviceType>();
v = atomKK->k_v.view<DeviceType>();
omega = atomKK->k_omega.view<DeviceType>();
c_x = atomKK->k_x.view<DeviceType>();
f = atomKK->k_f.view<DeviceType>();
torque = atomKK->k_torque.view<DeviceType>();
type = atomKK->k_type.view<DeviceType>();
mask = atomKK->k_mask.view<DeviceType>();
rmass = atomKK->k_rmass.view<DeviceType>();
radius = atomKK->k_radius.view<DeviceType>();
nlocal = atom->nlocal;
nall = atom->nlocal + atom->nghost;
newton_pair = force->newton_pair;
special_lj[0] = force->special_lj[0];
special_lj[1] = force->special_lj[1];
special_lj[2] = force->special_lj[2];
special_lj[3] = force->special_lj[3];
int inum = list->inum;
NeighListKokkos<DeviceType>* k_list = static_cast<NeighListKokkos<DeviceType>*>(list);
d_numneigh = k_list->d_numneigh;
d_neighbors = k_list->d_neighbors;
d_ilist = k_list->d_ilist;
if (d_numneigh.extent(0) != d_numneigh_touch.extent(0))
d_numneigh_touch = typename AT::t_int_1d("pair:numneigh_touch",d_numneigh.extent(0));
if (d_neighbors.extent(0) != d_neighbors_touch.extent(0) ||
d_neighbors.extent(1) != d_neighbors_touch.extent(1))
d_neighbors_touch = typename AT::t_neighbors_2d("pair:neighbors_touch",d_neighbors.extent(0),d_neighbors.extent(1));
fix_historyKK->k_firstflag.template sync<DeviceType>();
fix_historyKK->k_firstvalue.template sync<DeviceType>();
d_firsttouch = fix_historyKK->k_firstflag.template view<DeviceType>();
d_firstshear = fix_historyKK->k_firstvalue.template view<DeviceType>();
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryReduce>(0,inum),*this);
EV_FLOAT ev;
if (neighflag == HALF) {
if (force->newton_pair) {
if (vflag_atom) {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,2,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,2,0>>(0,inum),*this);
}
} else if (vflag_global) {
if (shearupdate) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,1,1>>(0,inum),*this, ev);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,1,0>>(0,inum),*this, ev);
}
} else {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,0,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,1,0,0>>(0,inum),*this);
}
}
} else {
if (vflag_atom) {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,2,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,2,0>>(0,inum),*this);
}
} else if (vflag_global) {
if (shearupdate) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,1,1>>(0,inum),*this, ev);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,1,0>>(0,inum),*this, ev);
}
} else {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,0,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALF,0,0,0>>(0,inum),*this);
}
}
}
} else { // HALFTHREAD
if (force->newton_pair) {
if (vflag_atom) {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,2,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,2,0>>(0,inum),*this);
}
} else if (vflag_global) {
if (shearupdate) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,1,1>>(0,inum),*this, ev);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,1,0>>(0,inum),*this, ev);
}
} else {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,0,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,1,0,0>>(0,inum),*this);
}
}
} else {
if (vflag_atom) {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,2,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,2,0>>(0,inum),*this);
}
} else if (vflag_global) {
if (shearupdate) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,1,1>>(0,inum),*this, ev);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,1,0>>(0,inum),*this, ev);
}
} else {
if (shearupdate) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,0,1>>(0,inum),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairGranHookeHistoryCompute<HALFTHREAD,0,0,0>>(0,inum),*this);
}
}
}
}
if (eflag_atom) {
k_eatom.template modify<DeviceType>();
k_eatom.template sync<LMPHostType>();
}
if (vflag_global) {
virial[0] += ev.v[0];
virial[1] += ev.v[1];
virial[2] += ev.v[2];
virial[3] += ev.v[3];
virial[4] += ev.v[4];
virial[5] += ev.v[5];
}
if (vflag_atom) {
k_vatom.template modify<DeviceType>();
k_vatom.template sync<LMPHostType>();
}
if (vflag_fdotr) pair_virial_fdotr_compute(this);
copymode = 0;
}
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void PairGranHookeHistoryKokkos<DeviceType>::operator()(TagPairGranHookeHistoryReduce, const int ii) const {
const int i = d_ilist[ii];
const X_FLOAT xtmp = x(i,0);
const X_FLOAT ytmp = x(i,1);
const X_FLOAT ztmp = x(i,2);
const LMP_FLOAT irad = radius[i];
const int jnum = d_numneigh[i];
int count = 0;
for (int jj = 0; jj < jnum; jj++) {
const int j = d_neighbors(i,jj) & NEIGHMASK;
const X_FLOAT delx = xtmp - x(j,0);
const X_FLOAT dely = ytmp - x(j,1);
const X_FLOAT delz = ztmp - x(j,2);
const X_FLOAT rsq = delx*delx + dely*dely + delz*delz;
const LMP_FLOAT jrad = radius[j];
const LMP_FLOAT radsum = irad + jrad;
// check for touching neighbors
if (rsq >= radsum * radsum) {
d_firsttouch(i,jj) = 0;
d_firstshear(i,3*jj) = 0;
d_firstshear(i,3*jj+1) = 0;
d_firstshear(i,3*jj+2) = 0;
} else {
d_firsttouch(i,jj) = 1;
d_neighbors_touch(i,count++) = jj;
}
}
d_numneigh_touch[i] = count;
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG, int SHEARUPDATE>
KOKKOS_INLINE_FUNCTION
void PairGranHookeHistoryKokkos<DeviceType>::operator()(TagPairGranHookeHistoryCompute<NEIGHFLAG,NEWTON_PAIR,EVFLAG,SHEARUPDATE>, const int ii, EV_FLOAT &ev) const {
// The f and torque arrays are atomic for Half/Thread neighbor style
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_f = f;
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > a_torque = torque;
const int i = d_ilist[ii];
const X_FLOAT xtmp = x(i,0);
const X_FLOAT ytmp = x(i,1);
const X_FLOAT ztmp = x(i,2);
const LMP_FLOAT imass = rmass[i];
const LMP_FLOAT irad = radius[i];
const int jnum = d_numneigh_touch[i];
F_FLOAT fx_i = 0.0;
F_FLOAT fy_i = 0.0;
F_FLOAT fz_i = 0.0;
F_FLOAT torquex_i = 0.0;
F_FLOAT torquey_i = 0.0;
F_FLOAT torquez_i = 0.0;
for (int jj = 0; jj < jnum; jj++) {
const int m = d_neighbors_touch(i, jj);
const int j = d_neighbors(i, m) & NEIGHMASK;
const X_FLOAT delx = xtmp - x(j,0);
const X_FLOAT dely = ytmp - x(j,1);
const X_FLOAT delz = ztmp - x(j,2);
const X_FLOAT rsq = delx*delx + dely*dely + delz*delz;
const LMP_FLOAT jmass = rmass[j];
const LMP_FLOAT jrad = radius[j];
const LMP_FLOAT radsum = irad + jrad;
// check for touching neighbors
const LMP_FLOAT r = sqrt(rsq);
const LMP_FLOAT rinv = 1.0/r;
const LMP_FLOAT rsqinv = 1/rsq;
// relative translational velocity
V_FLOAT vr1 = v(i,0) - v(j,0);
V_FLOAT vr2 = v(i,1) - v(j,1);
V_FLOAT vr3 = v(i,2) - v(j,2);
// normal component
V_FLOAT vnnr = vr1*delx + vr2*dely + vr3*delz;
V_FLOAT vn1 = delx*vnnr * rsqinv;
V_FLOAT vn2 = dely*vnnr * rsqinv;
V_FLOAT vn3 = delz*vnnr * rsqinv;
// tangential component
V_FLOAT vt1 = vr1 - vn1;
V_FLOAT vt2 = vr2 - vn2;
V_FLOAT vt3 = vr3 - vn3;
// relative rotational velocity
V_FLOAT wr1 = (irad*omega(i,0) + jrad*omega(j,0)) * rinv;
V_FLOAT wr2 = (irad*omega(i,1) + jrad*omega(j,1)) * rinv;
V_FLOAT wr3 = (irad*omega(i,2) + jrad*omega(j,2)) * rinv;
LMP_FLOAT meff = imass*jmass / (imass+jmass);
if (mask[i] & freeze_group_bit) meff = jmass;
if (mask[j] & freeze_group_bit) meff = imass;
F_FLOAT damp = meff*gamman*vnnr*rsqinv;
F_FLOAT ccel = kn*(radsum-r)*rinv - damp;
if(limit_damping && (ccel < 0.0)) ccel = 0.0;
// relative velocities
V_FLOAT vtr1 = vt1 - (delz*wr2-dely*wr3);
V_FLOAT vtr2 = vt2 - (delx*wr3-delz*wr1);
V_FLOAT vtr3 = vt3 - (dely*wr1-delx*wr2);
V_FLOAT vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
vrel = sqrt(vrel);
// shear history effects
X_FLOAT shear1 = d_firstshear(i,3*m);
X_FLOAT shear2 = d_firstshear(i,3*m+1);
X_FLOAT shear3 = d_firstshear(i,3*m+2);
if (SHEARUPDATE) {
shear1 += vtr1*dt;
shear2 += vtr2*dt;
shear3 += vtr3*dt;
}
X_FLOAT shrmag = sqrt(shear1*shear1 + shear2*shear2 +
shear3*shear3);
// rotate shear displacements
X_FLOAT rsht = shear1*delx + shear2*dely + shear3*delz;
rsht *= rsqinv;
if (SHEARUPDATE) {
shear1 -= rsht*delx;
shear2 -= rsht*dely;
shear3 -= rsht*delz;
}
// tangential forces = shear + tangential velocity damping
F_FLOAT fs1 = - (kt*shear1 + meff*gammat*vtr1);
F_FLOAT fs2 = - (kt*shear2 + meff*gammat*vtr2);
F_FLOAT fs3 = - (kt*shear3 + meff*gammat*vtr3);
// rescale frictional displacements and forces if needed
F_FLOAT fs = sqrt(fs1*fs1 + fs2*fs2 + fs3*fs3);
F_FLOAT fn = xmu * fabs(ccel*r);
if (fs > fn) {
if (shrmag != 0.0) {
shear1 = (fn/fs) * (shear1 + meff*gammat*vtr1/kt) -
meff*gammat*vtr1/kt;
shear2 = (fn/fs) * (shear2 + meff*gammat*vtr2/kt) -
meff*gammat*vtr2/kt;
shear3 = (fn/fs) * (shear3 + meff*gammat*vtr3/kt) -
meff*gammat*vtr3/kt;
fs1 *= fn/fs;
fs2 *= fn/fs;
fs3 *= fn/fs;
} else fs1 = fs2 = fs3 = 0.0;
}
if (SHEARUPDATE) {
d_firstshear(i,3*m) = shear1;
d_firstshear(i,3*m+1) = shear2;
d_firstshear(i,3*m+2) = shear3;
}
// forces & torques
F_FLOAT fx = delx*ccel + fs1;
F_FLOAT fy = dely*ccel + fs2;
F_FLOAT fz = delz*ccel + fs3;
fx_i += fx;
fy_i += fy;
fz_i += fz;
F_FLOAT tor1 = rinv * (dely*fs3 - delz*fs2);
F_FLOAT tor2 = rinv * (delz*fs1 - delx*fs3);
F_FLOAT tor3 = rinv * (delx*fs2 - dely*fs1);
torquex_i -= irad*tor1;
torquey_i -= irad*tor2;
torquez_i -= irad*tor3;
if (NEWTON_PAIR || j < nlocal) {
a_f(j,0) -= fx;
a_f(j,1) -= fy;
a_f(j,2) -= fz;
a_torque(j,0) -= jrad*tor1;
a_torque(j,1) -= jrad*tor2;
a_torque(j,2) -= jrad*tor3;
}
if (EVFLAG == 2)
ev_tally_xyz_atom<NEIGHFLAG, NEWTON_PAIR>(ev, i, j, fx_i, fy_i, fz_i, delx, dely, delz);
if (EVFLAG == 1)
ev_tally_xyz<NEWTON_PAIR>(ev, i, j, fx_i, fy_i, fz_i, delx, dely, delz);
}
a_f(i,0) += fx_i;
a_f(i,1) += fy_i;
a_f(i,2) += fz_i;
a_torque(i,0) += torquex_i;
a_torque(i,1) += torquey_i;
a_torque(i,2) += torquez_i;
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG, int SHEARUPDATE>
KOKKOS_INLINE_FUNCTION
void PairGranHookeHistoryKokkos<DeviceType>::operator()(TagPairGranHookeHistoryCompute<NEIGHFLAG,NEWTON_PAIR,EVFLAG,SHEARUPDATE>, const int ii) const {
EV_FLOAT ev;
this->template operator()<NEIGHFLAG,NEWTON_PAIR,EVFLAG,SHEARUPDATE>(TagPairGranHookeHistoryCompute<NEIGHFLAG,NEWTON_PAIR,EVFLAG,SHEARUPDATE>(), ii, ev);
}
template<class DeviceType>
template<int NEWTON_PAIR>
KOKKOS_INLINE_FUNCTION
void PairGranHookeHistoryKokkos<DeviceType>::ev_tally_xyz(EV_FLOAT &ev, int i, int j,
F_FLOAT fx, F_FLOAT fy, F_FLOAT fz,
X_FLOAT delx, X_FLOAT dely, X_FLOAT delz) const
{
F_FLOAT v[6];
v[0] = delx*fx;
v[1] = dely*fy;
v[2] = delz*fz;
v[3] = delx*fy;
v[4] = delx*fz;
v[5] = dely*fz;
if (NEWTON_PAIR) {
ev.v[0] += v[0];
ev.v[1] += v[1];
ev.v[2] += v[2];
ev.v[3] += v[3];
ev.v[4] += v[4];
ev.v[5] += v[5];
} else {
if (i < nlocal) {
ev.v[0] += 0.5*v[0];
ev.v[1] += 0.5*v[1];
ev.v[2] += 0.5*v[2];
ev.v[3] += 0.5*v[3];
ev.v[4] += 0.5*v[4];
ev.v[5] += 0.5*v[5];
}
if (j < nlocal) {
ev.v[0] += 0.5*v[0];
ev.v[1] += 0.5*v[1];
ev.v[2] += 0.5*v[2];
ev.v[3] += 0.5*v[3];
ev.v[4] += 0.5*v[4];
ev.v[5] += 0.5*v[5];
}
}
}
template<class DeviceType>
template<int NEIGHFLAG, int NEWTON_PAIR>
KOKKOS_INLINE_FUNCTION
void PairGranHookeHistoryKokkos<DeviceType>::ev_tally_xyz_atom(EV_FLOAT & /*ev*/, int i, int j,
F_FLOAT fx, F_FLOAT fy, F_FLOAT fz,
X_FLOAT delx, X_FLOAT dely, X_FLOAT delz) const
{
Kokkos::View<F_FLOAT*[6], typename DAT::t_virial_array::array_layout,typename KKDevice<DeviceType>::value,Kokkos::MemoryTraits<AtomicF<NEIGHFLAG>::value> > v_vatom = k_vatom.view<DeviceType>();
F_FLOAT v[6];
v[0] = delx*fx;
v[1] = dely*fy;
v[2] = delz*fz;
v[3] = delx*fy;
v[4] = delx*fz;
v[5] = dely*fz;
if (NEWTON_PAIR || i < nlocal) {
v_vatom(i,0) += 0.5*v[0];
v_vatom(i,1) += 0.5*v[1];
v_vatom(i,2) += 0.5*v[2];
v_vatom(i,3) += 0.5*v[3];
v_vatom(i,4) += 0.5*v[4];
v_vatom(i,5) += 0.5*v[5];
}
if (NEWTON_PAIR || j < nlocal) {
v_vatom(j,0) += 0.5*v[0];
v_vatom(j,1) += 0.5*v[1];
v_vatom(j,2) += 0.5*v[2];
v_vatom(j,3) += 0.5*v[3];
v_vatom(j,4) += 0.5*v[4];
v_vatom(j,5) += 0.5*v[5];
}
}
namespace LAMMPS_NS {
template class PairGranHookeHistoryKokkos<LMPDeviceType>;
#ifdef LMP_KOKKOS_GPU
template class PairGranHookeHistoryKokkos<LMPHostType>;
#endif
}