289 lines
7.8 KiB
C++
289 lines
7.8 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Loukas D. Peristeras (Scienomics SARL)
|
|
[ based on angle_cosine_squared.cpp Naveen Michaud-Agrawal (Johns Hopkins U)]
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include "angle_fourier_simple.h"
|
|
#include "atom.h"
|
|
#include "neighbor.h"
|
|
#include "domain.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
#define SMALL 0.001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleFourierSimple::AngleFourierSimple(LAMMPS *lmp) : Angle(lmp)
|
|
{
|
|
k = NULL;
|
|
C = NULL;
|
|
N = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleFourierSimple::~AngleFourierSimple()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(k);
|
|
memory->destroy(C);
|
|
memory->destroy(N);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::compute(int eflag, int vflag)
|
|
{
|
|
int i1,i2,i3,n,type;
|
|
double delx1,dely1,delz1,delx2,dely2,delz2;
|
|
double eangle,f1[3],f3[3];
|
|
double term,sgn;
|
|
double rsq1,rsq2,r1,r2,c,cn,th,nth,a,a11,a12,a22;
|
|
|
|
eangle = 0.0;
|
|
if (eflag || vflag) ev_setup(eflag,vflag);
|
|
else evflag = 0;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int **anglelist = neighbor->anglelist;
|
|
int nanglelist = neighbor->nanglelist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
|
|
for (n = 0; n < nanglelist; n++) {
|
|
i1 = anglelist[n][0];
|
|
i2 = anglelist[n][1];
|
|
i3 = anglelist[n][2];
|
|
type = anglelist[n][3];
|
|
|
|
// 1st bond
|
|
|
|
delx1 = x[i1][0] - x[i2][0];
|
|
dely1 = x[i1][1] - x[i2][1];
|
|
delz1 = x[i1][2] - x[i2][2];
|
|
|
|
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
|
|
r1 = sqrt(rsq1);
|
|
|
|
// 2nd bond
|
|
|
|
delx2 = x[i3][0] - x[i2][0];
|
|
dely2 = x[i3][1] - x[i2][1];
|
|
delz2 = x[i3][2] - x[i2][2];
|
|
|
|
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
|
|
r2 = sqrt(rsq2);
|
|
|
|
// angle (cos and sin)
|
|
|
|
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
|
|
c /= r1*r2;
|
|
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
// force & energy
|
|
|
|
th = acos(c);
|
|
nth = N[type]*acos(c);
|
|
cn = cos(nth);
|
|
term = k[type]*(1.0+C[type]*cn);
|
|
|
|
if (eflag) eangle = term;
|
|
|
|
// handle sin(n th)/sin(th) singulatiries
|
|
|
|
if ( fabs(c)-1.0 > 0.0001 ) {
|
|
a = k[type]*C[type]*N[type]*sin(nth)/sin(th);
|
|
} else {
|
|
if ( c >= 0.0 ) {
|
|
term = 1.0 - c;
|
|
sgn = 1.0;
|
|
} else {
|
|
term = 1.0 + c;
|
|
sgn = ( fmodf((float)(N[type]),2.0) == 0.0f )?-1.0:1.0;
|
|
}
|
|
a = N[type]+N[type]*(1.0-N[type]*N[type])*term/3.0;
|
|
a = k[type]*C[type]*N[type]*(double)(sgn)*a;
|
|
}
|
|
|
|
a11 = a*c / rsq1;
|
|
a12 = -a / (r1*r2);
|
|
a22 = a*c / rsq2;
|
|
|
|
f1[0] = a11*delx1 + a12*delx2;
|
|
f1[1] = a11*dely1 + a12*dely2;
|
|
f1[2] = a11*delz1 + a12*delz2;
|
|
f3[0] = a22*delx2 + a12*delx1;
|
|
f3[1] = a22*dely2 + a12*dely1;
|
|
f3[2] = a22*delz2 + a12*delz1;
|
|
|
|
// apply force to each of 3 atoms
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] += f1[0];
|
|
f[i1][1] += f1[1];
|
|
f[i1][2] += f1[2];
|
|
}
|
|
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] -= f1[0] + f3[0];
|
|
f[i2][1] -= f1[1] + f3[1];
|
|
f[i2][2] -= f1[2] + f3[2];
|
|
}
|
|
|
|
if (newton_bond || i3 < nlocal) {
|
|
f[i3][0] += f3[0];
|
|
f[i3][1] += f3[1];
|
|
f[i3][2] += f3[2];
|
|
}
|
|
|
|
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
|
|
delx1,dely1,delz1,delx2,dely2,delz2);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->nangletypes;
|
|
|
|
memory->create(k,n+1,"angle:k");
|
|
memory->create(C,n+1,"angle:C");
|
|
memory->create(N,n+1,"angle:N");
|
|
|
|
memory->create(setflag,n+1,"angle:setflag");
|
|
for (int i = 1; i <= n; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 4) error->all(FLERR,"Incorrect args for angle coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi;
|
|
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
|
|
|
|
double k_one = force->numeric(FLERR,arg[1]);
|
|
double C_one = force->numeric(FLERR,arg[2]);
|
|
double N_one = force->numeric(FLERR,arg[3]);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
k[i] = k_one;
|
|
C[i] = C_one;
|
|
N[i] = N_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleFourierSimple::equilibrium_angle(int i)
|
|
{
|
|
return (MY_PI/N[i]);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&C[1],sizeof(double),atom->nangletypes,fp);
|
|
fwrite(&N[1],sizeof(double),atom->nangletypes,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
fread(&k[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&C[1],sizeof(double),atom->nangletypes,fp);
|
|
fread(&N[1],sizeof(double),atom->nangletypes,fp);
|
|
}
|
|
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&C[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&N[1],atom->nangletypes,MPI_DOUBLE,0,world);
|
|
|
|
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleFourierSimple::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->nangletypes; i++)
|
|
fprintf(fp,"%d %g %g %g\n",i,k[i],C[i],N[i]);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleFourierSimple::single(int type, int i1, int i2, int i3)
|
|
{
|
|
double **x = atom->x;
|
|
|
|
double delx1 = x[i1][0] - x[i2][0];
|
|
double dely1 = x[i1][1] - x[i2][1];
|
|
double delz1 = x[i1][2] - x[i2][2];
|
|
domain->minimum_image(delx1,dely1,delz1);
|
|
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
|
|
|
|
double delx2 = x[i3][0] - x[i2][0];
|
|
double dely2 = x[i3][1] - x[i2][1];
|
|
double delz2 = x[i3][2] - x[i2][2];
|
|
domain->minimum_image(delx2,dely2,delz2);
|
|
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
|
|
|
|
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
|
|
c /= r1*r2;
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
double cn = cos(N[type]*acos(c));
|
|
|
|
double eng = k[type]*(1.0+C[type]*cn);
|
|
return eng;
|
|
}
|