Files
lammps/src/SPIN/fix_precession_spin.cpp
2022-10-24 11:08:26 -04:00

634 lines
18 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Julien Tranchida (SNL)
Aidan Thompson (SNL)
Please cite the related publication:
Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018).
Massively parallel symplectic algorithm for coupled magnetic spin dynamics
and molecular dynamics. Journal of Computational Physics.
------------------------------------------------------------------------- */
#include "fix_precession_spin.h"
#include <cmath>
#include <cstring>
#include "atom.h"
#include "error.h"
#include "force.h"
#include "input.h"
#include "math_const.h"
#include "memory.h"
#include "modify.h"
#include "respa.h"
#include "update.h"
#include "variable.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
enum{CONSTANT,EQUAL};
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::FixPrecessionSpin(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), emag(nullptr)
{
if (narg < 7) error->all(FLERR,"Illegal precession/spin command");
// magnetic interactions coded for cartesian coordinates
hbar = force->hplanck/MY_2PI;
dynamic_group_allow = 1;
scalar_flag = 1;
global_freq = 1;
extscalar = 1;
energy_global_flag = 1;
respa_level_support = 1;
ilevel_respa = 0;
magstr = nullptr;
magfieldstyle = CONSTANT;
H_field = 0.0;
nhx = nhy = nhz = 0.0;
hx = hy = hz = 0.0;
stt_field = 0.0;
nsttx = nstty = nsttz = 0.0;
sttx = stty = sttz = 0.0;
Ka = 0.0;
nax = nay = naz = 0.0;
Kax = Kay = Kaz = 0.0;
k1c = k2c = 0.0;
nc1x = nc1y = nc1z = 0.0;
nc2x = nc2y = nc2z = 0.0;
nc3x = nc3y = nc3z = 0.0;
K6 = 0.0;
n6x = n6y = n6z = 0.0;
m6x = m6y = m6z = 0.0;
zeeman_flag = stt_flag = aniso_flag = cubic_flag = hexaniso_flag = 0;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"zeeman") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
zeeman_flag = 1;
H_field = utils::numeric(FLERR,arg[iarg+1],false,lmp);
nhx = utils::numeric(FLERR,arg[iarg+2],false,lmp);
nhy = utils::numeric(FLERR,arg[iarg+3],false,lmp);
nhz = utils::numeric(FLERR,arg[iarg+4],false,lmp);
iarg += 5;
} else if (strcmp(arg[iarg],"stt") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
stt_flag = 1;
stt_field = utils::numeric(FLERR,arg[iarg+1],false,lmp);
nsttx = utils::numeric(FLERR,arg[iarg+2],false,lmp);
nstty = utils::numeric(FLERR,arg[iarg+3],false,lmp);
nsttz = utils::numeric(FLERR,arg[iarg+4],false,lmp);
iarg += 5;
} else if (strcmp(arg[iarg],"anisotropy") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
aniso_flag = 1;
Ka = utils::numeric(FLERR,arg[iarg+1],false,lmp);
nax = utils::numeric(FLERR,arg[iarg+2],false,lmp);
nay = utils::numeric(FLERR,arg[iarg+3],false,lmp);
naz = utils::numeric(FLERR,arg[iarg+4],false,lmp);
iarg += 5;
} else if (strcmp(arg[iarg],"cubic") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix precession/spin command");
cubic_flag = 1;
k1c = utils::numeric(FLERR,arg[iarg+1],false,lmp);
k2c = utils::numeric(FLERR,arg[iarg+2],false,lmp);
nc1x = utils::numeric(FLERR,arg[iarg+3],false,lmp);
nc1y = utils::numeric(FLERR,arg[iarg+4],false,lmp);
nc1z = utils::numeric(FLERR,arg[iarg+5],false,lmp);
nc2x = utils::numeric(FLERR,arg[iarg+6],false,lmp);
nc2y = utils::numeric(FLERR,arg[iarg+7],false,lmp);
nc2z = utils::numeric(FLERR,arg[iarg+8],false,lmp);
nc3x = utils::numeric(FLERR,arg[iarg+9],false,lmp);
nc3y = utils::numeric(FLERR,arg[iarg+10],false,lmp);
nc3z = utils::numeric(FLERR,arg[iarg+11],false,lmp);
iarg += 12;
} else if (strcmp(arg[iarg],"hexaniso") == 0) {
if (iarg+7 > narg) error->all(FLERR,"Illegal fix precession/spin command");
hexaniso_flag = 1;
K6 = utils::numeric(FLERR,arg[iarg+1],false,lmp);
n6x = utils::numeric(FLERR,arg[iarg+2],false,lmp);
n6y = utils::numeric(FLERR,arg[iarg+3],false,lmp);
n6z = utils::numeric(FLERR,arg[iarg+4],false,lmp);
m6x = utils::numeric(FLERR,arg[iarg+5],false,lmp);
m6y = utils::numeric(FLERR,arg[iarg+6],false,lmp);
m6z = utils::numeric(FLERR,arg[iarg+7],false,lmp);
iarg += 8;
} else error->all(FLERR,"Illegal precession/spin command");
}
// normalize vectors
double norm2,inorm;
if (zeeman_flag) {
norm2 = nhx*nhx + nhy*nhy + nhz*nhz;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nhx *= inorm;
nhy *= inorm;
nhz *= inorm;
}
if (stt_flag) {
norm2 = nsttx*nsttx + nstty*nstty + nsttz*nsttz;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nsttx *= inorm;
nstty *= inorm;
nsttz *= inorm;
}
if (aniso_flag) {
norm2 = nax*nax + nay*nay + naz*naz;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nax *= inorm;
nay *= inorm;
naz *= inorm;
}
if (cubic_flag) {
norm2 = nc1x*nc1x + nc1y*nc1y + nc1z*nc1z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nc1x *= inorm;
nc1y *= inorm;
nc1z *= inorm;
norm2 = nc2x*nc2x + nc2y*nc2y + nc2z*nc2z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nc2x *= inorm;
nc2y *= inorm;
nc2z *= inorm;
norm2 = nc3x*nc3x + nc3y*nc3y + nc3z*nc3z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
nc3x *= inorm;
nc3y *= inorm;
nc3z *= inorm;
}
if (hexaniso_flag) {
norm2 = n6x*n6x + n6y*n6y + n6z*n6z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
n6x *= inorm;
n6y *= inorm;
n6z *= inorm;
norm2 = m6x*m6x + m6y*m6y + m6z*m6z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
m6x *= inorm;
m6y *= inorm;
m6z *= inorm;
l6x = (n6z*m6y-n6y*m6z);
l6y = (n6x*m6z-n6z*m6x);
l6z = (n6y*m6x-n6x*m6y);
norm2 = l6x*l6x + l6y*l6y + l6z*l6z;
if (norm2 == 0.0)
error->all(FLERR,"Illegal precession/spin command");
inorm = 1.0/sqrt(norm2);
l6x *= inorm;
l6y *= inorm;
l6z *= inorm;
m6x = (l6z*n6y-l6y*n6z);
m6y = (l6x*n6z-l6z*n6x);
m6z = (l6y*n6x-l6x*n6y);
}
degree2rad = MY_PI/180.0;
time_origin = update->ntimestep;
eflag = 0;
eprec = 0.0;
}
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::~FixPrecessionSpin()
{
delete [] magstr;
memory->destroy(emag);
}
/* ---------------------------------------------------------------------- */
int FixPrecessionSpin::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= MIN_POST_FORCE;
mask |= POST_FORCE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::init()
{
const double hbar = force->hplanck/MY_2PI; // eV/(rad.THz)
const double mub = 5.78901e-5; // in eV/T
const double gyro = 2.0*mub/hbar; // in rad.THz/T
// convert field quantities to rad.THz
H_field *= gyro;
Kah = Ka/hbar;
k1ch = k1c/hbar;
k2ch = k2c/hbar;
K6h = K6/hbar;
if (utils::strmatch(update->integrate_style,"^respa")) {
ilevel_respa = (dynamic_cast<Respa *>(update->integrate))->nlevels-1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level,ilevel_respa);
}
if (magstr) {
magvar = input->variable->find(magstr);
if (magvar < 0)
error->all(FLERR,"Illegal precession/spin command");
if (!input->variable->equalstyle(magvar))
error->all(FLERR,"Illegal precession/spin command");
}
varflag = CONSTANT;
if (magfieldstyle != CONSTANT) varflag = EQUAL;
// set magnetic field components
if (varflag == CONSTANT) set_magneticprecession();
// init. size of energy stacking lists
nlocal_max = atom->nlocal;
memory->grow(emag,nlocal_max,"pair/spin:emag");
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::setup(int vflag)
{
if (utils::strmatch(update->integrate_style,"^verlet"))
post_force(vflag);
else {
(dynamic_cast<Respa *>(update->integrate))->copy_flevel_f(ilevel_respa);
post_force_respa(vflag,ilevel_respa,0);
(dynamic_cast<Respa *>(update->integrate))->copy_f_flevel(ilevel_respa);
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::min_setup(int vflag)
{
post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force(int /* vflag */)
{
// update mag field with time (potential improvement)
if (varflag != CONSTANT) {
modify->clearstep_compute();
modify->addstep_compute(update->ntimestep + 1);
set_magneticprecession(); // update mag. field if time-dep.
}
int *mask = atom->mask;
double **fm = atom->fm;
double **sp = atom->sp;
const int nlocal = atom->nlocal;
double spi[4], fmi[3], epreci;
// checking size of emag
if (nlocal_max < nlocal) { // grow emag lists if necessary
nlocal_max = nlocal;
memory->grow(emag,nlocal_max,"pair/spin:emag");
}
eflag = 0;
eprec = 0.0;
for (int i = 0; i < nlocal; i++) {
emag[i] = 0.0;
if (mask[i] & groupbit) {
epreci = 0.0;
spi[0] = sp[i][0];
spi[1] = sp[i][1];
spi[2] = sp[i][2];
spi[3] = sp[i][3];
fmi[0] = fmi[1] = fmi[2] = 0.0;
if (zeeman_flag) { // compute Zeeman interaction
compute_zeeman(i,fmi);
epreci -= compute_zeeman_energy(spi);
}
if (stt_flag) { // compute Spin Transfer Torque
compute_stt(spi,fmi);
epreci -= compute_stt_energy(spi);
}
if (aniso_flag) { // compute magnetic anisotropy
compute_anisotropy(spi,fmi);
epreci -= compute_anisotropy_energy(spi);
}
if (cubic_flag) { // compute cubic anisotropy
compute_cubic(spi,fmi);
epreci -= compute_cubic_energy(spi);
}
if (hexaniso_flag) { // compute hexagonal anisotropy
compute_hexaniso(spi,fmi);
epreci -= compute_hexaniso_energy(spi);
}
emag[i] += epreci;
eprec += epreci;
fm[i][0] += fmi[0];
fm[i][1] += fmi[1];
fm[i][2] += fmi[2];
}
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_single_precession(int i, double spi[3], double fmi[3])
{
int *mask = atom->mask;
if (mask[i] & groupbit) {
if (zeeman_flag) compute_zeeman(i,fmi);
if (stt_flag) compute_stt(spi,fmi);
if (aniso_flag) compute_anisotropy(spi,fmi);
if (cubic_flag) compute_cubic(spi,fmi);
if (hexaniso_flag) compute_hexaniso(spi,fmi);
}
}
/* ----------------------------------------------------------------------
Zeeman
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_zeeman(int i, double fmi[3])
{
double **sp = atom->sp;
fmi[0] += sp[i][3]*hx;
fmi[1] += sp[i][3]*hy;
fmi[2] += sp[i][3]*hz;
}
/* ---------------------------------------------------------------------- */
double FixPrecessionSpin::compute_zeeman_energy(double spi[4])
{
double energy = 0.0;
double scalar = nhx*spi[0]+nhy*spi[1]+nhz*spi[2];
energy = hbar*H_field*spi[3]*scalar;
return energy;
}
/* ----------------------------------------------------------------------
STT
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_stt(double spi[3], double fmi[3])
{
double sx = spi[0];
double sy = spi[1];
double sz = spi[2];
fmi[0] += 1.0*stt_field*( sy*nsttz-sz*nstty);
fmi[1] += 1.0*stt_field*(-sx*nsttz+sz*nsttx);
fmi[2] += 1.0*stt_field*( sx*nstty-sy*nsttx);
}
/* ---------------------------------------------------------------------- */
double FixPrecessionSpin::compute_stt_energy(double * /* spi */)
{
double energy = 0.0; // Non-conservative force
return energy;
}
/* ----------------------------------------------------------------------
compute uniaxial anisotropy interaction for spin i
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_anisotropy(double spi[3], double fmi[3])
{
double scalar = nax*spi[0] + nay*spi[1] + naz*spi[2];
fmi[0] += scalar*Kax;
fmi[1] += scalar*Kay;
fmi[2] += scalar*Kaz;
}
/* ---------------------------------------------------------------------- */
double FixPrecessionSpin::compute_anisotropy_energy(double spi[3])
{
double energy = 0.0;
double scalar = nax*spi[0] + nay*spi[1] + naz*spi[2];
energy = Ka*scalar*scalar;
return energy;
}
/* ----------------------------------------------------------------------
compute cubic anisotropy interaction for spin i
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_cubic(double spi[3], double fmi[3])
{
double skx,sky,skz,skx2,sky2,skz2;
double four1,four2,four3,fourx,foury,fourz;
double six1,six2,six3,sixx,sixy,sixz;
skx = spi[0]*nc1x+spi[1]*nc1y+spi[2]*nc1z;
sky = spi[0]*nc2x+spi[1]*nc2y+spi[2]*nc2z;
skz = spi[0]*nc3x+spi[1]*nc3y+spi[2]*nc3z;
skx2 = skx*skx;
sky2 = sky*sky;
skz2 = skz*skz;
four1 = 2.0*skx*(sky2+skz2);
four2 = 2.0*sky*(skx2+skz2);
four3 = 2.0*skz*(skx2+sky2);
fourx = k1ch*(nc1x*four1 + nc2x*four2 + nc3x*four3);
foury = k1ch*(nc1y*four1 + nc2y*four2 + nc3y*four3);
fourz = k1ch*(nc1z*four1 + nc2z*four2 + nc3z*four3);
six1 = 2.0*skx*sky2*skz2;
six2 = 2.0*sky*skx2*skz2;
six3 = 2.0*skz*skx2*sky2;
sixx = k2ch*(nc1x*six1 + nc2x*six2 + nc3x*six3);
sixy = k2ch*(nc1y*six1 + nc2y*six2 + nc3y*six3);
sixz = k2ch*(nc1z*six1 + nc2z*six2 + nc3z*six3);
fmi[0] += (fourx + sixx);
fmi[1] += (foury + sixy);
fmi[2] += (fourz + sixz);
}
/* ---------------------------------------------------------------------- */
double FixPrecessionSpin::compute_cubic_energy(double spi[3])
{
double energy = 0.0;
double skx,sky,skz;
skx = spi[0]*nc1x+spi[1]*nc1y+spi[2]*nc1z;
sky = spi[0]*nc2x+spi[1]*nc2y+spi[2]*nc2z;
skz = spi[0]*nc3x+spi[1]*nc3y+spi[2]*nc3z;
energy = k1c*(skx*skx*sky*sky + sky*sky*skz*skz + skx*skx*skz*skz);
energy += k2c*skx*skx*sky*sky*skz*skz;
return energy;
}
/* ----------------------------------------------------------------------
compute hexagonal anisotropy interaction for spin i
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_hexaniso(double spi[3], double fmi[3])
{
double s_x,s_y;
double pf, phi, ssint2;
// changing to the axes' frame
s_x = l6x*spi[0]+l6y*spi[1]+l6z*spi[2];
s_y = m6x*spi[0]+m6y*spi[1]+m6z*spi[2];
// hexagonal anisotropy in the axes' frame
phi = atan2(s_y,s_x);
ssint2 = s_x*s_x + s_y*s_y; // s^2sin^2(theta)
pf = 6.0 * K6h * ssint2*ssint2*sqrt(ssint2); // 6*K_6*s^5*sin^5(theta)
double fm_x = pf*cos(5*phi);
double fm_y = -pf*sin(5*phi);
double fm_z = 0;
// back to the lab's frame
fmi[0] += fm_x*l6x+fm_y*m6x+fm_z*n6x;
fmi[1] += fm_x*l6y+fm_y*m6y+fm_z*n6y;
fmi[2] += fm_x*l6z+fm_y*m6z+fm_z*n6z;
}
/* ----------------------------------------------------------------------
compute hexagonal aniso energy of spin i
------------------------------------------------------------------------- */
double FixPrecessionSpin::compute_hexaniso_energy(double spi[3])
{
double energy = 0.0;
double s_x,s_y,s_z, phi,ssint2;
// changing to the axes' frame
s_x = l6x*spi[0]+l6y*spi[1]+l6z*spi[2];
s_y = m6x*spi[0]+m6y*spi[1]+m6z*spi[2];
s_z = n6x*spi[0]+n6y*spi[1]+n6z*spi[2];
// hexagonal anisotropy in the axes' frame
phi = atan2(s_y,s_z);
ssint2 = s_x*s_x + s_y*s_y;
energy = K6 * ssint2*ssint2*ssint2*cos(6*phi);
return 2.0*energy;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::set_magneticprecession()
{
if (zeeman_flag) {
hx = H_field*nhx;
hy = H_field*nhy;
hz = H_field*nhz;
}
if (stt_flag) {
sttx = stt_field*nsttx;
stty = stt_field*nstty;
sttz = stt_field*nsttz;
}
if (aniso_flag) {
Kax = 2.0*Kah*nax;
Kay = 2.0*Kah*nay;
Kaz = 2.0*Kah*naz;
}
}
/* ----------------------------------------------------------------------
potential energy in magnetic field
------------------------------------------------------------------------- */
double FixPrecessionSpin::compute_scalar()
{
// only sum across procs one time
if (eflag == 0) {
MPI_Allreduce(&eprec,&eprec_all,1,MPI_DOUBLE,MPI_SUM,world);
eflag = 1;
}
return eprec_all;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::min_post_force(int vflag)
{
post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}