Files
lammps/lib/colvars/colvarcomp.h
Giacomo Fiorin 1220bea011 Update Colvars to version 2022-05-09
This update includes one new feature (neural-network based collective
variables), several small enhancements (including an automatic definition of
grid boundaries for angle-based CVs, and a normalization option for
eigenvector-based CVs), bugfixes and documentation improvements.

Usage information for specific features included in the Colvars library
(i.e. not just the library as a whole) is now also reported to the screen or
LAMMPS logfile (as is done already in other LAMMPS classes).

Notable to LAMMPS code development are the removals of duplicated code and of
ambiguously-named preprocessor defines in the Colvars headers.  Since the
last PR, the existing regression tests have also been running automatically
via GitHub Actions.

The following pull requests in the Colvars repository are relevant to LAMMPS:

- 475 Remove fatal error condition
  https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin)

- 474 Allow normalizing eigenvector vector components to deal with unit change
  https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin)

- 470 Better error handling in the initialization of NeuralNetwork CV
  https://github.com/Colvars/colvars/pull/470 (@HanatoK)

- 468 Add examples of histogram configuration, with and without explicit grid parameters
  https://github.com/Colvars/colvars/pull/468 (@giacomofiorin)

- 464 Fix #463 using more fine-grained features
  https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin)

- 447 [RFC] New option "scaledBiasingForce" for colvarbias
  https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin)

- 444 [RFC] Implementation of dense neural network as CV
  https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin)

- 443 Fix explicit gradient dependency of sub-CVs
  https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin)

- 442 Persistent bias count
  https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin)

- 437 Return type of bias from scripting interface
  https://github.com/Colvars/colvars/pull/437 (@giacomofiorin)

- 434 More flexible use of boundaries from colvars by grids
  https://github.com/Colvars/colvars/pull/434 (@jhenin)

- 433 Prevent double-free in linearCombination
  https://github.com/Colvars/colvars/pull/433 (@HanatoK)

- 428 More complete documentation for index file format (NDX)
  https://github.com/Colvars/colvars/pull/428 (@giacomofiorin)

- 426 Integrate functional version of backup_file() into base proxy class
  https://github.com/Colvars/colvars/pull/426 (@giacomofiorin)

- 424 Track CVC inheritance when documenting feature usage
  https://github.com/Colvars/colvars/pull/424 (@giacomofiorin)

- 419 Generate citation report while running computations
  https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin)

- 415 Rebin metadynamics bias from explicit hills when available
  https://github.com/Colvars/colvars/pull/415 (@giacomofiorin)

- 312 Ignore a keyword if it has content to the left of it (regardless of braces)
  https://github.com/Colvars/colvars/pull/312 (@giacomofiorin)

Authors: @giacomofiorin, @HanatoK, @jhenin
2022-05-10 11:24:54 -04:00

1907 lines
62 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#ifndef COLVARCOMP_H
#define COLVARCOMP_H
// Declaration of colvar::cvc base class and derived ones.
//
// Future cvc's could be declared on additional header files.
// After the declaration of a new derived class, its metric
// functions must be reimplemented as well.
// If the new cvc has no symmetry or periodicity,
// this can be done straightforwardly by using the macro:
// simple_scalar_dist_functions (derived_class)
#include "colvarmodule.h"
#include "colvar.h"
#include "colvaratoms.h"
#include "colvar_arithmeticpath.h"
#if (__cplusplus >= 201103L)
// C++11-only functions
#include "colvar_geometricpath.h"
#include <memory>
#include <functional>
#endif
#include <map>
/// \brief Colvar component (base class for collective variables)
///
/// A \link colvar::cvc \endlink object (or an object of a
/// cvc-derived class) implements the calculation of a collective
/// variable, its gradients and any other related physical quantities
/// that depend on microscopic degrees of freedom.
///
/// No restriction is set to what kind of calculation a \link colvar::cvc \endlink
/// object performs (usually an analytical function of atomic coordinates).
/// The only constraints are that: \par
///
/// - The value is calculated by the \link calc_value() \endlink
/// method, and is an object of \link colvarvalue \endlink class. This
/// provides a transparent way to treat scalar and non-scalar variables
/// alike, and allows an automatic selection of the applicable algorithms.
///
/// - The object provides an implementation \link apply_force() \endlink to
/// apply forces to atoms. Typically, one or more \link colvarmodule::atom_group
/// \endlink objects are used, but this is not a requirement for as long as
/// the \link colvar::cvc \endlink object communicates with the simulation program.
///
/// <b> If you wish to implement a new collective variable component, you
/// should write your own class by inheriting directly from \link
/// colvar::cvc \endlink, or one of its derived classes (for instance,
/// \link colvar::distance \endlink is frequently used, because it provides
/// useful data and function members for any colvar based on two
/// atom groups).</b>
///
/// The steps are: \par
/// 1. Declare the new class as a derivative of \link colvar::cvc \endlink
/// in the file \link colvarcomp.h \endlink
/// 2. Implement the new class in a file named colvarcomp_<something>.cpp
/// 3. Declare the name of the new class inside the \link colvar \endlink class
/// in \link colvar.h \endlink (see "list of available components")
/// 4. Add a call for the new class in colvar::init_components()
//// (file: colvar.cpp)
///
class colvar::cvc
: public colvarparse, public colvardeps
{
public:
/// \brief The name of the object (helps to identify this
/// cvc instance when debugging)
std::string name;
/// \brief Description of the type of collective variable
///
/// Normally this string is set by the parent \link colvar \endlink
/// object within its constructor, when all \link colvar::cvc \endlink
/// objects are initialized; therefore the main "config string"
/// constructor does not need to define it. If a \link colvar::cvc
/// \endlink is initialized and/or a different constructor is used,
/// this variable definition should be set within the constructor.
std::string function_type;
/// Keyword used in the input to denote this CVC
std::string config_key;
/// \brief Coefficient in the polynomial combination (default: 1.0)
cvm::real sup_coeff;
/// \brief Exponent in the polynomial combination (default: 1)
int sup_np;
/// \brief Period of the values of this CVC (default: 0.0, non periodic)
cvm::real period;
/// \brief If the component is periodic, wrap around this value (default: 0.0)
cvm::real wrap_center;
/// \brief Constructor
///
/// Calls the init() function of the class
cvc(std::string const &conf);
/// Set the value of \link function_type \endlink and its dependencies
int set_function_type(std::string const &type);
/// An init function should be defined for every class inheriting from cvc
/// \param conf Contents of the configuration file pertaining to this \link
/// cvc \endlink
virtual int init(std::string const &conf);
/// \brief Initialize dependency tree
virtual int init_dependencies();
/// \brief Within the constructor, make a group parse its own
/// options from the provided configuration string
/// Returns reference to new group
cvm::atom_group *parse_group(std::string const &conf,
char const *group_key,
bool optional = false);
/// \brief Parse options pertaining to total force calculation
virtual int init_total_force_params(std::string const &conf);
/// \brief After construction, set data related to dependency handling
int setup();
/// \brief Default constructor (used when \link colvar::cvc \endlink
/// objects are declared within other ones)
cvc();
/// Destructor
virtual ~cvc();
/// \brief Implementation of the feature list for colvar
static std::vector<feature *> cvc_features;
/// \brief Implementation of the feature list accessor for colvar
virtual const std::vector<feature *> &features() const
{
return cvc_features;
}
virtual std::vector<feature *> &modify_features()
{
return cvc_features;
}
static void delete_features() {
for (size_t i=0; i < cvc_features.size(); i++) {
delete cvc_features[i];
}
cvc_features.clear();
}
/// \brief Get vector of vectors of atom IDs for all atom groups
virtual std::vector<std::vector<int> > get_atom_lists();
/// \brief Obtain data needed for the calculation for the backend
virtual void read_data();
/// \brief Calculate the variable
virtual void calc_value() = 0;
/// \brief Calculate the atomic gradients, to be reused later in
/// order to apply forces
virtual void calc_gradients() {}
/// \brief Calculate the atomic fit gradients
void calc_fit_gradients();
/// \brief Calculate finite-difference gradients alongside the analytical ones, for each Cartesian component
virtual void debug_gradients();
/// \brief Calculate atomic gradients and add them to the corresponding item in gradient vector
/// May be overridden by CVCs that do not store their gradients in the classic way, see dihedPC
virtual void collect_gradients(std::vector<int> const &atom_ids, std::vector<cvm::rvector> &atomic_gradients);
/// \brief Calculate the total force from the system using the
/// inverse atomic gradients
virtual void calc_force_invgrads();
/// \brief Calculate the divergence of the inverse atomic gradients
virtual void calc_Jacobian_derivative();
/// \brief Return the previously calculated value
colvarvalue const & value() const;
/// \brief Return the previously calculated total force
colvarvalue const & total_force() const;
/// \brief Return the previously calculated divergence of the
/// inverse atomic gradients
colvarvalue const & Jacobian_derivative() const;
/// \brief Apply the collective variable force, by communicating the
/// atomic forces to the simulation program (\b Note: the \link ft
/// \endlink member is not altered by this function)
///
/// Note: multiple calls to this function within the same simulation
/// step will add the forces altogether \param cvforce The
/// collective variable force, usually coming from the biases and
/// eventually manipulated by the parent \link colvar \endlink
/// object
virtual void apply_force(colvarvalue const &cvforce) = 0;
/// \brief Square distance between x1 and x2 (can be redefined to
/// transparently implement constraints, symmetries and
/// periodicities)
///
/// colvar::cvc::dist2() and the related functions are
/// declared as "const" functions, but not "static", because
/// additional parameters defining the metrics (e.g. the
/// periodicity) may be specific to each colvar::cvc object.
///
/// If symmetries or periodicities are present, the
/// colvar::cvc::dist2() should be redefined to return the
/// "closest distance" value and colvar::cvc::dist2_lgrad(),
/// colvar::cvc::dist2_rgrad() to return its gradients.
///
/// If constraints are present (and not already implemented by any
/// of the \link colvarvalue \endlink types), the
/// colvar::cvc::dist2_lgrad() and
/// colvar::cvc::dist2_rgrad() functions should be redefined
/// to provide a gradient which is compatible with the constraint,
/// i.e. already deprived of its component normal to the constraint
/// hypersurface.
///
/// Finally, another useful application, if you are performing very
/// many operations with these functions, could be to override the
/// \link colvarvalue \endlink member functions and access directly
/// its member data. For instance: to define dist2(x1,x2) as
/// (x2.real_value-x1.real_value)*(x2.real_value-x1.real_value) in
/// case of a scalar \link colvarvalue \endlink type.
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// \brief Gradient(with respect to x1) of the square distance (can
/// be redefined to transparently implement constraints, symmetries
/// and periodicities)
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// \brief Gradient(with respect to x2) of the square distance (can
/// be redefined to transparently implement constraints, symmetries
/// and periodicities)
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// \brief Wrap value (for periodic/symmetric cvcs)
virtual void wrap(colvarvalue &x_unwrapped) const;
/// \brief Pointers to all atom groups, to let colvars collect info
/// e.g. atomic gradients
std::vector<cvm::atom_group *> atom_groups;
/// \brief Store a pointer to new atom group, and list as child for dependencies
void register_atom_group(cvm::atom_group *ag);
/// Pointer to the gradient of parameter param_name
virtual colvarvalue const *get_param_grad(std::string const &param_name);
/// Set the named parameter to the given value
virtual int set_param(std::string const &param_name, void const *new_value);
/// \brief Whether or not this CVC will be computed in parallel whenever possible
bool b_try_scalable;
/// Forcibly set value of CVC - useful for driving an external coordinate,
/// eg. lambda dynamics
inline void set_value(colvarvalue const &new_value) {
x = new_value;
}
protected:
/// Record the type of this class as well as those it is derived from
std::vector<std::string> function_types;
/// \brief Cached value
colvarvalue x;
/// \brief Value at the previous step
colvarvalue x_old;
/// \brief Calculated total force (\b Note: this is calculated from
/// the total atomic forces read from the program, subtracting fromt
/// the "internal" forces of the system the "external" forces from
/// the colvar biases)
colvarvalue ft;
/// \brief Calculated Jacobian derivative (divergence of the inverse
/// gradients): serves to calculate the phase space correction
colvarvalue jd;
/// \brief Set data types for a scalar distance (convenience function)
void init_as_distance();
/// \brief Set data types for a bounded angle (0° to 180°)
void init_as_angle();
/// \brief Set data types for a periodic angle (-180° to 180°)
void init_as_periodic_angle();
/// \brief Set two scalar boundaries (convenience function)
void init_scalar_boundaries(cvm::real lb, cvm::real ub);
/// \brief Location of the lower boundary (not defined by user choice)
colvarvalue lower_boundary;
/// \brief Location of the upper boundary (not defined by user choice)
colvarvalue upper_boundary;
/// \brief CVC-specific default colvar width
cvm::real width;
};
inline colvarvalue const & colvar::cvc::value() const
{
return x;
}
inline colvarvalue const & colvar::cvc::total_force() const
{
return ft;
}
inline colvarvalue const & colvar::cvc::Jacobian_derivative() const
{
return jd;
}
/// \brief Colvar component: distance between the centers of mass of
/// two groups (colvarvalue::type_scalar type, range [0:*))
class colvar::distance
: public colvar::cvc
{
protected:
/// First atom group
cvm::atom_group *group1;
/// Second atom group
cvm::atom_group *group2;
/// Vector distance, cached to be recycled
cvm::rvector dist_v;
public:
distance(std::string const &conf);
distance();
virtual ~distance() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
// \brief Colvar component: distance vector between centers of mass
// of two groups (\link colvarvalue::type_3vector \endlink type,
// range (-*:*)x(-*:*)x(-*:*))
class colvar::distance_vec
: public colvar::distance
{
public:
distance_vec(std::string const &conf);
distance_vec();
virtual ~distance_vec() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
/// Redefined to handle the box periodicity
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the box periodicity
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the box periodicity
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: distance unit vector (direction) between
/// centers of mass of two groups (colvarvalue::type_unit3vector type,
/// range [-1:1]x[-1:1]x[-1:1])
class colvar::distance_dir
: public colvar::distance
{
public:
distance_dir(std::string const &conf);
distance_dir();
virtual ~distance_dir() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
/// Redefined to override the distance ones
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to override the distance ones
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to override the distance ones
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: projection of the distance vector along
/// an axis(colvarvalue::type_scalar type, range (-*:*))
class colvar::distance_z
: public colvar::cvc
{
protected:
/// Main atom group
cvm::atom_group *main;
/// Reference atom group
cvm::atom_group *ref1;
/// Optional, second ref atom group
cvm::atom_group *ref2;
/// Vector on which the distance vector is projected
cvm::rvector axis;
/// Norm of the axis
cvm::real axis_norm;
/// Vector distance, cached to be recycled
cvm::rvector dist_v;
/// Flag: using a fixed axis vector?
bool fixed_axis;
public:
distance_z(std::string const &conf);
distance_z();
virtual ~distance_z() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// \brief Redefined to make use of the user-provided period
virtual void wrap(colvarvalue &x_unwrapped) const;
};
/// \brief Colvar component: projection of the distance vector on a
/// plane (colvarvalue::type_scalar type, range [0:*))
class colvar::distance_xy
: public colvar::distance_z
{
protected:
/// Components of the distance vector orthogonal to the axis
cvm::rvector dist_v_ortho;
/// Vector distances
cvm::rvector v12, v13;
public:
distance_xy(std::string const &conf);
distance_xy();
virtual ~distance_xy() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: polar coordinate phi of a group
/// (colvarvalue::type_scalar type, range [-180:180])
class colvar::polar_phi
: public colvar::cvc
{
public:
polar_phi(std::string const &conf);
polar_phi();
virtual ~polar_phi() {}
protected:
cvm::atom_group *atoms;
cvm::real r, theta, phi;
public:
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
/// Redefined to handle the 2*PI periodicity
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual void wrap(colvarvalue &x_unwrapped) const;
};
/// \brief Colvar component: polar coordinate theta of a group
/// (colvarvalue::type_scalar type, range [0:180])
class colvar::polar_theta
: public colvar::cvc
{
public:
polar_theta(std::string const &conf);
polar_theta();
virtual ~polar_theta() {}
protected:
cvm::atom_group *atoms;
cvm::real r, theta, phi;
public:
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
/// Redefined to override the distance ones
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to override the distance ones
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to override the distance ones
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: average distance between two groups of atoms, weighted as the sixth power,
/// as in NMR refinements(colvarvalue::type_scalar type, range (0:*))
class colvar::distance_inv
: public colvar::cvc
{
protected:
/// First atom group
cvm::atom_group *group1;
/// Second atom group
cvm::atom_group *group2;
/// Components of the distance vector orthogonal to the axis
int exponent;
public:
distance_inv(std::string const &conf);
virtual ~distance_inv() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: N1xN2 vector of pairwise distances
/// (colvarvalue::type_vector type, range (0:*) for each component)
class colvar::distance_pairs
: public colvar::cvc
{
protected:
/// First atom group
cvm::atom_group *group1;
/// Second atom group
cvm::atom_group *group2;
public:
distance_pairs(std::string const &conf);
distance_pairs();
virtual ~distance_pairs() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
/// \brief Colvar component: dipole magnitude of a molecule
class colvar::dipole_magnitude
: public colvar::cvc
{
protected:
/// Dipole atom group
cvm::atom_group *atoms;
cvm::atom_pos dipoleV;
public:
/// Initialize by parsing the configuration
dipole_magnitude (std::string const &conf);
dipole_magnitude (cvm::atom const &a1);
dipole_magnitude();
virtual inline ~dipole_magnitude() {}
virtual void calc_value();
virtual void calc_gradients();
//virtual void calc_force_invgrads();
//virtual void calc_Jacobian_derivative();
virtual void apply_force (colvarvalue const &force);
virtual cvm::real dist2 (colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad (colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad (colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: Radius of gyration of an atom group
/// (colvarvalue::type_scalar type, range [0:*))
class colvar::gyration
: public colvar::cvc
{
protected:
/// Atoms involved
cvm::atom_group *atoms;
public:
gyration(std::string const &conf);
virtual ~gyration() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: moment of inertia of an atom group
/// (colvarvalue::type_scalar type, range [0:*))
class colvar::inertia
: public colvar::gyration
{
public:
/// Constructor
inertia(std::string const &conf);
inertia();
virtual ~inertia() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: moment of inertia of an atom group
/// around a user-defined axis (colvarvalue::type_scalar type, range [0:*))
class colvar::inertia_z
: public colvar::inertia
{
protected:
/// Vector on which the inertia tensor is projected
cvm::rvector axis;
public:
/// Constructor
inertia_z(std::string const &conf);
inertia_z();
virtual ~inertia_z() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: projection of 3N coordinates onto an
/// eigenvector(colvarvalue::type_scalar type, range (-*:*))
class colvar::eigenvector
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group * atoms;
/// Reference coordinates
std::vector<cvm::atom_pos> ref_pos;
/// Eigenvector (of a normal or essential mode): will always have zero center
std::vector<cvm::rvector> eigenvec;
/// Inverse square norm of the eigenvector
cvm::real eigenvec_invnorm2;
public:
/// Constructor
eigenvector(std::string const &conf);
virtual ~eigenvector() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: angle between the centers of mass of
/// three groups (colvarvalue::type_scalar type, range [0:PI])
class colvar::angle
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group *group1;
/// Atom group
cvm::atom_group *group2;
/// Atom group
cvm::atom_group *group3;
/// Inter site vectors
cvm::rvector r21, r23;
/// Inter site vector norms
cvm::real r21l, r23l;
/// Derivatives wrt group centers of mass
cvm::rvector dxdr1, dxdr3;
/// Compute total force on first site only to avoid unwanted
/// coupling to other colvars (see e.g. Ciccotti et al., 2005)
/// (or to allow dummy atoms)
bool b_1site_force;
public:
/// Initialize by parsing the configuration
angle(std::string const &conf);
/// \brief Initialize the three groups after three atoms
angle(cvm::atom const &a1, cvm::atom const &a2, cvm::atom const &a3);
virtual ~angle() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: angle between the dipole of a molecule and an axis
/// formed by two groups of atoms(colvarvalue::type_scalar type, range [0:PI])
class colvar::dipole_angle
: public colvar::cvc
{
protected:
/// Dipole atom group
cvm::atom_group *group1;
/// Atom group
cvm::atom_group *group2;
/// Atom group
cvm::atom_group *group3;
/// Inter site vectors
cvm::rvector r21, r23;
/// Inter site vector norms
cvm::real r21l, r23l;
/// Derivatives wrt group centers of mass
cvm::rvector dxdr1, dxdr3;
/// Compute total force on first site only to avoid unwanted
/// coupling to other colvars (see e.g. Ciccotti et al., 2005)
/// (or to allow dummy atoms)
bool b_1site_force;
public:
/// Initialize by parsing the configuration
dipole_angle (std::string const &conf);
/// \brief Initialize the three groups after three atoms
dipole_angle (cvm::atom const &a1, cvm::atom const &a2, cvm::atom const &a3);
dipole_angle();
virtual ~dipole_angle() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force (colvarvalue const &force);
virtual cvm::real dist2 (colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad (colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad (colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: dihedral between the centers of mass of
/// four groups (colvarvalue::type_scalar type, range [-PI:PI])
class colvar::dihedral
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group *group1;
/// Atom group
cvm::atom_group *group2;
/// Atom group
cvm::atom_group *group3;
/// Atom group
cvm::atom_group *group4;
/// Inter site vectors
cvm::rvector r12, r23, r34;
/// \brief Compute total force on first site only to avoid unwanted
/// coupling to other colvars (see e.g. Ciccotti et al., 2005)
bool b_1site_force;
public:
/// Initialize by parsing the configuration
dihedral(std::string const &conf);
/// \brief Initialize the four groups after four atoms
dihedral(cvm::atom const &a1, cvm::atom const &a2, cvm::atom const &a3, cvm::atom const &a4);
dihedral();
virtual ~dihedral() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
/// Redefined to handle the 2*PI periodicity
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual void wrap(colvarvalue &x_unwrapped) const;
};
/// \brief Colvar component: coordination number between two groups
/// (colvarvalue::type_scalar type, range [0:N1*N2])
class colvar::coordnum
: public colvar::cvc
{
protected:
/// First atom group
cvm::atom_group *group1;
/// Second atom group
cvm::atom_group *group2;
/// \brief "Cutoff" for isotropic calculation (default)
cvm::real r0;
/// \brief "Cutoff vector" for anisotropic calculation
cvm::rvector r0_vec;
/// \brief Whether r/r0 or \vec{r}*\vec{1/r0_vec} should be used
bool b_anisotropic;
/// Integer exponent of the function numerator
int en;
/// Integer exponent of the function denominator
int ed;
/// If true, group2 will be treated as a single atom
bool b_group2_center_only;
/// Tolerance for the pair list
cvm::real tolerance;
/// Frequency of update of the pair list
int pairlist_freq;
/// Pair list
bool *pairlist;
public:
coordnum(std::string const &conf);
~coordnum();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
enum {
ef_null = 0,
ef_gradients = 1,
ef_anisotropic = (1<<8),
ef_use_pairlist = (1<<9),
ef_rebuild_pairlist = (1<<10)
};
/// \brief Calculate a coordination number through the function
/// (1-x**n)/(1-x**m), where x = |A1-A2|/r0 \param r0, r0_vec "cutoff" for
/// the coordination number (scalar or vector depending on user choice)
/// \param en Numerator exponent \param ed Denominator exponent \param First
/// atom \param Second atom \param pairlist_elem pointer to pair flag for
/// this pair \param tolerance A pair is defined as having a larger
/// coordination than this number
template<int flags>
static cvm::real switching_function(cvm::real const &r0,
cvm::rvector const &r0_vec,
int en,
int ed,
cvm::atom &A1,
cvm::atom &A2,
bool **pairlist_elem,
cvm::real tolerance);
/// Workhorse function
template<int flags> int compute_coordnum();
/// Workhorse function
template<int flags> void main_loop(bool **pairlist_elem);
};
/// \brief Colvar component: self-coordination number within a group
/// (colvarvalue::type_scalar type, range [0:N*(N-1)/2])
class colvar::selfcoordnum
: public colvar::cvc
{
protected:
/// Selected atoms
cvm::atom_group *group1;
/// \brief "Cutoff" for isotropic calculation (default)
cvm::real r0;
/// Integer exponent of the function numerator
int en;
/// Integer exponent of the function denominator
int ed;
cvm::real tolerance;
int pairlist_freq;
bool *pairlist;
public:
selfcoordnum(std::string const &conf);
~selfcoordnum();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Main workhorse function
template<int flags> int compute_selfcoordnum();
};
/// \brief Colvar component: coordination number between two groups
/// (colvarvalue::type_scalar type, range [0:N1*N2])
class colvar::groupcoordnum
: public colvar::distance
{
protected:
/// \brief "Cutoff" for isotropic calculation (default)
cvm::real r0;
/// \brief "Cutoff vector" for anisotropic calculation
cvm::rvector r0_vec;
/// \brief Wheter dist/r0 or \vec{dist}*\vec{1/r0_vec} should ne be
/// used
bool b_anisotropic;
/// Integer exponent of the function numerator
int en;
/// Integer exponent of the function denominator
int ed;
public:
/// Constructor
groupcoordnum(std::string const &conf);
virtual ~groupcoordnum() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: hydrogen bond, defined as the product of
/// a colvar::coordnum and 1/2*(1-cos((180-ang)/ang_tol))
/// (colvarvalue::type_scalar type, range [0:1])
class colvar::h_bond
: public colvar::cvc
{
protected:
/// \brief "Cutoff" distance between acceptor and donor
cvm::real r0;
/// Integer exponent of the function numerator
int en;
/// Integer exponent of the function denominator
int ed;
public:
h_bond(std::string const &conf);
/// Constructor for atoms already allocated
h_bond(cvm::atom const &acceptor,
cvm::atom const &donor,
cvm::real r0, int en, int ed);
h_bond();
virtual ~h_bond() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: alpha helix content of a contiguous
/// segment of 5 or more residues, implemented as a sum of phi/psi
/// dihedral angles and hydrogen bonds (colvarvalue::type_scalar type,
/// range [0:1])
// class colvar::alpha_dihedrals
// : public colvar::cvc
// {
// protected:
// /// Alpha-helical reference phi value
// cvm::real phi_ref;
// /// Alpha-helical reference psi value
// cvm::real psi_ref;
// /// List of phi dihedral angles
// std::vector<dihedral *> phi;
// /// List of psi dihedral angles
// std::vector<dihedral *> psi;
// /// List of hydrogen bonds
// std::vector<h_bond *> hb;
// public:
// alpha_dihedrals (std::string const &conf);
// alpha_dihedrals();
// virtual ~alpha_dihedrals() {}
// virtual void calc_value();
// virtual void calc_gradients();
// virtual void apply_force (colvarvalue const &force);
// virtual cvm::real dist2 (colvarvalue const &x1,
// colvarvalue const &x2) const;
// virtual colvarvalue dist2_lgrad (colvarvalue const &x1,
// colvarvalue const &x2) const;
// virtual colvarvalue dist2_rgrad (colvarvalue const &x1,
// colvarvalue const &x2) const;
// };
/// \brief Colvar component: alpha helix content of a contiguous
/// segment of 5 or more residues, implemented as a sum of Ca-Ca-Ca
/// angles and hydrogen bonds (colvarvalue::type_scalar type, range
/// [0:1])
class colvar::alpha_angles
: public colvar::cvc
{
protected:
/// Reference Calpha-Calpha angle (default: 88 degrees)
cvm::real theta_ref;
/// Tolerance on the Calpha-Calpha angle
cvm::real theta_tol;
/// List of Calpha-Calpha angles
std::vector<angle *> theta;
/// List of hydrogen bonds
std::vector<h_bond *> hb;
/// Contribution of the hb terms
cvm::real hb_coeff;
public:
alpha_angles(std::string const &conf);
alpha_angles();
virtual ~alpha_angles();
void calc_value();
void calc_gradients();
/// Re-implementation of cvc::collect_gradients() to carry over atomic gradients of sub-cvcs
void collect_gradients(std::vector<int> const &atom_ids, std::vector<cvm::rvector> &atomic_gradients);
void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: dihedPC
/// Projection of the config onto a dihedral principal component
/// See e.g. Altis et al., J. Chem. Phys 126, 244111 (2007)
/// Based on a set of 'dihedral' cvcs
class colvar::dihedPC
: public colvar::cvc
{
protected:
std::vector<dihedral *> theta;
std::vector<cvm::real> coeffs;
public:
dihedPC(std::string const &conf);
dihedPC();
virtual ~dihedPC();
void calc_value();
void calc_gradients();
/// Re-implementation of cvc::collect_gradients() to carry over atomic gradients of sub-cvcs
void collect_gradients(std::vector<int> const &atom_ids, std::vector<cvm::rvector> &atomic_gradients);
void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: orientation in space of an atom group,
/// with respect to a set of reference coordinates
/// (colvarvalue::type_quaternion type, range
/// [-1:1]x[-1:1]x[-1:1]x[-1:1])
class colvar::orientation
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group * atoms;
/// Center of geometry of the group
cvm::atom_pos atoms_cog;
/// Reference coordinates
std::vector<cvm::atom_pos> ref_pos;
/// Rotation object
cvm::rotation rot;
/// \brief This is used to remove jumps in the sign of the
/// quaternion, which may be annoying in the colvars trajectory
cvm::quaternion ref_quat;
public:
orientation(std::string const &conf);
orientation();
virtual int init(std::string const &conf);
virtual ~orientation() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: angle of rotation with respect to a set
/// of reference coordinates (colvarvalue::type_scalar type, range
/// [0:PI))
class colvar::orientation_angle
: public colvar::orientation
{
public:
orientation_angle(std::string const &conf);
virtual int init(std::string const &conf);
virtual ~orientation_angle() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: cosine of the angle of rotation with respect to a set
/// of reference coordinates (colvarvalue::type_scalar type, range
/// [-1:1])
class colvar::orientation_proj
: public colvar::orientation
{
public:
orientation_proj(std::string const &conf);
orientation_proj();
virtual int init(std::string const &conf);
virtual ~orientation_proj() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: projection of the orientation vector onto
/// a predefined axis (colvarvalue::type_scalar type, range [-1:1])
class colvar::tilt
: public colvar::orientation
{
protected:
cvm::rvector axis;
public:
tilt(std::string const &conf);
virtual int init(std::string const &conf);
virtual ~tilt() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: angle of rotation around a predefined
/// axis (colvarvalue::type_scalar type, range [-PI:PI])
class colvar::spin_angle
: public colvar::orientation
{
protected:
cvm::rvector axis;
public:
spin_angle(std::string const &conf);
spin_angle();
virtual int init(std::string const &conf);
virtual ~spin_angle() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
/// Redefined to handle the 2*PI periodicity
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual void wrap(colvarvalue &x_unwrapped) const;
};
class colvar::euler_phi
: public colvar::orientation
{
public:
euler_phi(std::string const &conf);
euler_phi();
virtual int init(std::string const &conf);
virtual ~euler_phi() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual void wrap(colvarvalue &x_unwrapped) const;
};
class colvar::euler_psi
: public colvar::orientation
{
public:
euler_psi(std::string const &conf);
euler_psi();
virtual int init(std::string const &conf);
virtual ~euler_psi() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
/// Redefined to handle the 2*PI periodicity
virtual void wrap(colvarvalue &x_unwrapped) const;
};
class colvar::euler_theta
: public colvar::orientation
{
public:
euler_theta(std::string const &conf);
euler_theta();
virtual int init(std::string const &conf);
virtual ~euler_theta() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
// theta angle is a scalar variable and not periodic
// we need to override the virtual functions from orientation
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
/// \brief Colvar component: root mean square deviation (RMSD) of a
/// group with respect to a set of reference coordinates; uses \link
/// colvar::orientation \endlink to calculate the rotation matrix
/// (colvarvalue::type_scalar type, range [0:*))
class colvar::rmsd
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group *atoms;
/// Reference coordinates (for RMSD calculation only)
/// Includes sets with symmetry permutations (n_permutations * n_atoms)
std::vector<cvm::atom_pos> ref_pos;
/// Number of permutations of symmetry-related atoms
size_t n_permutations;
/// Index of the permutation yielding the smallest RMSD (0 for identity)
size_t best_perm_index;
public:
/// Constructor
rmsd(std::string const &conf);
virtual ~rmsd() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void calc_force_invgrads();
virtual void calc_Jacobian_derivative();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
// \brief Colvar component: flat vector of Cartesian coordinates
// Mostly useful to compute scripted colvar values
class colvar::cartesian
: public colvar::cvc
{
protected:
/// Atom group
cvm::atom_group *atoms;
/// Which Cartesian coordinates to include
std::vector<size_t> axes;
public:
cartesian(std::string const &conf);
cartesian();
virtual ~cartesian() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
// \brief Colvar component: alch_lambda
// To communicate value with back-end in lambda-dynamics
class colvar::alch_lambda
: public colvar::cvc
{
protected:
// No atom groups needed
public:
alch_lambda(std::string const &conf);
alch_lambda();
virtual ~alch_lambda() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
// \brief Colvar component: alch_Flambda
// To communicate force on lambda with back-end in lambda-dynamics
class colvar::alch_Flambda
: public colvar::cvc
{
protected:
// No atom groups needed
public:
alch_Flambda(std::string const &conf);
alch_Flambda();
virtual ~alch_Flambda() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
virtual cvm::real dist2(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
virtual colvarvalue dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const;
};
class colvar::componentDisabled
: public colvar::cvc
{
public:
componentDisabled(std::string const & /* conf */) {
cvm::error("Error: this component is not enabled in the current build; please see https://colvars.github.io/README-c++11.html");
}
virtual ~componentDisabled() {}
virtual void calc_value() {}
virtual void calc_gradients() {}
virtual void apply_force(colvarvalue const & /* force */) {}
};
#if (__cplusplus >= 201103L)
class colvar::CartesianBasedPath
: public colvar::cvc
{
protected:
virtual void computeDistanceToReferenceFrames(std::vector<cvm::real>& result);
/// Selected atoms
cvm::atom_group *atoms;
/// Fitting options
bool has_user_defined_fitting;
/// Reference frames
std::vector<std::vector<cvm::atom_pos>> reference_frames;
std::vector<std::vector<cvm::atom_pos>> reference_fitting_frames;
/// Atom groups for RMSD calculation together with reference frames
std::vector<cvm::atom_group*> comp_atoms;
/// Total number of reference frames
size_t total_reference_frames;
public:
CartesianBasedPath(std::string const &conf);
virtual ~CartesianBasedPath();
virtual void calc_value() = 0;
virtual void apply_force(colvarvalue const &force) = 0;
};
/// \brief Colvar component: alternative path collective variable using geometry, variable s
/// For more information see https://plumed.github.io/doc-v2.5/user-doc/html/_p_a_t_h.html
/// Diaz Leines, G.; Ensing, B. Path Finding on High-Dimensional Free Energy Landscapes. Phys. Rev. Lett. 2012, 109 (2), 020601. https://doi.org/10.1103/PhysRevLett.109.020601.
class colvar::gspath
: public colvar::CartesianBasedPath, public GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::S>
{
private:
// Optimal rotation for compute v3
cvm::rotation rot_v3;
protected:
virtual void prepareVectors();
virtual void updateDistanceToReferenceFrames();
public:
gspath(std::string const &conf);
virtual ~gspath() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
/// \brief Colvar component: alternative path collective variable using geometry, variable z
/// This should be merged with gspath in the same class by class inheritance or something else
class colvar::gzpath
: public colvar::CartesianBasedPath, public GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::Z>
{
private:
// Optimal rotation for compute v3, v4
cvm::rotation rot_v3;
cvm::rotation rot_v4;
protected:
virtual void prepareVectors();
virtual void updateDistanceToReferenceFrames();
public:
gzpath(std::string const &conf);
virtual ~gzpath() {}
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
/// Current only linear combination of sub-CVCs is available
class colvar::linearCombination
: public colvar::cvc
{
protected:
/// Sub-colvar components
std::vector<colvar::cvc*> cv;
/// If all sub-cvs use explicit gradients then we also use it
bool use_explicit_gradients;
protected:
cvm::real getPolynomialFactorOfCVGradient(size_t i_cv) const;
public:
linearCombination(std::string const &conf);
virtual ~linearCombination();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
/// custom expression of colvars
class colvar::customColvar
: public colvar::linearCombination
{
protected:
bool use_custom_function;
#ifdef LEPTON
/// Vector of evaluators for custom functions using Lepton
std::vector<Lepton::CompiledExpression *> value_evaluators;
/// Vector of evaluators for gradients of custom functions
std::vector<Lepton::CompiledExpression *> gradient_evaluators;
/// Vector of references to cvc values to be passed to Lepton evaluators
std::vector<double *> value_eval_var_refs;
std::vector<double *> grad_eval_var_refs;
/// Unused value that is written to when a variable simplifies out of a Lepton expression
double dev_null;
#endif
public:
customColvar(std::string const &conf);
virtual ~customColvar();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
class colvar::CVBasedPath
: public colvar::cvc
{
protected:
/// Sub-colvar components
std::vector<colvar::cvc*> cv;
/// Reference colvar values from path
std::vector<std::vector<colvarvalue>> ref_cv;
/// If all sub-cvs use explicit gradients then we also use it
bool use_explicit_gradients;
/// Total number of reference frames
size_t total_reference_frames;
protected:
virtual void computeDistanceToReferenceFrames(std::vector<cvm::real>& result);
/// Helper function to determine the distance between reference frames
virtual void computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) const;
cvm::real getPolynomialFactorOfCVGradient(size_t i_cv) const;
public:
CVBasedPath(std::string const &conf);
virtual ~CVBasedPath();
virtual void calc_value() = 0;
virtual void apply_force(colvarvalue const &force) = 0;
};
/// \brief Colvar component: alternative path collective variable using geometry, variable s
/// Allow any combination of existing (scalar) CVs
/// For more information see https://plumed.github.io/doc-v2.5/user-doc/html/_p_a_t_h.html
/// Diaz Leines, G.; Ensing, B. Path Finding on High-Dimensional Free Energy Landscapes. Phys. Rev. Lett. 2012, 109 (2), 020601. https://doi.org/10.1103/PhysRevLett.109.020601.
class colvar::gspathCV
: public colvar::CVBasedPath, public GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::S>
{
protected:
virtual void updateDistanceToReferenceFrames();
virtual void prepareVectors();
public:
gspathCV(std::string const &conf);
virtual ~gspathCV();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
class colvar::gzpathCV
: public colvar::CVBasedPath, public GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::Z>
{
protected:
virtual void updateDistanceToReferenceFrames();
virtual void prepareVectors();
public:
gzpathCV(std::string const &conf);
virtual ~gzpathCV();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
class colvar::aspathCV
: public colvar::CVBasedPath, public ArithmeticPathCV::ArithmeticPathBase<colvarvalue, cvm::real, ArithmeticPathCV::path_sz::S>
{
protected:
virtual void updateDistanceToReferenceFrames();
public:
aspathCV(std::string const &conf);
virtual ~aspathCV();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
class colvar::azpathCV
: public colvar::CVBasedPath, public ArithmeticPathCV::ArithmeticPathBase<colvarvalue, cvm::real, ArithmeticPathCV::path_sz::Z>
{
protected:
virtual void updateDistanceToReferenceFrames();
public:
azpathCV(std::string const &conf);
virtual ~azpathCV();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
// forward declaration
namespace neuralnetworkCV {
class neuralNetworkCompute;
}
class colvar::neuralNetwork
: public linearCombination
{
protected:
/// actual computation happens in neuralnetworkCV::neuralNetworkCompute
std::unique_ptr<neuralnetworkCV::neuralNetworkCompute> nn;
/// the index of nn output components
size_t m_output_index;
public:
neuralNetwork(std::string const &conf);
virtual ~neuralNetwork();
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
};
#else // if the compiler doesn't support C++11
class colvar::linearCombination
: public colvar::componentDisabled
{
public:
linearCombination(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::CartesianBasedPath
: public colvar::componentDisabled
{
public:
CartesianBasedPath(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::CVBasedPath
: public colvar::componentDisabled
{
public:
CVBasedPath(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::gspath
: public colvar::componentDisabled
{
public:
gspath(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::gzpath
: public colvar::componentDisabled
{
public:
gzpath(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::gspathCV
: public colvar::componentDisabled
{
public:
gspathCV(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::gzpathCV
: public colvar::componentDisabled
{
public:
gzpathCV(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::aspathCV
: public colvar::componentDisabled
{
public:
aspathCV(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::azpathCV
: public colvar::componentDisabled
{
public:
azpathCV(std::string const &conf) : componentDisabled(conf) {}
};
class colvar::neuralNetwork
: public colvar::componentDisabled
{
public:
neuralNetwork(std::string const &conf) : componentDisabled(conf) {}
};
#endif // C++11 checking
// \brief Colvar component: total value of a scalar map
// (usually implemented as a grid by the simulation engine)
class colvar::map_total
: public colvar::cvc
{
public:
map_total();
map_total(std::string const &conf);
virtual ~map_total() {}
virtual int init(std::string const &conf);
virtual void calc_value();
virtual void calc_gradients();
virtual void apply_force(colvarvalue const &force);
protected:
/// String identifier of the map object (as used by the simulation engine)
std::string volmap_name;
/// Numeric identifier of the map object (as used by the simulation engine)
int volmap_id;
/// Index of the map objet in the proxy arrays
int volmap_index;
/// Group of atoms selected internally (optional)
cvm::atom_group *atoms;
/// Weights assigned to each atom (default: uniform weights)
std::vector<cvm::real> atom_weights;
};
// metrics functions for cvc implementations
// simple definitions of the distance functions; these are useful only
// for optimization (the type check performed in the default
// colvarcomp functions is skipped)
// definitions assuming the scalar type
#define simple_scalar_dist_functions(TYPE) \
\
\
cvm::real colvar::TYPE::dist2(colvarvalue const &x1, \
colvarvalue const &x2) const \
{ \
return (x1.real_value - x2.real_value)*(x1.real_value - x2.real_value); \
} \
\
\
colvarvalue colvar::TYPE::dist2_lgrad(colvarvalue const &x1, \
colvarvalue const &x2) const \
{ \
return 2.0 * (x1.real_value - x2.real_value); \
} \
\
\
colvarvalue colvar::TYPE::dist2_rgrad(colvarvalue const &x1, \
colvarvalue const &x2) const \
{ \
return this->dist2_lgrad(x2, x1); \
} \
#endif