Files
lammps/src/compute_pressure.cpp

200 lines
5.9 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "mpi.h"
#include "string.h"
#include "stdlib.h"
#include "compute_pressure.h"
#include "atom.h"
#include "domain.h"
#include "modify.h"
#include "fix.h"
#include "force.h"
#include "pair.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputePressure::ComputePressure(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg)
{
if (narg != 4) error->all("Illegal compute pressure command");
if (igroup) error->all("Compute pressure must use group all");
// store temperature ID used by pressure computation
// insure it is valid for temperature computation
int n = strlen(arg[3]) + 1;
id_pre = new char[n];
strcpy(id_pre,arg[3]);
int icompute = modify->find_compute(id_pre);
if (icompute < 0) error->all("Could not find compute pressure temp ID");
if (modify->compute[icompute]->tempflag == 0)
error->all("Compute pressure temp ID does not compute temperature");
scalar_flag = vector_flag = 1;
size_vector = 6;
extensive = 0;
pressflag = 1;
vector = new double[6];
nvirial = 0;
vptr = NULL;
}
/* ---------------------------------------------------------------------- */
ComputePressure::~ComputePressure()
{
delete [] id_pre;
delete [] vector;
delete [] vptr;
}
/* ---------------------------------------------------------------------- */
void ComputePressure::init()
{
boltz = force->boltz;
nktv2p = force->nktv2p;
dimension = domain->dimension;
// set temperature used by pressure
int icompute = modify->find_compute(id_pre);
if (icompute < 0) error->all("Could not find compute pressure temp ID");
temperature = modify->compute[icompute];
// detect contributions to virial
// vptr points to all virial[6] contributions
delete [] vptr;
nvirial = 0;
vptr = NULL;
if (force->pair) nvirial++;
if (atom->molecular && force->bond) nvirial++;
if (atom->molecular && force->angle) nvirial++;
if (atom->molecular && force->dihedral) nvirial++;
if (atom->molecular && force->improper) nvirial++;
for (int i = 0; i < modify->nfix; i++)
if (modify->fix[i]->virial_flag) nvirial++;
if (nvirial) {
vptr = new double*[nvirial];
nvirial = 0;
if (force->pair) vptr[nvirial++] = force->pair->virial;
if (force->bond) vptr[nvirial++] = force->bond->virial;
if (force->angle) vptr[nvirial++] = force->angle->virial;
if (force->dihedral) vptr[nvirial++] = force->dihedral->virial;
if (force->improper) vptr[nvirial++] = force->improper->virial;
for (int i = 0; i < modify->nfix; i++)
if (modify->fix[i]->virial_flag)
vptr[nvirial++] = modify->fix[i]->virial;
}
// flag Kspace contribution separately, since not summed across procs
kspaceflag = 0;
if (force->kspace) {
kspaceflag = 1;
kspace_virial = force->kspace->virial;
}
}
/* ----------------------------------------------------------------------
compute total pressure, averaged over Pxx, Pyy, Pzz
assume temperature has already been computed
------------------------------------------------------------------------- */
double ComputePressure::compute_scalar()
{
if (dimension == 3) {
inv_volume = 1.0 / (domain->xprd * domain->yprd * domain->zprd);
virial_compute(3);
scalar = (temperature->dof * boltz * temperature->scalar +
virial[0] + virial[1] + virial[2]) / 3.0 * inv_volume * nktv2p;
} else {
inv_volume = 1.0 / (domain->xprd * domain->yprd);
virial_compute(2);
scalar = (temperature->dof * boltz * temperature->scalar +
virial[0] + virial[1]) / 2.0 * inv_volume * nktv2p;
}
return scalar;
}
/* ----------------------------------------------------------------------
compute pressure tensor
assume KE tensor has already been computed
------------------------------------------------------------------------- */
void ComputePressure::compute_vector()
{
if (dimension == 3) {
inv_volume = 1.0 / (domain->xprd * domain->yprd * domain->zprd);
virial_compute(6);
double *ke_tensor = temperature->vector;
for (int i = 0; i < 6; i++)
vector[i] = (ke_tensor[i] + virial[i]) * inv_volume * nktv2p;
} else {
inv_volume = 1.0 / (domain->xprd * domain->yprd);
virial_compute(4);
double *ke_tensor = temperature->vector;
vector[0] = (ke_tensor[0] + virial[0]) * inv_volume * nktv2p;
vector[1] = (ke_tensor[1] + virial[1]) * inv_volume * nktv2p;
vector[3] = (ke_tensor[3] + virial[3]) * inv_volume * nktv2p;
}
}
/* ---------------------------------------------------------------------- */
void ComputePressure::virial_compute(int n)
{
int i,j;
double v[6],*vcomponent;
for (i = 0; i < n; i++) v[i] = 0.0;
// sum contributions to virial from forces and fixes
for (j = 0; j < nvirial; j++) {
vcomponent = vptr[j];
for (i = 0; i < n; i++) v[i] += vcomponent[i];
}
// sum virial across procs
MPI_Allreduce(v,virial,n,MPI_DOUBLE,MPI_SUM,world);
// KSpace virial contribution is already summed across procs
if (force->kspace)
for (i = 0; i < n; i++) virial[i] += kspace_virial[i];
// LJ long-range tail correction
if (force->pair && force->pair->tail_flag)
for (i = 0; i < n; i++) virial[i] += force->pair->ptail * inv_volume;
}