Files
lammps/src/RHEO/pair_rheo_solid.cpp
2024-03-29 19:00:14 -06:00

355 lines
10 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors:
Joel Clemmer (SNL)
----------------------------------------------------------------------- */
#include "pair_rheo_solid.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "fix_rheo.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include "neighbor.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace RHEO_NS;
/* ---------------------------------------------------------------------- */
PairRHEOSolid::PairRHEOSolid(LAMMPS *_lmp) : Pair(_lmp)
{
writedata = 1;
}
/* ---------------------------------------------------------------------- */
PairRHEOSolid::~PairRHEOSolid()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(k);
memory->destroy(cut);
memory->destroy(gamma);
}
}
/* ---------------------------------------------------------------------- */
void PairRHEOSolid::compute(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double r, rsq, rinv, factor_lj;
int *ilist, *jlist, *numneigh, **firstneigh;
double vxtmp, vytmp, vztmp, delvx, delvy, delvz, dot, smooth;
evdwl = 0.0;
if (eflag || vflag)
ev_setup(eflag, vflag);
else
evflag = vflag_fdotr = 0;
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
int *type = atom->type;
int *status = atom->status;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
double *special_lj = force->special_lj;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
if (!(status[i] & STATUS_SOLID)) continue;
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
vxtmp = v[i][0];
vytmp = v[i][1];
vztmp = v[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
if (factor_lj == 0) continue;
j &= NEIGHMASK;
if (!(status[j] & STATUS_SOLID)) continue;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
rinv = 1.0 / r;
fpair = k[itype][jtype] * (cut[itype][jtype] - r);
smooth = rsq / cutsq[itype][jtype];
smooth *= smooth;
smooth *= smooth;
smooth = 1.0 - smooth;
delvx = vxtmp - v[j][0];
delvy = vytmp - v[j][1];
delvz = vztmp - v[j][2];
dot = delx * delvx + dely * delvy + delz * delvz;
fpair -= gamma[itype][jtype] * dot * smooth * rinv;
fpair *= factor_lj * rinv;
if (eflag) evdwl = 0.0;
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairRHEOSolid::allocate()
{
allocated = 1;
const int np1 = atom->ntypes + 1;
memory->create(setflag, np1, np1, "pair:setflag");
for (int i = 1; i < np1; i++)
for (int j = i; j < np1; j++) setflag[i][j] = 0;
memory->create(cutsq, np1, np1, "pair:cutsq");
memory->create(k, np1, np1, "pair:k");
memory->create(cut, np1, np1, "pair:cut");
memory->create(gamma, np1, np1, "pair:gamma");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairRHEOSolid::settings(int narg, char ** /*arg*/)
{
if (narg != 0) error->all(FLERR, "Illegal pair_style command");
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairRHEOSolid::coeff(int narg, char **arg)
{
if (narg != 5) error->all(FLERR, "Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
double k_one = utils::numeric(FLERR, arg[2], false, lmp);
double cut_one = utils::numeric(FLERR, arg[3], false, lmp);
double gamma_one = utils::numeric(FLERR, arg[4], false, lmp);
if (cut_one <= 0.0) error->all(FLERR, "Incorrect args for pair coefficients");
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo, i); j <= jhi; j++) {
k[i][j] = k_one;
cut[i][j] = cut_one;
gamma[i][j] = gamma_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairRHEOSolid::init_style()
{
if (comm->ghost_velocity == 0)
error->all(FLERR,"Pair rheo/solid requires ghost atoms store velocity");
if (!atom->status_flag)
error->all(FLERR,"Pair rheo/solid requires atom_style rheo");
neighbor->add_request(this);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairRHEOSolid::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
cut[i][j] = mix_distance(cut[i][i], cut[j][j]);
k[i][j] = mix_energy(k[i][i], k[j][j], cut[i][i], cut[j][j]);
gamma[i][j] = mix_energy(gamma[i][i], gamma[j][j], cut[i][i], cut[j][j]);
}
cut[j][i] = cut[i][j];
k[j][i] = k[i][j];
gamma[j][i] = gamma[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairRHEOSolid::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&k[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
fwrite(&gamma[i][j], sizeof(double), 1, fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairRHEOSolid::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i, j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR, &k[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &gamma[i][j], sizeof(double), 1, fp, nullptr, error);
}
MPI_Bcast(&k[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&gamma[i][j], 1, MPI_DOUBLE, 0, world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void PairRHEOSolid::write_data(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
fprintf(fp, "%d %g %g %g\n", i, k[i][i], cut[i][i], gamma[i][i]);
}
/* ----------------------------------------------------------------------
proc 0 writes all pairs to data file
------------------------------------------------------------------------- */
void PairRHEOSolid::write_data_all(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
for (int j = i; j <= atom->ntypes; j++)
fprintf(fp, "%d %d %g %g %g\n", i, j, k[i][j], cut[i][j], gamma[i][j]);
}
/* ---------------------------------------------------------------------- */
double PairRHEOSolid::single(int i, int j, int itype, int jtype, double rsq, double /*factor_coul*/,
double factor_lj, double &fforce)
{
double fpair, r, rinv;
double delx, dely, delz, delvx, delvy, delvz, dot, smooth;
if (rsq > cutsq[itype][jtype]) return 0.0;
double **x = atom->x;
double **v = atom->v;
r = sqrt(rsq);
rinv = 1.0 / r;
fpair = k[itype][jtype] * (cut[itype][jtype] - r);
smooth = rsq / cutsq[itype][jtype];
smooth *= smooth;
smooth = 1.0 - smooth;
delx = x[i][0] - x[j][0];
dely = x[i][1] - x[j][1];
delz = x[i][2] - x[j][2];
delvx = v[i][0] - v[j][0];
delvy = v[i][1] - v[j][1];
delvz = v[i][2] - v[j][2];
dot = delx * delvx + dely * delvy + delz * delvz;
fpair -= gamma[itype][jtype] * dot * rinv * smooth;
fpair *= factor_lj;
fforce = fpair;
return 0.0;
}