Files
lammps/examples/PACKAGES/latboltz/translocation/in.translocation
2022-03-09 18:13:45 -05:00

183 lines
9.1 KiB
Plaintext

#===========================================================================#
# Immersed Boundary Wall #
# #
# Run consists of a 32-bead coarse-grained polymer #
# translocating through a solid-state atomistic wall #
# under pressure-driven lattice-Boltzmann fluid flow #
# #
# To run this example, LAMMPS needs to be compiled with a the following #
# packages: MOLECULE, RIGID, LATBOLTZ, USER-VTK #
# #
#To run this example on N cores, use command: #
# mpirun -n N /LAMMPS/EXE/FILE -in in.polymer > output.out #
# #
# If uncommented: #
# Sample output for polymer from this run can be found in the file: #
# 'translocationdump.lammpstrj' #
# and viewed using, the VMD software. #
# OR #
# 'dump.translocation.vtk' #
# and viewed using the Paraview software. #
# #
# Sample output for the wall from this run can be found in the file: #
# 'walldump.xyz' #
# and can be viewed using the VMD or Paraview Software. #
#===========================================================================#
units nano
dimension 3
boundary p p p
atom_style hybrid molecular
special_bonds fene
read_data data.translocation
#---------------------------------------------------------------------------
#Creating a atomistic wall on an FCC lattice and removing the block from the
#middle to create the nanopore
#---------------------------------------------------------------------------
lattice fcc 1.0
region wall block 28 38 0 32 0 32
create_atoms 3 region wall
region hole block 28 38 14 18 14 18
delete_atoms region hole compress no
#----------------------------------------------------------------------------
# Need a neighbor bin size smaller than the lattice-Boltzmann grid spacing
# to ensure that the particles belonging to a given processor remain inside
# that processors lattice-Boltzmann grid.
# The communcation cutoff is set to 2.5 dx to ensure that all particles in the
# processor ghost fluid region (of width 2dx) are known to local processor.
#----------------------------------------------------------------------------
neighbor 0.5 bin
neigh_modify delay 0 every 1 check yes
neigh_modify exclude type 2 2
neigh_modify exclude type 2 1
neigh_modify exclude type 2 3
neigh_modify exclude type 3 3
comm_modify cutoff 2.5
#----------------------------------------------------------------------------
# Implement a hard-sphere interaction between the particles at the center of
# each monomer with each other and the wall atoms
# (use a truncated and shifted Lennard-Jones potential).
#----------------------------------------------------------------------------
bond_style fene
bond_coeff 1 60.0 2.25 4.14195 1.5
pair_style lj/cut 1.68369
pair_coeff * * 0 1.5
pair_coeff 1 1 4.14195 1.5 1.68369
pair_coeff 1 3 4.14195 1.5 1.68369
#-----------------------------------------------------------------------------
# The mass is set 4/3 PI r^3 fluid_density/31 , where r=0.617, 31 is number of
# nodes in a single monomer. The mass of wall atoms is chosen heavy as they
# are fixed.
# ----------------------------------------------------------------------------
mass * 0.00000318
#-----------------------------------------------------------------------------
timestep 0.00005
#----------------------------------------------------------------------------
# ForceAtoms are the particles at the center of each monomer which
# do not interact with the fluid, but are used to implement the hard-sphere
# interactions.
# FluidAtoms are the particles representing the surface of the monomer
# which do interact with the fluid. The nanopore particles are also included
# in this group as they interact with the fluid.
# Polymer is the entire set of monomers of the composite polymer chain.
# WallAtoms are the particles of the nanopore.
#----------------------------------------------------------------------------
group ForceAtoms type 1
group FluidAtoms type 2 3
group Polymer type 1 2
group WallAtoms type 3
#---------------------------------------------------------------------------
# Create a lattice-Boltzmann fluid covering the simulation domain.
# This fluid feels a force due to the particles specified through FluidAtoms
# (however, this fix does not explicity apply a force back on to these
# particles. This is accomplished through the use of the lb/viscous fix).
# We set fluid viscosity = 0.1 and fluid density = 0.00009982071 which
# means the kinematic viscosity is idential to that of water but the
# dynamic viscosity is a factor of 10 less than that of water which
# increases the diffusive dynamics by a corresponding factor of 10.
# lattice spacing dx=1.0, and mass unit, dm=0.00009982071 (makes density 1)
# Use a thermal lattice-Boltzmann fluid (temperature 300K, random number
# seed=5252). This enables the particles to undergo Brownian motion in
# the fluid.
# In this case we use the scaleGamma argument to set the mass of the WallAtoms
# to infinity.
# The commented out line can be substituted to look at the flow without noise
# which should be similar to the average flow field in the case with noise.
#----------------------------------------------------------------------------
fix 1 FluidAtoms lb/fluid 1 0.1 0.00009982071 dx 1.0 scaleGamma 3 -1 stencil 2 pressurebcx 1200 noise 300.0 5252
#fix 1 FluidAtoms lb/fluid 1 0.1 0.00009982071 dx 1.0 scaleGamma 3 -1 stencil 2 pressurebcx 1200 dumpxdmf 1000 flow 0
#----------------------------------------------------------------------------
# Apply the force from the fluid to the particles, and integrate their
# motion, constraining each monomer to move and rotate as a single rigid
# spherical object.
# Since both the ForceAtoms (central atoms), and the FluidAtoms (spherical
# shell) should move and rotate together, this fix is applied to all Polymer
# of atoms in the system.
# The wall atoms are frozen in space and all the calculated forces on the atoms
# are set to zero at each timestep.
#----------------------------------------------------------------------------#
fix 2 FluidAtoms lb/viscous
fix 3 Polymer rigid/small molecule
fix freeze WallAtoms setforce 0 0 0
#----------------------------------------------------------------------------
# Write position and velocity coordinates into a file every 2000 time steps.
#----------------------------------------------------------------------------
#variable x1 equal x[1]
#variable y1 equal y[1]
#variable z1 equal z[1]
#variable vx1 equal vx[1]
#variable vy1 equal vy[1]
#variable vz1 equal vz[1]
#variable x2 equal x[249]
#variable y2 equal y[249]
#variable z2 equal z[249]
#variable vx2 equal vx[249]
#variable vy2 equal vy[249]
#variable vz2 equal vz[249]
#variable x3 equal x[497]
#variable y3 equal y[497]
#variable z3 equal z[497]
#variable vx3 equal vx[497]
#variable vy3 equal vy[497]
#variable vz3 equal vz[497]
#variable x4 equal x[745]
#variable y4 equal y[745]
#variable z4 equal z[745]
#variable vx4 equal vx[745]
#variable vy4 equal vy[745]
#variable vz4 equal vz[745]
#thermo_style custom v_x1 v_y1 v_z1 v_vx1 v_vy1 v_vz1 v_x2 v_y2 v_z2 v_vx2 v_vy2 v_vz2 v_x3 v_y3 v_z3 v_vx3 v_vy3 v_vz3 v_x4 v_y4 v_z4 v_x4 v_y4 v_z4
#thermo 10
#---------------------------------------------------------------------------------
# Write coordinates of the centre of mass and radius of gyration tensor components
#---------------------------------------------------------------------------------
compute centre ForceAtoms com
compute rg ForceAtoms gyration
thermo_style custom c_rg c_rg[1] c_rg[2] c_rg[3] c_rg[4] c_rg[5] c_rg[6] c_centre[1] c_centre[2] c_centre[3]
thermo 1000
#--------------------------------------------------------------------------------
# Define number of steps variable. Write dump files for the polymer in both LAMMPS
# trajectory and vtk format (commented out here). Write xyz dump file
#--------------------------------------------------------------------------------
variable numofsteps equal 400001
#dump 1 ForceAtoms custom 500 translocationdump.lammpstrj id xu yu zu vx vy vz
#dump 2 ForceAtoms vtk 1000 dump*.translocation.vtk id xu yu zu vx vy vz
#dump 4 WallAtoms xyz $(v_numofsteps-1) walldump.xyz
#restart 50000 4nmrestart.*
run ${numofsteps} # For 250001 steps without noise, 16 minutes on AMD Ryzen Threadripper 1950X 16-Core, 41 mintues on Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 4-core