255 lines
6.9 KiB
C++
255 lines
6.9 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
This software is distributed under the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "math.h"
|
|
#include "pair_gran_hooke_omp.h"
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "fix_rigid.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
|
|
#include "suffix.h"
|
|
using namespace LAMMPS_NS;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairGranHookeOMP::PairGranHookeOMP(LAMMPS *lmp) :
|
|
PairGranHooke(lmp), ThrOMP(lmp, THR_PAIR)
|
|
{
|
|
suffix_flag |= Suffix::OMP;
|
|
respa_enable = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairGranHookeOMP::compute(int eflag, int vflag)
|
|
{
|
|
if (eflag || vflag) {
|
|
ev_setup(eflag,vflag);
|
|
} else evflag = vflag_fdotr = 0;
|
|
|
|
const int nall = atom->nlocal + atom->nghost;
|
|
const int nthreads = comm->nthreads;
|
|
const int inum = list->inum;
|
|
|
|
// update body ptr and values for ghost atoms if using FixRigid masses
|
|
|
|
if (fix_rigid && neighbor->ago == 0) {
|
|
body = fix_rigid->body;
|
|
comm->forward_comm_pair(this);
|
|
}
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel default(none) shared(eflag,vflag)
|
|
#endif
|
|
{
|
|
int ifrom, ito, tid;
|
|
|
|
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
|
|
ThrData *thr = fix->get_thr(tid);
|
|
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
|
|
|
|
if (evflag)
|
|
if (force->newton_pair) eval<1,1>(ifrom, ito, thr);
|
|
else eval<1,0>(ifrom, ito, thr);
|
|
else
|
|
if (force->newton_pair) eval<0,1>(ifrom, ito, thr);
|
|
else eval<0,0>(ifrom, ito, thr);
|
|
|
|
reduce_thr(this, eflag, vflag, thr);
|
|
} // end of omp parallel region
|
|
}
|
|
|
|
template <int EVFLAG, int NEWTON_PAIR>
|
|
void PairGranHookeOMP::eval(int iifrom, int iito, ThrData * const thr)
|
|
{
|
|
int i,j,ii,jj,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz;
|
|
double radi,radj,radsum,rsq,r,rinv,rsqinv;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3,vt1,vt2,vt3;
|
|
double wr1,wr2,wr3;
|
|
double vtr1,vtr2,vtr3,vrel;
|
|
double mi,mj,meff,damp,ccel,tor1,tor2,tor3;
|
|
double fn,fs,ft,fs1,fs2,fs3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
const double * const * const x = atom->x;
|
|
const double * const * const v = atom->v;
|
|
const double * const * const omega = atom->omega;
|
|
const double * const radius = atom->radius;
|
|
const double * const rmass = atom->rmass;
|
|
const double * const mass = atom->mass;
|
|
double * const * const f = thr->get_f();
|
|
double * const * const torque = thr->get_torque();
|
|
const int * const type = atom->type;
|
|
const int * const mask = atom->mask;
|
|
const int nlocal = atom->nlocal;
|
|
double fxtmp,fytmp,fztmp;
|
|
double t1tmp,t2tmp,t3tmp;
|
|
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// loop over neighbors of my atoms
|
|
|
|
for (ii = iifrom; ii < iito; ++ii) {
|
|
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
fxtmp=fytmp=fztmp=t1tmp=t2tmp=t3tmp=0.0;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
radj = radius[j];
|
|
radsum = radi + radj;
|
|
|
|
if (rsq < radsum*radsum) {
|
|
r = sqrt(rsq);
|
|
rinv = 1.0/r;
|
|
rsqinv = 1.0/rsq;
|
|
|
|
// relative translational velocity
|
|
|
|
vr1 = v[i][0] - v[j][0];
|
|
vr2 = v[i][1] - v[j][1];
|
|
vr3 = v[i][2] - v[j][2];
|
|
|
|
// normal component
|
|
|
|
vnnr = vr1*delx + vr2*dely + vr3*delz;
|
|
vn1 = delx*vnnr * rsqinv;
|
|
vn2 = dely*vnnr * rsqinv;
|
|
vn3 = delz*vnnr * rsqinv;
|
|
|
|
// tangential component
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// relative rotational velocity
|
|
|
|
wr1 = (radi*omega[i][0] + radj*omega[j][0]) * rinv;
|
|
wr2 = (radi*omega[i][1] + radj*omega[j][1]) * rinv;
|
|
wr3 = (radi*omega[i][2] + radj*omega[j][2]) * rinv;
|
|
|
|
// meff = effective mass of pair of particles
|
|
// if I or J part of rigid body, use body mass
|
|
// if I or J is frozen, meff is other particle
|
|
|
|
if (rmass) {
|
|
mi = rmass[i];
|
|
mj = rmass[j];
|
|
} else {
|
|
mi = mass[type[i]];
|
|
mj = mass[type[j]];
|
|
}
|
|
if (fix_rigid) {
|
|
if (body[i] >= 0) mi = fix_rigid->masstotal[body[i]];
|
|
if (body[j] >= 0) mj = fix_rigid->masstotal[body[j]];
|
|
}
|
|
|
|
meff = mi*mj / (mi+mj);
|
|
if (mask[i] & freeze_group_bit) meff = mj;
|
|
if (mask[j] & freeze_group_bit) meff = mi;
|
|
|
|
// normal forces = Hookian contact + normal velocity damping
|
|
|
|
damp = meff*gamman*vnnr*rsqinv;
|
|
ccel = kn*(radsum-r)*rinv - damp;
|
|
|
|
// relative velocities
|
|
|
|
vtr1 = vt1 - (delz*wr2-dely*wr3);
|
|
vtr2 = vt2 - (delx*wr3-delz*wr1);
|
|
vtr3 = vt3 - (dely*wr1-delx*wr2);
|
|
vrel = vtr1*vtr1 + vtr2*vtr2 + vtr3*vtr3;
|
|
vrel = sqrt(vrel);
|
|
|
|
// force normalization
|
|
|
|
fn = xmu * fabs(ccel*r);
|
|
fs = meff*gammat*vrel;
|
|
if (vrel != 0.0) ft = MIN(fn,fs) / vrel;
|
|
else ft = 0.0;
|
|
|
|
// tangential force due to tangential velocity damping
|
|
|
|
fs1 = -ft*vtr1;
|
|
fs2 = -ft*vtr2;
|
|
fs3 = -ft*vtr3;
|
|
|
|
// forces & torques
|
|
|
|
fx = delx*ccel + fs1;
|
|
fy = dely*ccel + fs2;
|
|
fz = delz*ccel + fs3;
|
|
fxtmp += fx;
|
|
fytmp += fy;
|
|
fztmp += fz;
|
|
|
|
tor1 = rinv * (dely*fs3 - delz*fs2);
|
|
tor2 = rinv * (delz*fs1 - delx*fs3);
|
|
tor3 = rinv * (delx*fs2 - dely*fs1);
|
|
t1tmp -= radi*tor1;
|
|
t2tmp -= radi*tor2;
|
|
t3tmp -= radi*tor3;
|
|
|
|
if (NEWTON_PAIR || j < nlocal) {
|
|
f[j][0] -= fx;
|
|
f[j][1] -= fy;
|
|
f[j][2] -= fz;
|
|
torque[j][0] -= radj*tor1;
|
|
torque[j][1] -= radj*tor2;
|
|
torque[j][2] -= radj*tor3;
|
|
}
|
|
|
|
if (EVFLAG) ev_tally_xyz_thr(this,i,j,nlocal,NEWTON_PAIR,
|
|
0.0,0.0,fx,fy,fz,delx,dely,delz,thr);
|
|
|
|
}
|
|
}
|
|
f[i][0] += fxtmp;
|
|
f[i][1] += fytmp;
|
|
f[i][2] += fztmp;
|
|
torque[i][0] += t1tmp;
|
|
torque[i][1] += t2tmp;
|
|
torque[i][2] += t3tmp;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairGranHookeOMP::memory_usage()
|
|
{
|
|
double bytes = memory_usage_thr();
|
|
bytes += PairGranHooke::memory_usage();
|
|
|
|
return bytes;
|
|
}
|