Files
lammps/src/REACTION/fix_bond_react.cpp
Jacob Gissinger f6f3eb1c31 bug-fix bug fix
2025-06-06 00:15:30 -04:00

4746 lines
178 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing Author: Jacob Gissinger (jgissing@stevens.edu)
------------------------------------------------------------------------- */
#include "fix_bond_react.h"
#include "atom.h"
#include "atom_vec.h"
#include "citeme.h"
#include "comm.h"
#include "compute.h"
#include "domain.h"
#include "error.h"
#include "fix_bond_history.h"
#include "force.h"
#include "group.h"
#include "input.h"
#include "math_const.h"
#include "math_extra.h"
#include "memory.h"
#include "modify.h"
#include "molecule.h"
#include "neigh_list.h"
#include "neighbor.h"
#include "pair.h"
#include "random_mars.h"
#include "reset_atoms_mol.h"
#include "respa.h"
#include "update.h"
#include "variable.h"
#include "superpose3d.h"
#include <cctype>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <random>
#include <utility>
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
static const char cite_fix_bond_react[] =
"fix bond/react: reacter.org doi:10.1016/j.polymer.2017.09.038, "
"doi:10.1021/acs.macromol.0c02012, doi:10.1016/j.cpc.2024.109287\n\n"
"@Article{Gissinger17,\n"
" author = {J. R. Gissinger and B. D. Jensen and K. E. Wise},\n"
" title = {Modeling Chemical Reactions in Classical Molecular Dynamics Simulations},\n"
" journal = {Polymer},\n"
" year = 2017,\n"
" volume = 128,\n"
" pages = {211--217}\n"
"}\n\n"
"@Article{Gissinger20,\n"
" author = {J. R. Gissinger, B. D. Jensen, K. E. Wise},\n"
" title = {{REACTER}: A Heuristic Method for Reactive Molecular Dynamics},\n"
" journal = {Macromolecules},\n"
" year = 2020,\n"
" volume = 53,\n"
" number = 22,\n"
" pages = {9953--9961}\n"
"}\n\n"
"@Article{Gissinger24,\n"
" author = {J. R. Gissinger, B. D. Jensen, K. E. Wise},\n"
" title = {Molecular Modeling of Reactive Systems with REACTER},\n"
" journal = {Computer Physics Communications},\n"
" year = 2024,\n"
" volume = 304,\n"
" number = 109287\n"
"}\n\n";
static constexpr double BIG = 1.0e20;
static constexpr int DELTA = 16;
static constexpr int MAXGUESS = 20; // max # of guesses allowed by superimpose algorithm
static constexpr int MAXCONARGS = 14; // max # of arguments for any type of constraint + rxnID
static constexpr int NUMVARVALS = 5; // max # of keyword values that have variables as input
// various statuses of superimpose algorithm:
// ACCEPT: site successfully matched to pre-reacted template
// REJECT: site does not match pre-reacted template
// PROCEED: normal execution (non-guessing mode)
// CONTINUE: a neighbor has been assigned, skip to next neighbor
// GUESSFAIL: a guess has failed (if no more restore points, status = 'REJECT')
// RESTORE: restore mode, load most recent restore point
enum { ACCEPT, REJECT, PROCEED, CONTINUE, GUESSFAIL, RESTORE };
// types of available reaction constraints
enum { DISTANCE, ANGLE, DIHEDRAL, ARRHENIUS, RMSD, CUSTOM };
// ID type used by constraint
enum { ATOM, FRAG };
// keyword values that accept variables as input
enum { NEVERY, RMIN, RMAX, PROB, NRATE };
// flag for one-proc vs shared reaction sites
enum { LOCAL, GLOBAL };
// values for molecule_keyword
enum { OFF, INTER, INTRA };
/* ---------------------------------------------------------------------- */
// clang-format off
FixBondReact::FixBondReact(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg)
{
if (lmp->citeme) lmp->citeme->add(cite_fix_bond_react);
fix1 = nullptr;
fix2 = nullptr;
fix3 = nullptr;
reset_mol_ids = nullptr;
if (narg < 8) utils::missing_cmd_args(FLERR,"fix bond/react", error);
newton_bond = force->newton_bond;
restart_global = 1;
attempted_rxn = 0;
force_reneighbor = 1;
next_reneighbor = -1;
vector_flag = 1;
global_freq = 1;
extvector = 0;
rxnID = 0;
cuff = 1;
maxnconstraints = 0;
narrhenius = 0;
status = PROCEED;
// reaction functions used by 'custom' constraint
nrxnfunction = 3;
rxnfunclist.resize(nrxnfunction);
peratomflag.resize(nrxnfunction);
rxnfunclist[0] = "rxnsum";
peratomflag[0] = 1;
rxnfunclist[1] = "rxnave";
peratomflag[1] = 1;
rxnfunclist[2] = "rxnbond";
peratomflag[2] = 0;
nvvec = 0;
ncustomvars = 0;
vvec = nullptr;
nxspecial = nullptr;
onemol_nxspecial = nullptr;
twomol_nxspecial = nullptr;
xspecial = nullptr;
onemol_xspecial = nullptr;
twomol_xspecial = nullptr;
// these group names are reserved for use exclusively by bond/react
master_group = (char *) "bond_react_MASTER_group";
// by using fixed group names, only one instance of fix bond/react is allowed.
if (modify->get_fix_by_style("^bond/react").size() != 0)
error->all(FLERR, Error::NOLASTLINE, "Only one instance of fix bond/react allowed at a time");
// let's find number of reactions specified
nreacts = 0;
for (int i = 3; i < narg; i++) {
if (strcmp(arg[i],"react") == 0) {
nreacts++;
i = i + 6; // skip past mandatory arguments
if (i > narg) utils::missing_cmd_args(FLERR,"fix bond/react react", error);
}
}
if (nreacts == 0)
error->all(FLERR, Error::NOLASTLINE, "Fix bond/react is missing mandatory 'react' keyword");
size_vector = nreacts;
int iarg = 3;
stabilization_flag = 0;
molid_mode = RESET_MOL_IDS::YES;
int num_common_keywords = 2;
for (int m = 0; m < num_common_keywords; m++) {
if (strcmp(arg[iarg],"stabilization") == 0) {
if (iarg+2 > narg) utils::missing_cmd_args(FLERR,"fix bond/react stabilization", error);
stabilization_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
if (stabilization_flag) {
if (iarg+4 > narg)
utils::missing_cmd_args(FLERR, "fix bond/react stabilization yes", error);
exclude_group = utils::strdup(arg[iarg+2]);
nve_limit_xmax = arg[iarg+3];
iarg += 4;
} else iarg += 2;
} else if (strcmp(arg[iarg],"reset_mol_ids") == 0) {
if (iarg+2 > narg) utils::missing_cmd_args(FLERR,"fix bond/react reset_mol_ids", error);
std::string str = arg[iarg+1];
if (str == "yes") molid_mode = RESET_MOL_IDS::YES;
else if (str == "no") molid_mode = RESET_MOL_IDS::NO;
else if (str == "molmap") molid_mode = RESET_MOL_IDS::MOLMAP;
else error->all(FLERR, iarg+1, "Unknown option {} for 'reset_mol_ids' keyword", str);
iarg += 2;
} else if (strcmp(arg[iarg],"react") == 0) {
break;
} else error->all(FLERR, iarg, "Unknown fix bond/react command keyword {}", arg[iarg]);
}
if (molid_mode == RESET_MOL_IDS::YES) {
delete reset_mol_ids;
reset_mol_ids = new ResetAtomsMol(lmp);
reset_mol_ids->create_computes(id,group->names[igroup]);
}
// set up common variables as vectors of length 'nreacts'
// nevery, cutoff, onemol, twomol, superimpose file
// this looks excessive
// the price of vectorization (all reactions in one command)?
memory->create(rxn_name,nreacts,MAXNAME,"bond/react:rxn_name");
memory->create(nevery,nreacts,"bond/react:nevery");
memory->create(cutsq,nreacts,2,"bond/react:cutsq");
memory->create(unreacted_mol,nreacts,"bond/react:unreacted_mol");
memory->create(reacted_mol,nreacts,"bond/react:reacted_mol");
memory->create(fraction,nreacts,"bond/react:fraction");
memory->create(max_rxn,nreacts,"bond/react:max_rxn");
memory->create(nlocalkeep,nreacts,"bond/react:nlocalkeep");
memory->create(nghostlykeep,nreacts,"bond/react:nghostlykeep");
memory->create(seed,nreacts,"bond/react:seed");
memory->create(limit_duration,nreacts,"bond/react:limit_duration");
memory->create(rate_limit,3,nreacts,"bond/react:rate_limit");
memory->create(stabilize_steps_flag,nreacts,"bond/react:stabilize_steps_flag");
memory->create(custom_charges_fragid,nreacts,"bond/react:custom_charges_fragid");
memory->create(rescale_charges_flag,nreacts,"bond/react:rescale_charges_flag");
memory->create(create_atoms_flag,nreacts,"bond/react:create_atoms_flag");
memory->create(modify_create_fragid,nreacts,"bond/react:modify_create_fragid");
memory->create(overlapsq,nreacts,"bond/react:overlapsq");
memory->create(molecule_keyword,nreacts,"bond/react:molecule_keyword");
memory->create(nconstraints,nreacts,"bond/react:nconstraints");
memory->create(constraintstr,nreacts,MAXLINE,"bond/react:constraintstr");
memory->create(var_flag,NUMVARVALS,nreacts,"bond/react:var_flag");
memory->create(var_id,NUMVARVALS,nreacts,"bond/react:var_id");
memory->create(iatomtype,nreacts,"bond/react:iatomtype");
memory->create(jatomtype,nreacts,"bond/react:jatomtype");
memory->create(ibonding,nreacts,"bond/react:ibonding");
memory->create(jbonding,nreacts,"bond/react:jbonding");
memory->create(closeneigh,nreacts,"bond/react:closeneigh");
memory->create(groupbits,nreacts,"bond/react:groupbits");
memory->create(reaction_count,nreacts,"bond/react:reaction_count");
memory->create(local_rxn_count,nreacts,"bond/react:local_rxn_count");
memory->create(ghostly_rxn_count,nreacts,"bond/react:ghostly_rxn_count");
memory->create(reaction_count_total,nreacts,"bond/react:reaction_count_total");
rescale_charges_anyflag = 0;
for (int i = 0; i < nreacts; i++) {
fraction[i] = 1.0;
seed[i] = 12345;
max_rxn[i] = INT_MAX;
for (int j = 0; j < 3; j++)
rate_limit[j][i] = 0;
stabilize_steps_flag[i] = 0;
custom_charges_fragid[i] = -1;
rescale_charges_flag[i] = 0;
create_atoms_flag[i] = 0;
modify_create_fragid[i] = -1;
overlapsq[i] = 0.0;
molecule_keyword[i] = OFF;
nconstraints[i] = 0;
// set default limit duration to 60 timesteps
limit_duration[i] = 60;
reaction_count[i] = 0;
local_rxn_count[i] = 0;
ghostly_rxn_count[i] = 0;
reaction_count_total[i] = 0;
for (int j = 0; j < NUMVARVALS; j++) {
var_flag[j][i] = 0;
var_id[j][i] = 0;
}
}
char **files;
files = new char*[nreacts];
for (int rxn = 0; rxn < nreacts; rxn++) {
if (strcmp(arg[iarg],"react") != 0) error->all(FLERR,"Illegal fix bond/react command: "
"'react' or 'stabilization' has incorrect arguments");
iarg++;
int n = strlen(arg[iarg]) + 1;
if (n > MAXNAME) error->all(FLERR,"Reaction name (react-ID) is too long (limit: 256 characters)");
strcpy(rxn_name[rxn],arg[iarg++]);
int groupid = group->find(arg[iarg++]);
if (groupid == -1) error->all(FLERR,"Could not find fix group ID");
groupbits[rxn] = group->bitmask[groupid];
if (strncmp(arg[iarg],"v_",2) == 0) read_variable_keyword(&arg[iarg][2],NEVERY,rxn);
else {
nevery[rxn] = utils::inumeric(FLERR,arg[iarg],false,lmp);
if (nevery[rxn] <= 0) error->all(FLERR,"Illegal fix bond/react command: "
"'Nevery' must be a positive integer");
}
iarg++;
double cutoff;
if (strncmp(arg[iarg],"v_",2) == 0) {
read_variable_keyword(&arg[iarg][2],RMIN,rxn);
cutoff = input->variable->compute_equal(var_id[RMIN][rxn]);
} else cutoff = utils::numeric(FLERR,arg[iarg],false,lmp);
if (cutoff < 0.0) error->all(FLERR,"Illegal fix bond/react command: "
"'Rmin' cannot be negative");
cutsq[rxn][0] = cutoff*cutoff;
iarg++;
if (strncmp(arg[iarg],"v_",2) == 0) {
read_variable_keyword(&arg[iarg][2],RMAX,rxn);
cutoff = input->variable->compute_equal(var_id[RMAX][rxn]);
} else cutoff = utils::numeric(FLERR,arg[iarg],false,lmp);
if (cutoff < 0.0) error->all(FLERR,"Illegal fix bond/react command:"
"'Rmax' cannot be negative");
cutsq[rxn][1] = cutoff*cutoff;
iarg++;
unreacted_mol[rxn] = atom->find_molecule(arg[iarg++]);
if (unreacted_mol[rxn] == -1) error->all(FLERR,"Unreacted molecule template ID for "
"fix bond/react does not exist");
reacted_mol[rxn] = atom->find_molecule(arg[iarg++]);
if (reacted_mol[rxn] == -1) error->all(FLERR,"Reacted molecule template ID for "
"fix bond/react does not exist");
//read map file
files[rxn] = utils::strdup(arg[iarg]);
iarg++;
while (iarg < narg && strcmp(arg[iarg],"react") != 0) {
if (strcmp(arg[iarg],"prob") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'prob' keyword has too few arguments");
// check if probability is a variable
if (strncmp(arg[iarg+1],"v_",2) == 0) {
read_variable_keyword(&arg[iarg+1][2],PROB,rxn);
fraction[rxn] = input->variable->compute_equal(var_id[PROB][rxn]);
} else {
// otherwise probability should be a number
fraction[rxn] = utils::numeric(FLERR,arg[iarg+1],false,lmp);
}
seed[rxn] = utils::inumeric(FLERR,arg[iarg+2],false,lmp);
if (fraction[rxn] < 0.0 || fraction[rxn] > 1.0)
error->all(FLERR,"Illegal fix bond/react command: "
"probability fraction must between 0 and 1, inclusive");
if (seed[rxn] <= 0) error->all(FLERR,"Illegal fix bond/react command: "
"probability seed must be positive");
iarg += 3;
} else if (strcmp(arg[iarg],"max_rxn") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'max_rxn' has too few arguments");
max_rxn[rxn] = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
if (max_rxn[rxn] < 0) error->all(FLERR,"Illegal fix bond/react command: "
"'max_rxn' cannot be negative");
iarg += 2;
} else if (strcmp(arg[iarg],"rate_limit") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'rate_limit' has too few arguments");
rate_limit[0][rxn] = 1; // serves as flag for rate_limit keyword
if (strncmp(arg[iarg+1],"v_",2) == 0) read_variable_keyword(&arg[iarg+1][2],NRATE,rxn);
else rate_limit[1][rxn] = utils::numeric(FLERR,arg[iarg+1],false,lmp);
rate_limit[2][rxn] = utils::numeric(FLERR,arg[iarg+2],false,lmp);
iarg += 3;
} else if (strcmp(arg[iarg],"stabilize_steps") == 0) {
if (stabilization_flag == 0) error->all(FLERR,"Stabilize_steps keyword "
"used without stabilization keyword");
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'stabilize_steps' has too few arguments");
limit_duration[rxn] = utils::numeric(FLERR,arg[iarg+1],false,lmp);
stabilize_steps_flag[rxn] = 1;
iarg += 2;
} else if (strcmp(arg[iarg],"custom_charges") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'custom_charges' has too few arguments");
if (strcmp(arg[iarg+1],"no") == 0) custom_charges_fragid[rxn] = -1; //default
else {
custom_charges_fragid[rxn] = atom->molecules[unreacted_mol[rxn]]->findfragment(arg[iarg+1]);
if (custom_charges_fragid[rxn] < 0) error->one(FLERR,"Fix bond/react: Molecule fragment for "
"'custom_charges' keyword does not exist");
}
iarg += 2;
} else if (strcmp(arg[iarg],"rescale_charges") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'rescale_charges' has too few arguments");
if (strcmp(arg[iarg+1],"no") == 0) rescale_charges_flag[rxn] = 0; //default
else if (strcmp(arg[iarg+1],"yes") == 0) {
if (!atom->q_flag) error->all(FLERR,"Illegal fix bond/react command: cannot use "
"'rescale_charges' without atomic charges enabled");
twomol = atom->molecules[reacted_mol[rxn]];
if (!twomol->qflag) error->all(FLERR,"Illegal fix bond/react command: cannot use "
"'rescale_charges' without Charges section in post-reaction template");
rescale_charges_flag[rxn] = 1; // overloaded below to also indicate number of atoms to update
rescale_charges_anyflag = 1;
cuff = 2; // index shift for extra values carried around by mega_gloves
} else error->one(FLERR,"Bond/react: Illegal option for 'rescale_charges' keyword");
iarg += 2;
} else if (strcmp(arg[iarg],"molecule") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'molecule' has too few arguments");
if (strcmp(arg[iarg+1],"off") == 0) molecule_keyword[rxn] = OFF; //default
else if (strcmp(arg[iarg+1],"inter") == 0) molecule_keyword[rxn] = INTER;
else if (strcmp(arg[iarg+1],"intra") == 0) molecule_keyword[rxn] = INTRA;
else error->one(FLERR,"Fix bond/react: Illegal option for 'molecule' keyword");
iarg += 2;
} else if (strcmp(arg[iarg],"modify_create") == 0) {
if (iarg++ > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'modify_create' has too few arguments");
while (iarg < narg && strcmp(arg[iarg],"react") != 0) {
if (strcmp(arg[iarg],"fit") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'modify_create' has too few arguments");
if (strcmp(arg[iarg+1],"all") == 0) modify_create_fragid[rxn] = -1; //default
else {
modify_create_fragid[rxn] = atom->molecules[reacted_mol[rxn]]->findfragment(arg[iarg+1]);
if (modify_create_fragid[rxn] < 0) error->one(FLERR,"Fix bond/react: Molecule fragment for "
"'modify_create' keyword does not exist");
}
iarg += 2;
} else if (strcmp(arg[iarg],"overlap") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix bond/react command: "
"'modify_create' has too few arguments");
overlapsq[rxn] = utils::numeric(FLERR,arg[iarg+1],false,lmp);
overlapsq[rxn] *= overlapsq[rxn];
iarg += 2;
} else break;
}
} else error->all(FLERR,"Illegal fix bond/react command: unknown keyword");
}
}
max_natoms = 0; // the number of atoms in largest molecule template
max_rate_limit_steps = 0;
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
twomol = atom->molecules[reacted_mol[myrxn]];
max_natoms = MAX(max_natoms,twomol->natoms);
max_rate_limit_steps = MAX(max_rate_limit_steps,rate_limit[2][myrxn]);
}
memory->create(equivalences,max_natoms,2,nreacts,"bond/react:equivalences");
memory->create(reverse_equiv,max_natoms,2,nreacts,"bond/react:reverse_equiv");
memory->create(edge,max_natoms,nreacts,"bond/react:edge");
memory->create(landlocked_atoms,max_natoms,nreacts,"bond/react:landlocked_atoms");
memory->create(store_rxn_count,max_rate_limit_steps,nreacts,"bond/react:store_rxn_count");
memory->create(custom_charges,max_natoms,nreacts,"bond/react:custom_charges");
memory->create(delete_atoms,max_natoms,nreacts,"bond/react:delete_atoms");
memory->create(create_atoms,max_natoms,nreacts,"bond/react:create_atoms");
memory->create(chiral_atoms,max_natoms,6,nreacts,"bond/react:chiral_atoms");
memory->create(newmolids,max_natoms,nreacts,"bond/react:newmolids");
memory->create(nnewmolids,nreacts,"bond/react:nnewmolids");
memory->create(mol_total_charge,nreacts,"bond/react:mol_total_charge");
for (int j = 0; j < nreacts; j++) {
mol_total_charge[j] = 0.0;
for (int i = 0; i < max_natoms; i++) {
edge[i][j] = 0;
custom_charges[i][j] = 1; // update all partial charges by default
delete_atoms[i][j] = 0;
create_atoms[i][j] = 0;
newmolids[i][j] = 0;
nnewmolids[j] = 0;
for (int k = 0; k < 6; k++) {
chiral_atoms[i][k][j] = 0;
}
// default equivalences to their own mol index
// all but created atoms will be updated
for (int m = 0; m < 2; m++) {
equivalences[i][m][j] = i+1;
}
}
for (int i = 0; i < max_rate_limit_steps; i++) {
store_rxn_count[i][j] = -1;
}
}
if (molid_mode == RESET_MOL_IDS::MOLMAP) {
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
onemol = atom->molecules[unreacted_mol[myrxn]];
twomol = atom->molecules[reacted_mol[myrxn]];
if (!onemol->moleculeflag || !twomol->moleculeflag) {
if (comm->me == 0)
error->warning(FLERR,"Fix bond/react ('reset_mol_ids molmap' option): Pre- and post-reaction templates must "
"both contain a 'Molecules' section for molecule IDs to be updated for a given reaction");
break;
}
}
// 'new' mol IDs are ones that exist in post-reaction but not in pre-reaction
// let's condense these and shift to be indexed from 1
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
onemol = atom->molecules[unreacted_mol[myrxn]];
twomol = atom->molecules[reacted_mol[myrxn]];
if (onemol->moleculeflag && twomol->moleculeflag) {
for (int j = 0; j < twomol->natoms; j++) {
if (newmolids[j][myrxn] != 0) continue;
int molid_isnew = 1;
for (int k = 0; k < onemol->natoms; k++) {
if (twomol->molecule[j] == onemol->molecule[k]) {
molid_isnew = 0;
break;
}
}
if (molid_isnew == 1) {
nnewmolids[myrxn]++;
for (int k = j; k < twomol->natoms; k++) {
if (twomol->molecule[k] == twomol->molecule[j])
newmolids[k][myrxn] = nnewmolids[myrxn];
}
}
}
}
}
}
// read all map files afterward
for (int i = 0; i < nreacts; i++) {
open(files[i]);
onemol = atom->molecules[unreacted_mol[i]];
twomol = atom->molecules[reacted_mol[i]];
onemol->check_attributes();
twomol->check_attributes();
get_molxspecials();
read_map_file(i);
fclose(fp);
iatomtype[i] = onemol->type[ibonding[i]-1];
jatomtype[i] = onemol->type[jbonding[i]-1];
find_landlocked_atoms(i);
if (custom_charges_fragid[i] >= 0) CustomCharges(custom_charges_fragid[i],i);
}
// charge rescaling values must be calculated after calling CustomCharges
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
if (rescale_charges_flag[myrxn]) {
rescale_charges_flag[myrxn] = 0; // will now store number of updated atoms
twomol = atom->molecules[reacted_mol[myrxn]];
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][myrxn]-1;
if (custom_charges[jj][myrxn] == 1 && delete_atoms[jj][myrxn] == 0) {
mol_total_charge[myrxn] += twomol->q[j];
rescale_charges_flag[myrxn]++;
}
}
}
}
// get the names of per-atom variables needed by 'rxn' functions of custom constraint
customvarnames();
// initialize Marsaglia RNG with processor-unique seed (Arrhenius prob)
rrhandom = new RanMars*[narrhenius];
int tmp = 0;
for (int i = 0; i < nreacts; i++) {
for (int j = 0; j < nconstraints[i]; j++) {
if (constraints[j][i].type == ARRHENIUS) {
rrhandom[tmp++] = new RanMars(lmp,(int) constraints[j][i].par[4] + comm->me);
}
}
}
for (int i = 0; i < nreacts; i++) {
delete[] files[i];
}
delete[] files;
if (atom->molecular != Atom::MOLECULAR)
error->all(FLERR,"Fix bond/react: Cannot use fix bond/react with non-molecular systems");
// check if bonding atoms are 1-2, 1-3, or 1-4 bonded neighbors
// if so, we don't need non-bonded neighbor list
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
closeneigh[myrxn] = -1; // indicates will search non-bonded neighbors
onemol = atom->molecules[unreacted_mol[myrxn]];
get_molxspecials();
for (int k = 0; k < onemol_nxspecial[ibonding[myrxn]-1][2]; k++) {
if (onemol_xspecial[ibonding[myrxn]-1][k] == jbonding[myrxn]) {
closeneigh[myrxn] = 2; // index for 1-4 neighbor
if (k < onemol_nxspecial[ibonding[myrxn]-1][1])
closeneigh[myrxn] = 1; // index for 1-3 neighbor
if (k < onemol_nxspecial[ibonding[myrxn]-1][0])
closeneigh[myrxn] = 0; // index for 1-2 neighbor
break;
}
}
}
// initialize Marsaglia RNG with processor-unique seed ('prob' keyword)
random = new RanMars*[nreacts];
for (int i = 0; i < nreacts; i++) {
random[i] = new RanMars(lmp,seed[i] + comm->me);
}
// set comm sizes needed by this fix
// forward is big due to comm of broken bonds and 1-2 neighbors
comm_forward = MAX(2,2+atom->maxspecial);
comm_reverse = 2;
// allocate arrays local to this fix
nmax = 0;
partner = finalpartner = nullptr;
distsq = nullptr;
maxattempt = 0;
attempt = nullptr;
nattempt = nullptr;
allnattempt = 0;
my_num_mega = 0;
local_num_mega = 0;
ghostly_num_mega = 0;
restore = nullptr;
// zero out stats
global_megasize = 0;
avail_guesses = 0;
glove_counter = 0;
guess_branch = new int[MAXGUESS]();
pioneer_count = new int[max_natoms];
my_mega_glove = nullptr;
local_mega_glove = nullptr;
ghostly_mega_glove = nullptr;
global_mega_glove = nullptr;
// these are merely loop indices that became important
pion = neigh = trace = 0;
id_fix1 = nullptr;
id_fix2 = nullptr;
id_fix3 = nullptr;
statted_id = nullptr;
custom_exclude_flag = 0;
// used to store restart info
set = new Set[nreacts];
memset(set,0,nreacts*sizeof(Set));
}
/* ---------------------------------------------------------------------- */
FixBondReact::~FixBondReact()
{
for (int i = 0; i < narrhenius; i++) {
delete rrhandom[i];
}
delete[] rrhandom;
for (int i = 0; i < nreacts; i++) {
delete random[i];
}
delete[] random;
delete reset_mol_ids;
memory->destroy(partner);
memory->destroy(finalpartner);
memory->destroy(nattempt);
memory->destroy(distsq);
memory->destroy(attempt);
memory->destroy(edge);
memory->destroy(equivalences);
memory->destroy(reverse_equiv);
memory->destroy(landlocked_atoms);
memory->destroy(store_rxn_count);
memory->destroy(custom_charges);
memory->destroy(delete_atoms);
memory->destroy(create_atoms);
memory->destroy(chiral_atoms);
memory->destroy(newmolids);
memory->destroy(nnewmolids);
memory->destroy(mol_total_charge);
if (vvec != nullptr) memory->destroy(vvec);
memory->destroy(rxn_name);
memory->destroy(nevery);
memory->destroy(cutsq);
memory->destroy(unreacted_mol);
memory->destroy(reacted_mol);
memory->destroy(fraction);
memory->destroy(seed);
memory->destroy(max_rxn);
memory->destroy(nlocalkeep);
memory->destroy(nghostlykeep);
memory->destroy(limit_duration);
memory->destroy(var_flag);
memory->destroy(var_id);
memory->destroy(rate_limit);
memory->destroy(stabilize_steps_flag);
memory->destroy(custom_charges_fragid);
memory->destroy(rescale_charges_flag);
memory->destroy(molecule_keyword);
memory->destroy(nconstraints);
memory->destroy(constraintstr);
memory->destroy(create_atoms_flag);
memory->destroy(modify_create_fragid);
memory->destroy(overlapsq);
memory->destroy(iatomtype);
memory->destroy(jatomtype);
memory->destroy(ibonding);
memory->destroy(jbonding);
memory->destroy(closeneigh);
memory->destroy(groupbits);
memory->destroy(reaction_count);
memory->destroy(local_rxn_count);
memory->destroy(ghostly_rxn_count);
memory->destroy(reaction_count_total);
if (attempted_rxn == 1) {
memory->destroy(restore_pt);
memory->destroy(restore);
memory->destroy(glove);
memory->destroy(pioneers);
memory->destroy(my_mega_glove);
memory->destroy(local_mega_glove);
memory->destroy(ghostly_mega_glove);
}
memory->destroy(global_mega_glove);
if (stabilization_flag == 1) {
// delete fixes if not already deleted
if (id_fix1 && modify->get_fix_by_id(id_fix1)) modify->delete_fix(id_fix1);
delete[] id_fix1;
if (id_fix3 && modify->get_fix_by_id(id_fix3)) modify->delete_fix(id_fix3);
delete[] id_fix3;
}
if (id_fix2 && modify->get_fix_by_id(id_fix2)) modify->delete_fix(id_fix2);
delete[] id_fix2;
delete[] statted_id;
delete[] guess_branch;
delete[] pioneer_count;
delete[] set;
if (group) {
group->assign(std::string(master_group) + " delete");
if (stabilization_flag == 1) {
group->assign(std::string(exclude_group) + " delete");
delete[] exclude_group;
}
}
}
/* ---------------------------------------------------------------------- */
int FixBondReact::setmask()
{
int mask = 0;
mask |= POST_INTEGRATE;
mask |= POST_INTEGRATE_RESPA;
mask |= POST_FORCE;
return mask;
}
/* ----------------------------------------------------------------------
let's add an internal nve/limit fix for relaxation of reaction sites
also let's add our per-atom property fix here!
this per-atom property will state the timestep an atom was 'limited'
it will have the name 'i_limit_tags' and will be intitialized to 0 (not in group)
------------------------------------------------------------------------- */
void FixBondReact::post_constructor()
{
// let's add the limit_tags per-atom property fix
id_fix2 = utils::strdup("bond_react_props_internal");
if (!modify->get_fix_by_id(id_fix2))
fix2 = modify->add_fix(std::string(id_fix2) +
" all property/atom i_limit_tags i_react_tags ghost yes");
// create master_group if not already existing
// NOTE: limit_tags and react_tags automaticaly intitialized to zero (unless read from restart)
group->find_or_create(master_group);
std::string cmd = fmt::format("{} dynamic all property limit_tags",master_group);
group->assign(cmd);
if (stabilization_flag == 1) {
int groupid = group->find(exclude_group);
// create exclude_group if not already existing, or use as parent group if static
if (groupid == -1 || group->dynamic[groupid] == 0) {
// create stabilization per-atom property
id_fix3 = utils::strdup("bond_react_stabilization_internal");
if (!modify->get_fix_by_id(id_fix3))
fix3 = modify->add_fix(std::string(id_fix3) +
" all property/atom i_statted_tags ghost yes");
statted_id = utils::strdup("statted_tags");
// if static group exists, use as parent group
// also, rename dynamic exclude_group by appending '_REACT'
char *exclude_PARENT_group;
exclude_PARENT_group = utils::strdup(exclude_group);
delete[] exclude_group;
exclude_group = utils::strdup(std::string(exclude_PARENT_group)+"_REACT");
group->find_or_create(exclude_group);
if (groupid == -1)
cmd = fmt::format("{} dynamic all property statted_tags",exclude_group);
else
cmd = fmt::format("{} dynamic {} property statted_tags",exclude_group,exclude_PARENT_group);
group->assign(cmd);
delete[] exclude_PARENT_group;
// on to statted_tags (system-wide thermostat)
// initialize per-atom statted_flags to 1
// (only if not already initialized by restart)
if (fix3->restart_reset != 1) {
int flag,cols;
int index = atom->find_custom("statted_tags",flag,cols);
int *i_statted_tags = atom->ivector[index];
for (int i = 0; i < atom->nlocal; i++)
i_statted_tags[i] = 1;
}
} else {
// sleeping code, for future capabilities
custom_exclude_flag = 1;
// first we have to find correct fix group reference
Fix *fix = modify->get_fix_by_id(std::string("GROUP_")+exclude_group);
// this returns names of corresponding property
int unused;
char *idprop;
idprop = (char *) fix->extract("property",unused);
if (idprop == nullptr)
error->all(FLERR,"Exclude group must be a per-atom property group");
statted_id = utils::strdup(idprop);
// initialize per-atom statted_tags to 1
// need to correct for smooth restarts
//int flag,cols;
//int index = atom->find_custom(statted_id,flag,cols);
//int *i_statted_tags = atom->ivector[index];
//for (int i = 0; i < atom->nlocal; i++)
// i_statted_tags[i] = 1;
}
// let's create a new nve/limit fix to limit newly reacted atoms
id_fix1 = utils::strdup("bond_react_MASTER_nve_limit");
if (!modify->get_fix_by_id(id_fix1))
fix1 = modify->add_fix(fmt::format("{} {} nve/limit {}",
id_fix1,master_group,nve_limit_xmax));
}
}
/* ---------------------------------------------------------------------- */
void FixBondReact::init()
{
if (utils::strmatch(update->integrate_style,"^respa"))
nlevels_respa = (dynamic_cast<Respa *>(update->integrate))->nlevels;
// check cutoff for iatomtype,jatomtype
if (!utils::strmatch(force->pair_style,"^hybrid"))
for (int i = 0; i < nreacts; i++)
if (force->pair == nullptr || (closeneigh[i] < 0 && cutsq[i][1] > force->pair->cutsq[iatomtype[i]][jatomtype[i]]))
error->all(FLERR,"Fix bond/react: Fix bond/react cutoff is longer than pairwise cutoff");
// need a half neighbor list, built every Nevery steps
neighbor->add_request(this, NeighConst::REQ_OCCASIONAL);
lastcheck = -1;
}
/* ---------------------------------------------------------------------- */
void FixBondReact::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ----------------------------------------------------------------------
Identify all pairs of potentially reactive atoms for this time step.
This function is modified from LAMMPS' fix bond/create.
---------------------------------------------------------------------- */
void FixBondReact::post_integrate()
{
// update store_rxn_count on every step
for (int myrxn = 0; myrxn < nreacts; myrxn++) {
if (rate_limit[0][myrxn] == 1) {
for (int i = rate_limit[2][myrxn]-1; i > 0; i--) {
store_rxn_count[i][myrxn] = store_rxn_count[i-1][myrxn];
}
store_rxn_count[0][myrxn] = reaction_count_total[myrxn];
}
}
// check if any reactions could occur on this timestep
int nevery_check = 1;
for (int i = 0; i < nreacts; i++) {
if (var_flag[NEVERY][i])
nevery[i] = ceil(input->variable->compute_equal(var_id[NEVERY][i]));
if (nevery[i] <= 0)
error->all(FLERR,"Illegal fix bond/react command: "
"'Nevery' must be a positive integer");
if (!(update->ntimestep % nevery[i])) {
nevery_check = 0;
break;
}
}
for (int i = 0; i < nreacts; i++) {
reaction_count[i] = 0;
local_rxn_count[i] = 0;
ghostly_rxn_count[i] = 0;
nlocalkeep[i] = INT_MAX;
nghostlykeep[i] = INT_MAX;
// update reaction probability
if (var_flag[PROB][i])
fraction[i] = input->variable->compute_equal(var_id[PROB][i]);
}
if (nevery_check) {
unlimit_bond();
return;
}
// acquire updated ghost atom positions
// necessary b/c are calling this after integrate, but before Verlet comm
comm->forward_comm();
// resize bond partner list and initialize it
// needs to be atom->nmax in length
if (atom->nmax > nmax) {
memory->destroy(partner);
memory->destroy(finalpartner);
memory->destroy(distsq);
memory->destroy(nattempt);
nmax = atom->nmax;
memory->create(partner,nmax,"bond/react:partner");
memory->create(finalpartner,nmax,"bond/react:finalpartner");
memory->create(distsq,nmax,2,"bond/react:distsq");
memory->create(nattempt,nreacts,"bond/react:nattempt");
}
// reset 'attempt' counts
for (int i = 0; i < nreacts; i++) {
nattempt[i] = 0;
}
// reset per-bond compute map flag
atoms2bondflag = 0;
int nlocal = atom->nlocal;
int nall = atom->nlocal + atom->nghost;
// loop over neighbors of my atoms
// each atom sets one closest eligible partner atom ID to bond with
tagint *tag = atom->tag;
int *type = atom->type;
neighbor->build_one(list);
// here we define a full special list
// may need correction for unusual special bond settings
nxspecial = atom->nspecial;
xspecial = atom->special;
int j;
for (rxnID = 0; rxnID < nreacts; rxnID++) {
int rate_limit_flag = 1;
if (rate_limit[0][rxnID] == 1) {
int myrxn_count = store_rxn_count[rate_limit[2][rxnID]-1][rxnID];
if (myrxn_count == -1) rate_limit_flag = 0;
else {
int nrxns_delta = reaction_count_total[rxnID] - myrxn_count;
int my_nrate;
if (var_flag[NRATE][rxnID] == 1) {
my_nrate = input->variable->compute_equal(var_id[NRATE][rxnID]);
} else my_nrate = rate_limit[1][rxnID];
if (nrxns_delta >= my_nrate) rate_limit_flag = 0;
}
}
if ((update->ntimestep % nevery[rxnID]) ||
(max_rxn[rxnID] <= reaction_count_total[rxnID]) ||
(rate_limit_flag == 0)) continue;
for (int ii = 0; ii < nall; ii++) {
partner[ii] = 0;
finalpartner[ii] = 0;
distsq[ii][0] = 0.0;
distsq[ii][1] = BIG;
}
// fork between far and close_partner here
if (closeneigh[rxnID] < 0) {
far_partner();
// reverse comm of distsq and partner
// not needed if newton_pair off since I,J pair was seen by both procs
commflag = 2;
if (force->newton_pair) comm->reverse_comm(this);
} else {
close_partner();
commflag = 2;
comm->reverse_comm(this);
}
// each atom now knows its winning partner
// forward comm of partner, so ghosts have it
commflag = 2;
comm->forward_comm(this,1);
// consider for reaction:
// only if both atoms list each other as winning bond partner
// if other atom is owned by another proc, it should do same thing
int temp_nattempt = 0;
for (int i = 0; i < nlocal; i++) {
if (partner[i] == 0) {
continue;
}
j = atom->map(partner[i]);
if (partner[j] != tag[i]) {
continue;
}
// store final bond partners and count the rxn possibility once
finalpartner[i] = tag[j];
finalpartner[j] = tag[i];
if (tag[i] < tag[j]) temp_nattempt++;
}
// cycle loop if no even eligible bonding atoms were found (on any proc)
int some_chance;
MPI_Allreduce(&temp_nattempt,&some_chance,1,MPI_INT,MPI_SUM,world);
if (!some_chance) continue;
// communicate final partner
commflag = 3;
comm->forward_comm(this);
// add instance to 'attempt' only if this processor
// owns the atoms with smaller global ID
// NOTE: we no longer care about ghost-ghost instances as bond/create did
// this is because we take care of updating topology later (and differently)
for (int i = 0; i < nlocal; i++) {
if (finalpartner[i] == 0) continue;
j = atom->map(finalpartner[i]);
if (tag[i] < tag[j]) {
if (nattempt[rxnID] > maxattempt-2) {
maxattempt += DELTA;
// third dim of 'attempt': bond/react integer ID
memory->grow(attempt,maxattempt,2,nreacts,"bond/react:attempt");
}
// to ensure types remain in same order
if (iatomtype[rxnID] == type[i]) {
attempt[nattempt[rxnID]][0][rxnID] = tag[i];
attempt[nattempt[rxnID]][1][rxnID] = finalpartner[i];
nattempt[rxnID]++;
// add another attempt if initiator atoms are same type
if (iatomtype[rxnID] == jatomtype[rxnID]) {
attempt[nattempt[rxnID]][0][rxnID] = finalpartner[i];
attempt[nattempt[rxnID]][1][rxnID] = tag[i];
nattempt[rxnID]++;
}
} else {
attempt[nattempt[rxnID]][0][rxnID] = finalpartner[i];
attempt[nattempt[rxnID]][1][rxnID] = tag[i];
nattempt[rxnID]++;
}
}
}
}
// break loop if no even eligible bonding atoms were found (on any proc)
int some_chance;
allnattempt = 0;
for (int i = 0; i < nreacts; i++)
allnattempt += nattempt[i];
MPI_Allreduce(&allnattempt,&some_chance,1,MPI_INT,MPI_SUM,world);
if (!some_chance) {
unlimit_bond();
return;
}
// evaluate custom constraint variable values here and forward_comm
get_customvars();
commflag = 1;
comm->forward_comm(this,ncustomvars);
// run through the superimpose algorithm
// this checks if simulation topology matches unreacted mol template
superimpose_algorithm();
// free atoms that have been limited after reacting
unlimit_bond();
}
/* ----------------------------------------------------------------------
Search non-bonded neighbor lists if bonding atoms are not in special list
------------------------------------------------------------------------- */
void FixBondReact::far_partner()
{
int inum,jnum,itype,jtype,possible;
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
int *ilist,*jlist,*numneigh,**firstneigh;
// loop over neighbors of my atoms
// each atom sets one closest eligible partner atom ID to bond with
double **x = atom->x;
tagint *tag = atom->tag;
int *mask = atom->mask;
int *type = atom->type;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// per-atom property indicating if in bond/react master group
int flag,cols;
int index1 = atom->find_custom("limit_tags",flag,cols);
int *i_limit_tags = atom->ivector[index1];
int i,j;
for (int ii = 0; ii < inum; ii++) {
i = ilist[ii];
if (!(mask[i] & groupbits[rxnID])) continue;
if (i_limit_tags[i] != 0) continue;
itype = type[i];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
for (int jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
if (!(mask[j] & groupbits[rxnID])) {
continue;
}
if (i_limit_tags[j] != 0) {
continue;
}
if (molecule_keyword[rxnID] == INTER) {
if (atom->molecule[i] == atom->molecule[j]) continue;
} else if (molecule_keyword[rxnID] == INTRA) {
if (atom->molecule[i] != atom->molecule[j]) continue;
}
jtype = type[j];
possible = 0;
if (itype == iatomtype[rxnID] && jtype == jatomtype[rxnID]) {
possible = 1;
} else if (itype == jatomtype[rxnID] && jtype == iatomtype[rxnID]) {
possible = 1;
}
if (possible == 0) continue;
// do not allow bonding atoms within special list
for (int k = 0; k < nxspecial[i][2]; k++)
if (xspecial[i][k] == tag[j]) possible = 0;
if (!possible) continue;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
domain->minimum_image(FLERR, delx,dely,delz); // ghost location fix
rsq = delx*delx + dely*dely + delz*delz;
if (var_flag[RMIN][rxnID]) {
double cutoff = input->variable->compute_equal(var_id[RMIN][rxnID]);
cutsq[rxnID][0] = cutoff*cutoff;
}
if (var_flag[RMAX][rxnID]) {
double cutoff = input->variable->compute_equal(var_id[RMAX][rxnID]);
cutsq[rxnID][1] = cutoff*cutoff;
}
if (rsq >= cutsq[rxnID][1] || rsq <= cutsq[rxnID][0]) {
continue;
}
if (rsq < distsq[i][1]) {
partner[i] = tag[j];
distsq[i][1] = rsq;
}
if (rsq < distsq[j][1]) {
partner[j] = tag[i];
distsq[j][1] = rsq;
}
}
}
}
/* ----------------------------------------------------------------------
Slightly simpler to find bonding partner when a close neighbor
------------------------------------------------------------------------- */
void FixBondReact::close_partner()
{
int n,i1,i2,itype,jtype;
double delx,dely,delz,rsq;
double **x = atom->x;
tagint *tag = atom->tag;
int *type = atom->type;
int *mask = atom->mask;
// per-atom property indicating if in bond/react master group
int flag,cols;
int index1 = atom->find_custom("limit_tags",flag,cols);
int *i_limit_tags = atom->ivector[index1];
// loop over special list
for (int ii = 0; ii < atom->nlocal; ii++) {
itype = type[ii];
n = 0;
if (closeneigh[rxnID] != 0)
n = nxspecial[ii][closeneigh[rxnID]-1];
for (; n < nxspecial[ii][closeneigh[rxnID]]; n++) {
i1 = ii;
i2 = atom->map(xspecial[ii][n]);
jtype = type[i2];
if (!(mask[i1] & groupbits[rxnID])) continue;
if (!(mask[i2] & groupbits[rxnID])) continue;
if (i_limit_tags[i1] != 0) continue;
if (i_limit_tags[i2] != 0) continue;
if (itype != iatomtype[rxnID] || jtype != jatomtype[rxnID]) continue;
if (molecule_keyword[rxnID] == INTER) {
if (atom->molecule[i1] == atom->molecule[i2]) continue;
} else if (molecule_keyword[rxnID] == INTRA) {
if (atom->molecule[i1] != atom->molecule[i2]) continue;
}
delx = x[i1][0] - x[i2][0];
dely = x[i1][1] - x[i2][1];
delz = x[i1][2] - x[i2][2];
domain->minimum_image(FLERR, delx,dely,delz); // ghost location fix
rsq = delx*delx + dely*dely + delz*delz;
if (var_flag[RMIN][rxnID]) {
double cutoff = input->variable->compute_equal(var_id[RMIN][rxnID]);
cutsq[rxnID][0] = cutoff*cutoff;
}
if (var_flag[RMAX][rxnID]) {
double cutoff = input->variable->compute_equal(var_id[RMAX][rxnID]);
cutsq[rxnID][1] = cutoff*cutoff;
}
if (rsq >= cutsq[rxnID][1] || rsq <= cutsq[rxnID][0]) continue;
if (closeneigh[rxnID] == 0) {
if (rsq > distsq[i1][0]) {
partner[i1] = tag[i2];
distsq[i1][0] = rsq;
}
if (rsq > distsq[i2][0]) {
partner[i2] = tag[i1];
distsq[i2][0] = rsq;
}
} else {
if (rsq < distsq[i1][1]) {
partner[i1] = tag[i2];
distsq[i1][1] = rsq;
}
if (rsq < distsq[i2][1]) {
partner[i2] = tag[i1];
distsq[i2][1] = rsq;
}
}
}
}
}
/* ----------------------------------------------------------------------
Set up global variables. Loop through all pairs; loop through Pioneers
until Superimpose Algorithm is completed for each pair.
------------------------------------------------------------------------- */
void FixBondReact::superimpose_algorithm()
{
const int nprocs = comm->nprocs;
my_num_mega = 0;
local_num_mega = 0;
ghostly_num_mega = 0;
// indicates local ghosts of other procs
int tmp;
localsendlist = (int *) comm->extract("localsendlist",tmp);
// quick description of important global indices you'll see floating about:
// 'pion' is the pioneer loop index
// 'neigh' in the first neighbor index
// 'trace' retraces the first nieghbors
// trace: once you choose a first neighbor, you then check for other nieghbors of same type
if (attempted_rxn == 1) {
memory->destroy(restore_pt);
memory->destroy(restore);
memory->destroy(glove);
memory->destroy(pioneers);
memory->destroy(my_mega_glove);
memory->destroy(local_mega_glove);
memory->destroy(ghostly_mega_glove);
}
memory->create(glove,max_natoms,2,"bond/react:glove");
memory->create(restore_pt,MAXGUESS,4,"bond/react:restore_pt");
memory->create(pioneers,max_natoms,"bond/react:pioneers");
memory->create(restore,max_natoms,MAXGUESS*4,"bond/react:restore");
memory->create(my_mega_glove,max_natoms+cuff,allnattempt,"bond/react:my_mega_glove");
for (int i = 0; i < max_natoms+cuff; i++)
for (int j = 0; j < allnattempt; j++)
my_mega_glove[i][j] = 0.0;
attempted_rxn = 1;
// let's finally begin the superimpose loop
for (rxnID = 0; rxnID < nreacts; rxnID++) {
for (lcl_inst = 0; lcl_inst < nattempt[rxnID]; lcl_inst++) {
onemol = atom->molecules[unreacted_mol[rxnID]];
twomol = atom->molecules[reacted_mol[rxnID]];
get_molxspecials();
status = PROCEED;
glove_counter = 0;
for (int i = 0; i < max_natoms; i++) {
for (int j = 0; j < 2; j++) {
glove[i][j] = 0;
}
}
for (int i = 0; i < MAXGUESS; i++) {
guess_branch[i] = 0;
}
int myibonding = ibonding[rxnID];
int myjbonding = jbonding[rxnID];
glove[myibonding-1][0] = myibonding;
glove[myibonding-1][1] = attempt[lcl_inst][0][rxnID];
glove_counter++;
glove[myjbonding-1][0] = myjbonding;
glove[myjbonding-1][1] = attempt[lcl_inst][1][rxnID];
glove_counter++;
// special case, only two atoms in reaction templates
// then: bonding onemol_nxspecials guaranteed to be equal, and either 0 or 1
if (glove_counter == onemol->natoms) {
tagint local_atom1 = atom->map(glove[myibonding-1][1]);
tagint local_atom2 = atom->map(glove[myjbonding-1][1]);
if ( (nxspecial[local_atom1][0] == onemol_nxspecial[myibonding-1][0] &&
nxspecial[local_atom2][0] == nxspecial[local_atom1][0]) &&
(nxspecial[local_atom1][0] == 0 ||
xspecial[local_atom1][0] == atom->tag[local_atom2]) &&
check_constraints()) {
if (fraction[rxnID] < 1.0 &&
random[rxnID]->uniform() >= fraction[rxnID]) {
status = REJECT;
} else {
status = ACCEPT;
my_mega_glove[0][my_num_mega] = (double) rxnID;
if (rescale_charges_flag[rxnID]) my_mega_glove[1][my_num_mega] = get_totalcharge();
for (int i = 0; i < onemol->natoms; i++) {
my_mega_glove[i+cuff][my_num_mega] = (double) glove[i][1];
}
my_num_mega++;
}
} else status = REJECT;
}
avail_guesses = 0;
for (int i = 0; i < max_natoms; i++)
pioneer_count[i] = 0;
for (int i = 0; i < onemol_nxspecial[myibonding-1][0]; i++)
pioneer_count[onemol_xspecial[myibonding-1][i]-1]++;
for (int i = 0; i < onemol_nxspecial[myjbonding-1][0]; i++)
pioneer_count[onemol_xspecial[myjbonding-1][i]-1]++;
int hang_catch = 0;
while (status != ACCEPT && status != REJECT) {
for (int i = 0; i < max_natoms; i++) {
pioneers[i] = 0;
}
for (int i = 0; i < onemol->natoms; i++) {
if (glove[i][0] != 0 && pioneer_count[i] < onemol_nxspecial[i][0] && edge[i][rxnID] == 0) {
pioneers[i] = 1;
}
}
// run through the pioneers
// due to use of restore points, 'pion' index can change in loop
for (pion = 0; pion < onemol->natoms; pion++) {
if (pioneers[pion] || status == GUESSFAIL) {
make_a_guess();
if (status == ACCEPT || status == REJECT) break;
}
}
// reaction site found successfully!
if (status == ACCEPT) {
if (fraction[rxnID] < 1.0 &&
random[rxnID]->uniform() >= fraction[rxnID]) status = REJECT;
else {
my_mega_glove[0][my_num_mega] = (double) rxnID;
if (rescale_charges_flag[rxnID]) my_mega_glove[1][my_num_mega] = get_totalcharge();
for (int i = 0; i < onemol->natoms; i++) {
my_mega_glove[i+cuff][my_num_mega] = (double) glove[i][1];
}
my_num_mega++;
}
}
hang_catch++;
// let's go ahead and catch the simplest of hangs
//if (hang_catch > onemol->natoms*4)
if (hang_catch > atom->nlocal*30) {
error->one(FLERR,"Fix bond/react: Excessive iteration of superimpose algorithm. "
"Please check that all pre-reaction template atoms are linked to an initiator atom, "
"via at least one path that does not involve edge atoms.");
}
}
}
}
global_megasize = 0;
memory->create(local_mega_glove,max_natoms+cuff,my_num_mega,"bond/react:local_mega_glove");
memory->create(ghostly_mega_glove,max_natoms+cuff,my_num_mega,"bond/react:ghostly_mega_glove");
for (int i = 0; i < max_natoms+cuff; i++) {
for (int j = 0; j < my_num_mega; j++) {
local_mega_glove[i][j] = 0.0;
ghostly_mega_glove[i][j] = 0.0;
}
}
dedup_mega_gloves(LOCAL); // make sure atoms aren't added to more than one reaction
glove_ghostcheck(); // split into 'local' and 'global'
ghost_glovecast(); // consolidate all mega_gloves to all processors
MPI_Allreduce(&local_rxn_count[0],&reaction_count[0],nreacts,MPI_INT,MPI_SUM,world);
int rxnflag = 0;
int *delta_rxn;
memory->create(delta_rxn, nreacts, "bond/react:delta_rxn");
if (comm->me == 0)
for (int i = 0; i < nreacts; i++) {
delta_rxn[i] = reaction_count[i] + ghostly_rxn_count[i];
rxnflag += delta_rxn[i];
}
MPI_Bcast(&delta_rxn[0], nreacts, MPI_INT, 0, world);
MPI_Bcast(&rxnflag, 1, MPI_INT, 0, world);
if (!rxnflag) return;
// C++11 and later compatible version of Park pRNG
std::random_device rnd;
std::minstd_rand park_rng(rnd());
// check if we overstepped our reaction limit, via either max_rxn or rate_limit
for (int i = 0; i < nreacts; i++) {
int overstep = 0;
int max_rxn_overstep = reaction_count_total[i] + delta_rxn[i] - max_rxn[i];
overstep = MAX(overstep,max_rxn_overstep);
if (rate_limit[0][i] == 1) {
int myrxn_count = store_rxn_count[rate_limit[2][i]-1][i];
if (myrxn_count != -1) {
int nrxn_delta = reaction_count_total[i] + delta_rxn[i] - myrxn_count;
int my_nrate;
if (var_flag[NRATE][i] == 1) {
my_nrate = input->variable->compute_equal(var_id[NRATE][i]);
} else my_nrate = rate_limit[1][i];
int rate_limit_overstep = nrxn_delta - my_nrate;
overstep = MAX(overstep,rate_limit_overstep);
}
}
if (overstep > 0) {
// let's randomly choose rxns to skip, unbiasedly from local and ghostly
int *local_rxncounts;
int *all_localkeep;
memory->create(local_rxncounts,nprocs,"bond/react:local_rxncounts");
memory->create(all_localkeep,nprocs,"bond/react:all_localkeep");
MPI_Gather(&local_rxn_count[i],1,MPI_INT,local_rxncounts,1,MPI_INT,0,world);
if (comm->me == 0) {
// when using variable input for rate_limit, rate_limit_overstep could be > delta_rxn (below)
// we need to limit overstep to the number of reactions on this timestep
// essentially skipping all reactions, would be more efficient to use a skip_all flag
if (overstep > delta_rxn[i]) overstep = delta_rxn[i];
int nkeep = delta_rxn[i] - overstep;
int *rxn_by_proc;
memory->create(rxn_by_proc,delta_rxn[i],"bond/react:rxn_by_proc");
for (int j = 0; j < delta_rxn[i]; j++)
rxn_by_proc[j] = -1; // corresponds to ghostly
int itemp = 0;
for (int j = 0; j < nprocs; j++)
for (int k = 0; k < local_rxncounts[j]; k++)
rxn_by_proc[itemp++] = j;
std::shuffle(&rxn_by_proc[0],&rxn_by_proc[delta_rxn[i]], park_rng);
for (int j = 0; j < nprocs; j++)
all_localkeep[j] = 0;
nghostlykeep[i] = 0;
for (int j = 0; j < nkeep; j++) {
if (rxn_by_proc[j] == -1) nghostlykeep[i]++;
else all_localkeep[rxn_by_proc[j]]++;
}
memory->destroy(rxn_by_proc);
}
MPI_Scatter(&all_localkeep[0],1,MPI_INT,&nlocalkeep[i],1,MPI_INT,0,world);
MPI_Bcast(&nghostlykeep[i],1,MPI_INT,0,world);
memory->destroy(local_rxncounts);
memory->destroy(all_localkeep);
}
}
memory->destroy(delta_rxn);
// this updates topology next step
next_reneighbor = update->ntimestep;
update_everything(); // change topology
}
/* ----------------------------------------------------------------------
Screen for obvious algorithm fails. This is the return point when a guess
has failed: check for available restore points.
------------------------------------------------------------------------- */
void FixBondReact::make_a_guess()
{
int *type = atom->type;
int nfirst_neighs = onemol_nxspecial[pion][0];
// per-atom property indicating if in bond/react master group
int flag,cols;
int index1 = atom->find_custom("limit_tags",flag,cols);
int *i_limit_tags = atom->ivector[index1];
if (status == GUESSFAIL && avail_guesses == 0) {
status = REJECT;
return;
}
if (status == GUESSFAIL && avail_guesses > 0) {
// load restore point
for (int i = 0; i < onemol->natoms; i++) {
glove[i][0] = restore[i][(avail_guesses*4)-4];
glove[i][1] = restore[i][(avail_guesses*4)-3];
pioneer_count[i] = restore[i][(avail_guesses*4)-2];
pioneers[i] = restore[i][(avail_guesses*4)-1];
}
pion = restore_pt[avail_guesses-1][0];
neigh = restore_pt[avail_guesses-1][1];
trace = restore_pt[avail_guesses-1][2];
glove_counter = restore_pt[avail_guesses-1][3];
status = RESTORE;
neighbor_loop();
if (status != PROCEED) return;
}
nfirst_neighs = onemol_nxspecial[pion][0];
// check if any of first neighbors are in bond_react_MASTER_group
// if so, this constitutes a fail
// because still undergoing a previous reaction!
// could technically fail unnecessarily during a wrong guess if near edge atoms
// we accept this temporary and infrequent decrease in reaction occurrences
for (int i = 0; i < nxspecial[atom->map(glove[pion][1])][0]; i++) {
if (atom->map(xspecial[atom->map(glove[pion][1])][i]) < 0) {
error->one(FLERR,"Fix bond/react: Fix bond/react needs ghost atoms from further away"); // parallel issues.
}
if (i_limit_tags[(int)atom->map(xspecial[atom->map(glove[pion][1])][i])] != 0) {
status = GUESSFAIL;
return;
}
}
// check for same number of neighbors between unreacted mol and simulation
if (nfirst_neighs != nxspecial[atom->map(glove[pion][1])][0]) {
status = GUESSFAIL;
return;
}
// make sure all neighbors aren't already assigned
// an issue discovered for coarse-grained example
int assigned_count = 0;
for (int i = 0; i < nfirst_neighs; i++)
for (int j = 0; j < onemol->natoms; j++)
if (xspecial[atom->map(glove[pion][1])][i] == glove[j][1]) {
assigned_count++;
break;
}
if (assigned_count == nfirst_neighs) status = GUESSFAIL;
// check if all neigh atom types are the same between simulation and unreacted mol
int *mol_ntypes = new int[atom->ntypes];
int *lcl_ntypes = new int[atom->ntypes];
for (int i = 0; i < atom->ntypes; i++) {
mol_ntypes[i] = 0;
lcl_ntypes[i] = 0;
}
for (int i = 0; i < nfirst_neighs; i++) {
mol_ntypes[(int)onemol->type[(int)onemol_xspecial[pion][i]-1]-1]++;
lcl_ntypes[(int)type[(int)atom->map(xspecial[atom->map(glove[pion][1])][i])]-1]++; //added -1
}
for (int i = 0; i < atom->ntypes; i++) {
if (mol_ntypes[i] != lcl_ntypes[i]) {
status = GUESSFAIL;
delete[] mol_ntypes;
delete[] lcl_ntypes;
return;
}
}
delete[] mol_ntypes;
delete[] lcl_ntypes;
// okay everything seems to be in order. let's assign some ID pairs!!!
neighbor_loop();
}
/* ----------------------------------------------------------------------
Loop through all First Bonded Neighbors of the current Pioneer.
Prepare appropriately if we are in Restore Mode.
------------------------------------------------------------------------- */
void FixBondReact::neighbor_loop()
{
int nfirst_neighs = onemol_nxspecial[pion][0];
if (status == RESTORE) {
check_a_neighbor();
return;
}
for (neigh = 0; neigh < nfirst_neighs; neigh++) {
if (glove[(int)onemol_xspecial[pion][neigh]-1][0] == 0) {
check_a_neighbor();
}
}
// status should still = PROCEED
}
/* ----------------------------------------------------------------------
Check if we can assign this First Neighbor to pre-reacted template
without guessing. If so, do it! If not, call crosscheck_the_nieghbor().
------------------------------------------------------------------------- */
void FixBondReact::check_a_neighbor()
{
int *type = atom->type;
int nfirst_neighs = onemol_nxspecial[pion][0];
if (status != RESTORE) {
// special consideration for hydrogen atoms (and all first neighbors bonded to no other atoms) (and aren't edge atoms)
if (onemol_nxspecial[(int)onemol_xspecial[pion][neigh]-1][0] == 1 && edge[(int)onemol_xspecial[pion][neigh]-1][rxnID] == 0) {
for (int i = 0; i < nfirst_neighs; i++) {
if (type[(int)atom->map(xspecial[(int)atom->map(glove[pion][1])][i])] == onemol->type[(int)onemol_xspecial[pion][neigh]-1] &&
nxspecial[(int)atom->map(xspecial[(int)atom->map(glove[pion][1])][i])][0] == 1) {
int already_assigned = 0;
for (int j = 0; j < onemol->natoms; j++) {
if (glove[j][1] == xspecial[atom->map(glove[pion][1])][i]) {
already_assigned = 1;
break;
}
}
if (already_assigned == 0) {
glove[(int)onemol_xspecial[pion][neigh]-1][0] = onemol_xspecial[pion][neigh];
glove[(int)onemol_xspecial[pion][neigh]-1][1] = xspecial[(int)atom->map(glove[pion][1])][i];
//another check for ghost atoms. perhaps remove the one in make_a_guess
if (atom->map(glove[(int)onemol_xspecial[pion][neigh]-1][1]) < 0) {
error->one(FLERR,"Fix bond/react: Fix bond/react needs ghost atoms from further away");
}
for (int j = 0; j < onemol_nxspecial[onemol_xspecial[pion][neigh]-1][0]; j++) {
pioneer_count[onemol_xspecial[onemol_xspecial[pion][neigh]-1][j]-1]++;
}
glove_counter++;
if (glove_counter == onemol->natoms) {
if (ring_check() && check_constraints()) status = ACCEPT;
else status = GUESSFAIL;
return;
}
// status should still == PROCEED
return;
}
}
}
// we are here if no matching atom found
status = GUESSFAIL;
return;
}
}
crosscheck_the_neighbor();
if (status != PROCEED) {
if (status == CONTINUE)
status = PROCEED;
return;
}
// finally ready to match non-duplicate, non-edge atom IDs!!
for (int i = 0; i < nfirst_neighs; i++) {
if (type[atom->map((int)xspecial[(int)atom->map(glove[pion][1])][i])] == onemol->type[(int)onemol_xspecial[pion][neigh]-1]) {
int already_assigned = 0;
//check if a first neighbor of the pioneer is already assigned to pre-reacted template
for (int j = 0; j < onemol->natoms; j++) {
if (glove[j][1] == xspecial[atom->map(glove[pion][1])][i]) {
already_assigned = 1;
break;
}
}
if (already_assigned == 0) {
glove[(int)onemol_xspecial[pion][neigh]-1][0] = onemol_xspecial[pion][neigh];
glove[(int)onemol_xspecial[pion][neigh]-1][1] = xspecial[(int)atom->map(glove[pion][1])][i];
//another check for ghost atoms. perhaps remove the one in make_a_guess
if (atom->map(glove[(int)onemol_xspecial[pion][neigh]-1][1]) < 0) {
error->one(FLERR,"Fix bond/react: Fix bond/react needs ghost atoms from further away");
}
for (int ii = 0; ii < onemol_nxspecial[onemol_xspecial[pion][neigh]-1][0]; ii++) {
pioneer_count[onemol_xspecial[onemol_xspecial[pion][neigh]-1][ii]-1]++;
}
glove_counter++;
if (glove_counter == onemol->natoms) {
if (ring_check() && check_constraints()) status = ACCEPT;
else status = GUESSFAIL;
return;
// will never complete here when there are edge atoms
// ...actually that could be wrong if people get creative...shouldn't affect anything
}
// status should still = PROCEED
return;
}
}
}
// status is still 'PROCEED' if we are here!
}
/* ----------------------------------------------------------------------
Check if there a viable guess to be made. If so, prepare to make a
guess by recording a restore point.
------------------------------------------------------------------------- */
void FixBondReact::crosscheck_the_neighbor()
{
int nfirst_neighs = onemol_nxspecial[pion][0];
if (status == RESTORE) {
inner_crosscheck_loop();
return;
}
for (trace = 0; trace < nfirst_neighs; trace++) {
if (neigh!=trace && onemol->type[(int)onemol_xspecial[pion][neigh]-1] == onemol->type[(int)onemol_xspecial[pion][trace]-1] &&
glove[onemol_xspecial[pion][trace]-1][0] == 0) {
if (avail_guesses == MAXGUESS) {
error->warning(FLERR,"Fix bond/react: Fix bond/react failed because MAXGUESS set too small. ask developer for info");
status = GUESSFAIL;
return;
}
avail_guesses++;
for (int i = 0; i < onemol->natoms; i++) {
restore[i][(avail_guesses*4)-4] = glove[i][0];
restore[i][(avail_guesses*4)-3] = glove[i][1];
restore[i][(avail_guesses*4)-2] = pioneer_count[i];
restore[i][(avail_guesses*4)-1] = pioneers[i];
restore_pt[avail_guesses-1][0] = pion;
restore_pt[avail_guesses-1][1] = neigh;
restore_pt[avail_guesses-1][2] = trace;
restore_pt[avail_guesses-1][3] = glove_counter;
}
inner_crosscheck_loop();
return;
}
}
// status is still 'PROCEED' if we are here!
}
/* ----------------------------------------------------------------------
We are ready to make a guess. If there are multiple possible choices
for this guess, keep track of these.
------------------------------------------------------------------------- */
void FixBondReact::inner_crosscheck_loop()
{
int *type = atom->type;
// arbitrarily limited to 5 identical first neighbors
tagint tag_choices[5];
int nfirst_neighs = onemol_nxspecial[pion][0];
int num_choices = 0;
for (int i = 0; i < nfirst_neighs; i++) {
if (type[(int)atom->map(xspecial[atom->map(glove[pion][1])][i])] == onemol->type[(int)onemol_xspecial[pion][neigh]-1]) {
if (num_choices == 5) { // here failed because too many identical first neighbors. but really no limit if situation arises
status = GUESSFAIL;
return;
}
tag_choices[num_choices++] = xspecial[atom->map(glove[pion][1])][i];
}
}
// guess branch is for when multiple identical neighbors. then we guess each one in turn
// guess_branch must work even when avail_guesses = 0. so index accordingly!
// ...actually, avail_guesses should never be zero here anyway
if (guess_branch[avail_guesses-1] == 0) guess_branch[avail_guesses-1] = num_choices;
for (int i=1; i < num_choices; ++i) {
tagint hold = tag_choices[i];
int j = i - 1;
while ((j >= 0) && (tag_choices[j] > hold)) {
tag_choices[j+1] = tag_choices[j];
--j;
}
tag_choices[j+1] = hold;
}
for (int i = guess_branch[avail_guesses-1]-1; i >= 0; i--) {
int already_assigned = 0;
for (int j = 0; j < onemol->natoms; j++) {
if (glove[j][1] == tag_choices[i]) {
already_assigned = 1;
break;
}
}
if (already_assigned == 1) {
guess_branch[avail_guesses-1]--;
if (guess_branch[avail_guesses-1] == 0) {
status = REJECT;
return;
}
} else {
glove[onemol_xspecial[pion][neigh]-1][0] = onemol_xspecial[pion][neigh];
glove[onemol_xspecial[pion][neigh]-1][1] = tag_choices[i];
guess_branch[avail_guesses-1]--;
break;
}
}
//another check for ghost atoms. perhaps remove the one in make_a_guess
if (atom->map(glove[(int)onemol_xspecial[pion][neigh]-1][1]) < 0) {
error->one(FLERR,"Fix bond/react: Fix bond/react needs ghost atoms from further away");
}
if (guess_branch[avail_guesses-1] == 0) avail_guesses--;
for (int i = 0; i < onemol_nxspecial[onemol_xspecial[pion][neigh]-1][0]; i++) {
pioneer_count[onemol_xspecial[onemol_xspecial[pion][neigh]-1][i]-1]++;
}
glove_counter++;
if (glove_counter == onemol->natoms) {
if (ring_check() && check_constraints()) status = ACCEPT;
else status = GUESSFAIL;
return;
}
status = CONTINUE;
}
/* ----------------------------------------------------------------------
Check that newly assigned atoms have correct bonds
Necessary for certain ringed structures
------------------------------------------------------------------------- */
int FixBondReact::ring_check()
{
// ring_check can be made more efficient by re-introducing 'frozen' atoms
// 'frozen' atoms have been assigned and also are no longer pioneers
// double check the number of neighbors match for all non-edge atoms
// otherwise, atoms at 'end' of symmetric ring can behave like edge atoms
for (int i = 0; i < onemol->natoms; i++)
if (edge[i][rxnID] == 0 &&
onemol_nxspecial[i][0] != nxspecial[atom->map(glove[i][1])][0])
return 0;
for (int i = 0; i < onemol->natoms; i++) {
for (int j = 0; j < onemol_nxspecial[i][0]; j++) {
int ring_fail = 1;
int ispecial = onemol_xspecial[i][j];
for (int k = 0; k < nxspecial[atom->map(glove[i][1])][0]; k++) {
if (xspecial[atom->map(glove[i][1])][k] == glove[ispecial-1][1]) {
ring_fail = 0;
break;
}
}
if (ring_fail == 1) return 0;
}
}
return 1;
}
/* ----------------------------------------------------------------------
evaluate constraints: return 0 if any aren't satisfied
------------------------------------------------------------------------- */
int FixBondReact::check_constraints()
{
double x1[3],x2[3],x3[3],x4[3];
double delx,dely,delz,rsq;
double delx1,dely1,delz1,delx2,dely2,delz2;
double rsq1,rsq2,r1,r2,c,t,prrhob;
// for computation of dihedrals
double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm;
double ax,ay,az,bx,by,bz,rasq,rbsq,rgsq,rg,ra2inv,rb2inv,rabinv;
double s,phi;
int ANDgate;
tagint atom1,atom2;
double **x = atom->x;
int *satisfied;
memory->create(satisfied,nconstraints[rxnID],"bond/react:satisfied");
for (int i = 0; i < nconstraints[rxnID]; i++)
satisfied[i] = 1;
for (int i = 0; i < nconstraints[rxnID]; i++) {
if (constraints[i][rxnID].type == DISTANCE) {
get_IDcoords(constraints[i][rxnID].idtype[0], constraints[i][rxnID].id[0], x1);
get_IDcoords(constraints[i][rxnID].idtype[1], constraints[i][rxnID].id[1], x2);
delx = x1[0] - x2[0];
dely = x1[1] - x2[1];
delz = x1[2] - x2[2];
domain->minimum_image(FLERR, delx,dely,delz); // ghost location fix
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < constraints[i][rxnID].par[0] || rsq > constraints[i][rxnID].par[1]) satisfied[i] = 0;
} else if (constraints[i][rxnID].type == ANGLE) {
get_IDcoords(constraints[i][rxnID].idtype[0], constraints[i][rxnID].id[0], x1);
get_IDcoords(constraints[i][rxnID].idtype[1], constraints[i][rxnID].id[1], x2);
get_IDcoords(constraints[i][rxnID].idtype[2], constraints[i][rxnID].id[2], x3);
// 1st bond
delx1 = x1[0] - x2[0];
dely1 = x1[1] - x2[1];
delz1 = x1[2] - x2[2];
domain->minimum_image(FLERR, delx1,dely1,delz1); // ghost location fix
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x3[0] - x2[0];
dely2 = x3[1] - x2[1];
delz2 = x3[2] - x2[2];
domain->minimum_image(FLERR, delx2,dely2,delz2); // ghost location fix
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
if (acos(c) < constraints[i][rxnID].par[0] || acos(c) > constraints[i][rxnID].par[1]) satisfied[i] = 0;
} else if (constraints[i][rxnID].type == DIHEDRAL) {
// phi calculation from dihedral style harmonic
get_IDcoords(constraints[i][rxnID].idtype[0], constraints[i][rxnID].id[0], x1);
get_IDcoords(constraints[i][rxnID].idtype[1], constraints[i][rxnID].id[1], x2);
get_IDcoords(constraints[i][rxnID].idtype[2], constraints[i][rxnID].id[2], x3);
get_IDcoords(constraints[i][rxnID].idtype[3], constraints[i][rxnID].id[3], x4);
vb1x = x1[0] - x2[0];
vb1y = x1[1] - x2[1];
vb1z = x1[2] - x2[2];
domain->minimum_image(FLERR, vb1x,vb1y,vb1z);
vb2x = x3[0] - x2[0];
vb2y = x3[1] - x2[1];
vb2z = x3[2] - x2[2];
domain->minimum_image(FLERR, vb2x,vb2y,vb2z);
vb2xm = -vb2x;
vb2ym = -vb2y;
vb2zm = -vb2z;
domain->minimum_image(FLERR, vb2xm,vb2ym,vb2zm);
vb3x = x4[0] - x3[0];
vb3y = x4[1] - x3[1];
vb3z = x4[2] - x3[2];
domain->minimum_image(FLERR, vb3x,vb3y,vb3z);
ax = vb1y*vb2zm - vb1z*vb2ym;
ay = vb1z*vb2xm - vb1x*vb2zm;
az = vb1x*vb2ym - vb1y*vb2xm;
bx = vb3y*vb2zm - vb3z*vb2ym;
by = vb3z*vb2xm - vb3x*vb2zm;
bz = vb3x*vb2ym - vb3y*vb2xm;
rasq = ax*ax + ay*ay + az*az;
rbsq = bx*bx + by*by + bz*bz;
rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;
rg = sqrt(rgsq);
ra2inv = rb2inv = 0.0;
if (rasq > 0) ra2inv = 1.0/rasq;
if (rbsq > 0) rb2inv = 1.0/rbsq;
rabinv = sqrt(ra2inv*rb2inv);
c = (ax*bx + ay*by + az*bz)*rabinv;
s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
phi = atan2(s,c);
ANDgate = 0;
if (constraints[i][rxnID].par[0] < constraints[i][rxnID].par[1]) {
if (phi > constraints[i][rxnID].par[0] && phi < constraints[i][rxnID].par[1]) ANDgate = 1;
} else {
if (phi > constraints[i][rxnID].par[0] || phi < constraints[i][rxnID].par[1]) ANDgate = 1;
}
if (constraints[i][rxnID].par[2] < constraints[i][rxnID].par[3]) {
if (phi > constraints[i][rxnID].par[2] && phi < constraints[i][rxnID].par[3]) ANDgate = 1;
} else {
if (phi > constraints[i][rxnID].par[2] || phi < constraints[i][rxnID].par[3]) ANDgate = 1;
}
if (ANDgate != 1) satisfied[i] = 0;
} else if (constraints[i][rxnID].type == ARRHENIUS) {
t = get_temperature(glove,0,1);
prrhob = constraints[i][rxnID].par[1]*pow(t,constraints[i][rxnID].par[2])*
exp(-constraints[i][rxnID].par[3]/(force->boltz*t));
if (prrhob < rrhandom[(int) constraints[i][rxnID].par[0]]->uniform()) satisfied[i] = 0;
} else if (constraints[i][rxnID].type == RMSD) {
// call superpose
int iatom;
int iref = -1; // choose first atom as reference
int n2superpose = 0;
double **xfrozen; // coordinates for the "frozen" target molecule
double **xmobile; // coordinates for the "mobile" molecule
int ifragment = constraints[i][rxnID].id[0];
if (ifragment >= 0) {
for (int j = 0; j < onemol->natoms; j++)
if (onemol->fragmentmask[ifragment][j]) n2superpose++;
memory->create(xfrozen,n2superpose,3,"bond/react:xfrozen");
memory->create(xmobile,n2superpose,3,"bond/react:xmobile");
int myincr = 0;
for (int j = 0; j < onemol->natoms; j++) {
if (onemol->fragmentmask[ifragment][j]) {
iatom = atom->map(glove[j][1]);
if (iref == -1) iref = iatom;
iatom = domain->closest_image(iref,iatom);
for (int k = 0; k < 3; k++) {
xfrozen[myincr][k] = x[iatom][k];
xmobile[myincr][k] = onemol->x[j][k];
}
myincr++;
}
}
} else {
int iatom;
int iref = -1; // choose first atom as reference
n2superpose = onemol->natoms;
memory->create(xfrozen,n2superpose,3,"bond/react:xfrozen");
memory->create(xmobile,n2superpose,3,"bond/react:xmobile");
for (int j = 0; j < n2superpose; j++) {
iatom = atom->map(glove[j][1]);
if (iref == -1) iref = iatom;
iatom = domain->closest_image(iref,iatom);
for (int k = 0; k < 3; k++) {
xfrozen[j][k] = x[iatom][k];
xmobile[j][k] = onemol->x[j][k];
}
}
}
Superpose3D<double, double **> superposer(n2superpose);
double rmsd = superposer.Superpose(xfrozen, xmobile);
memory->destroy(xfrozen);
memory->destroy(xmobile);
if (rmsd > constraints[i][rxnID].par[0]) satisfied[i] = 0;
} else if (constraints[i][rxnID].type == CUSTOM) {
satisfied[i] = custom_constraint(constraints[i][rxnID].str);
}
}
if (nconstraints[rxnID] > 0) {
char evalstr[MAXLINE],*ptr;
strcpy(evalstr,constraintstr[rxnID]);
for (int i = 0; i < nconstraints[rxnID]; i++) {
ptr = strchr(evalstr,'C');
*ptr = satisfied[i] ? '1' : '0';
}
double verdict = input->variable->evaluate_boolean(evalstr);
if (verdict == 0.0) {
memory->destroy(satisfied);
return 0;
}
}
// let's also check chirality within 'check_constraint'
for (int i = 0; i < onemol->natoms; i++) {
if (chiral_atoms[i][0][rxnID] == 1) {
double my4coords[12];
// already ensured, by transitive property, that chiral simulation atom has four neighs
for (int j = 0; j < 4; j++) {
atom1 = atom->map(glove[i][1]);
// loop over known types involved in chiral center
for (int jj = 0; jj < 4; jj++) {
if (atom->type[atom->map(xspecial[atom1][j])] == chiral_atoms[i][jj+2][rxnID]) {
atom2 = atom->map(xspecial[atom1][j]);
atom2 = domain->closest_image(atom1,atom2);
for (int k = 0; k < 3; k++) {
my4coords[3*jj+k] = x[atom2][k];
}
break;
}
}
}
if (get_chirality(my4coords) != chiral_atoms[i][1][rxnID]) {
memory->destroy(satisfied);
return 0;
}
}
}
memory->destroy(satisfied);
return 1;
}
/* ----------------------------------------------------------------------
return pre-reaction atom or fragment location
fragment: given pre-reacted molID (onemol) and fragID,
return geometric center (of mapped simulation atoms)
------------------------------------------------------------------------- */
void FixBondReact::get_IDcoords(int mode, int myID, double *center)
{
double **x = atom->x;
if (mode == ATOM) {
int iatom = atom->map(glove[myID-1][1]);
for (int i = 0; i < 3; i++)
center[i] = x[iatom][i];
} else {
int iref = -1; // choose first atom as reference
int iatom;
int nfragatoms = 0;
for (int i = 0; i < 3; i++)
center[i] = 0;
for (int i = 0; i < onemol->natoms; i++) {
if (onemol->fragmentmask[myID][i]) {
if (iref == -1)
iref = atom->map(glove[i][1]);
iatom = atom->map(glove[i][1]);
iatom = domain->closest_image(iref,iatom);
for (int j = 0; j < 3; j++)
center[j] += x[iatom][j];
nfragatoms++;
}
}
if (nfragatoms > 0)
for (int i = 0; i < 3; i++) center[i] /= nfragatoms;
}
}
/* ----------------------------------------------------------------------
compute local temperature: average over all atoms in reaction template
------------------------------------------------------------------------- */
double FixBondReact::get_temperature(tagint **myglove, int row_offset, int col)
{
int i,ilocal;
double adof = domain->dimension;
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
double t = 0.0;
if (rmass) {
for (i = 0; i < onemol->natoms; i++) {
ilocal = atom->map(myglove[i+row_offset][col]);
t += (v[ilocal][0]*v[ilocal][0] + v[ilocal][1]*v[ilocal][1] +
v[ilocal][2]*v[ilocal][2]) * rmass[ilocal];
}
} else {
for (i = 0; i < onemol->natoms; i++) {
ilocal = atom->map(myglove[i+row_offset][col]);
t += (v[ilocal][0]*v[ilocal][0] + v[ilocal][1]*v[ilocal][1] +
v[ilocal][2]*v[ilocal][2]) * mass[type[ilocal]];
}
}
// final temperature
double dof = adof*onemol->natoms;
double tfactor = force->mvv2e / (dof * force->boltz);
t *= tfactor;
return t;
}
/* ----------------------------------------------------------------------
compute sum of partial charges in rxn site, for updated atoms
note: currently uses global rxnID and onemol variables
------------------------------------------------------------------------- */
double FixBondReact::get_totalcharge()
{
int j,jj;
double *q = atom->q;
double sim_total_charge = 0.0;
for (j = 0; j < onemol->natoms; j++) {
jj = equivalences[j][1][rxnID]-1;
if (custom_charges[jj][rxnID] == 1)
sim_total_charge += q[atom->map(glove[jj][1])];
}
return sim_total_charge;
}
/* ----------------------------------------------------------------------
get per-atom variable names used by custom constraint
------------------------------------------------------------------------- */
void FixBondReact::customvarnames()
{
std::size_t pos,pos1,pos2,pos3;
int prev3;
std::string varstr,argstr,varid;
// search all constraints' varstr for special 'rxn' functions
// add variable names to customvarstrs
// add values to customvars
for (rxnID = 0; rxnID < nreacts; rxnID++) {
for (int i = 0; i < nconstraints[rxnID]; i++) {
if (constraints[i][rxnID].type == CUSTOM) {
varstr = constraints[i][rxnID].str;
prev3 = -1;
while (true) {
// find next reaction special function occurrence
pos1 = std::string::npos;
for (int i = 0; i < nrxnfunction; i++) {
if (peratomflag[i] == 0) continue;
pos = varstr.find(rxnfunclist[i],prev3+1);
if (pos == std::string::npos) continue;
if (pos < pos1) pos1 = pos;
}
if (pos1 == std::string::npos) break;
pos2 = varstr.find("(",pos1);
pos3 = varstr.find(")",pos2);
if (pos2 == std::string::npos || pos3 == std::string::npos)
error->all(FLERR,"Fix bond/react: Illegal rxn function syntax\n");
prev3 = (int)pos3;
argstr = varstr.substr(pos2+1,pos3-pos2-1);
argstr.erase(remove_if(argstr.begin(), argstr.end(), isspace), argstr.end()); // remove whitespace
pos2 = argstr.find(",");
if (pos2 != std::string::npos) varid = argstr.substr(0,pos2);
else varid = argstr;
// check if we already know about this variable
int varidflag = 0;
for (int j = 0; j < ncustomvars; j++) {
if (customvarstrs[j] == varid) {
varidflag = 1;
break;
}
}
if (!varidflag) {
customvarstrs.resize(ncustomvars+1);
customvarstrs[ncustomvars++] = varid;
}
}
}
}
}
}
/* ----------------------------------------------------------------------
evaluate per-atom variables needed for custom constraint
------------------------------------------------------------------------- */
void FixBondReact::get_customvars()
{
double *tempvvec;
std::string varid;
int nall = atom->nlocal + atom->nghost;
memory->create(tempvvec,nall,"bond/react:tempvvec");
if (vvec == nullptr) {
memory->create(vvec,nall,ncustomvars,"bond/react:vvec");
nvvec = nall;
}
if (nvvec < nall) {
memory->grow(vvec,nall,ncustomvars,"bond/react:vvec");
nvvec = nall;
}
for (int i = 0; i < ncustomvars; i++) {
varid = customvarstrs[i];
if (varid.substr(0,2) != "v_") error->all(FLERR,"Fix bond/react: Reaction special function variable "
"name should begin with 'v_'");
varid = varid.substr(2);
int ivar = input->variable->find(varid.c_str());
if (ivar < 0)
error->all(FLERR,"Fix bond/react: Reaction special function variable "
"name does not exist");
if (!input->variable->atomstyle(ivar))
error->all(FLERR,"Fix bond/react: Reaction special function must "
"reference an atom-style variable");
input->variable->compute_atom(ivar,igroup,tempvvec,1,0);
for (int j = 0; j < nall; j++) vvec[j][i] = tempvvec[j];
}
memory->destroy(tempvvec);
}
/* ----------------------------------------------------------------------
evaulate expression for variable constraint
------------------------------------------------------------------------- */
double FixBondReact::custom_constraint(const std::string& varstr)
{
std::size_t pos,pos1,pos2,pos3;
int irxnfunc;
int prev3 = -1;
std::string argstr,varid,fragid,evlcat;
std::vector<std::string> evlstr;
// search varstr for special 'rxn' functions
while (true) {
// find next reaction special function occurrence
pos1 = std::string::npos;
for (int i = 0; i < nrxnfunction; i++) {
pos = varstr.find(rxnfunclist[i],prev3+1);
if (pos == std::string::npos) continue;
if (pos < pos1) {
pos1 = pos;
irxnfunc = i;
}
}
if (pos1 == std::string::npos) break;
fragid = "all"; // operate over entire reaction site by default
pos2 = varstr.find("(",pos1);
pos3 = varstr.find(")",pos2);
if (pos2 == std::string::npos || pos3 == std::string::npos)
error->one(FLERR,"Fix bond/react: Illegal rxn function syntax\n");
evlstr.push_back(varstr.substr(prev3+1,pos1-(prev3+1)));
prev3 = pos3;
argstr = varstr.substr(pos2+1,pos3-pos2-1);
argstr.erase(remove_if(argstr.begin(), argstr.end(), isspace), argstr.end()); // remove whitespace
pos2 = argstr.find(",");
if (pos2 != std::string::npos) {
varid = argstr.substr(0,pos2);
fragid = argstr.substr(pos2+1);
} else varid = argstr;
evlstr.push_back(std::to_string(rxnfunction(rxnfunclist[irxnfunc], varid, fragid)));
}
evlstr.push_back(varstr.substr(prev3+1));
for (auto & evl : evlstr) evlcat += evl;
return input->variable->compute_equal(evlcat);
}
/* ----------------------------------------------------------------------
currently three 'rxn' functions: rxnsum, rxnave, and rxnbond
------------------------------------------------------------------------- */
double FixBondReact::rxnfunction(const std::string& rxnfunc, const std::string& varid,
const std::string& fragid)
{
int ifrag = -1;
if (fragid != "all") {
ifrag = onemol->findfragment(fragid.c_str());
if (ifrag < 0) error->one(FLERR,"Bond/react: Molecule fragment "
"in reaction special function does not exist");
}
// start with 'rxnbond' per-bond function
// for 'rxnbond', varid corresponds to 'compute bond/local' name,
// and fragid is a pre-reaction fragment containing the two atoms in the bond
if (rxnfunc == "rxnbond") {
int icompute,ibond,nsum;
double perbondval;
std::set<tagint> aset;
std::string computeid = varid;
std::map<std::set<tagint>,int>::iterator it;
if (computeid.substr(0,2) != "c_") error->one(FLERR,"Bond/react: Reaction special function compute "
"name should begin with 'c_'");
computeid = computeid.substr(2);
icompute = modify->find_compute(computeid);
if (icompute < 0) error->one(FLERR,"Bond/react: Reaction special function compute name does not exist");
cperbond = modify->compute[icompute];
std::string compute_style = cperbond->style;
if (compute_style != "bond/local") error->one(FLERR,"Bond/react: Compute used by reaction "
"special function 'rxnbond' must be of style 'bond/local'");
if (cperbond->size_local_cols > 0) error->one(FLERR,"Bond/react: 'Compute bond/local' used by reaction "
"special function 'rxnbond' must compute one value");
if (atoms2bondflag == 0) {
atoms2bondflag = 1;
get_atoms2bond(cperbond->groupbit);
}
nsum = 0;
for (int i = 0; i < onemol->natoms; i++) {
if (onemol->fragmentmask[ifrag][i]) {
aset.insert(glove[i][1]);
nsum++;
}
}
if (nsum != 2) error->one(FLERR,"Bond/react: Molecule fragment of reaction special function 'rxnbond' "
"must contain exactly two atoms");
if (cperbond->invoked_local != lmp->update->ntimestep)
cperbond->compute_local();
it = atoms2bond.find(aset);
if (it == atoms2bond.end()) error->one(FLERR,"Bond/react: Unable to locate bond referenced by "
"reaction special function 'rxnbond'");
ibond = it->second;
perbondval = cperbond->vector_local[ibond];
return perbondval;
}
int ivar = -1;
for (int i = 0; i < ncustomvars; i++) {
if (varid == customvarstrs[i]) {
ivar = i;
break;
}
}
// variable name should always be found, at this point
// however, let's double check for completeness
if (ivar < 0)
error->one(FLERR,"Fix bond/react: Reaction special function variable "
"name does not exist");
int iatom;
int nsum = 0;
double sumvvec = 0;
if (rxnfunc == "rxnsum" || rxnfunc == "rxnave") {
if (fragid == "all") {
for (int i = 0; i < onemol->natoms; i++) {
iatom = atom->map(glove[i][1]);
sumvvec += vvec[iatom][ivar];
}
nsum = onemol->natoms;
} else {
for (int i = 0; i < onemol->natoms; i++) {
if (onemol->fragmentmask[ifrag][i]) {
iatom = atom->map(glove[i][1]);
sumvvec += vvec[iatom][ivar];
nsum++;
}
}
}
}
if (rxnfunc == "rxnsum") return sumvvec;
if (rxnfunc == "rxnave") return sumvvec/nsum;
return 0.0;
}
/* ----------------------------------------------------------------------
populate map to get bond index from atom IDs
------------------------------------------------------------------------- */
void FixBondReact::get_atoms2bond(int cgroupbit)
{
int i,m,atom1,atom2,btype,nb;
std::set<tagint> aset;
int nlocal = atom->nlocal;
tagint *tag = atom->tag;
int *num_bond = atom->num_bond;
tagint **bond_atom = atom->bond_atom;
int **bond_type = atom->bond_type;
int *mask = atom->mask;
m = 0;
atoms2bond.clear();
for (atom1 = 0; atom1 < nlocal; atom1++) {
if (!(mask[atom1] & cgroupbit)) continue;
nb = num_bond[atom1];
for (i = 0; i < nb; i++) {
btype = bond_type[atom1][i];
atom2 = atom->map(bond_atom[atom1][i]);
if (atom2 < 0 || !(mask[atom2] & cgroupbit)) continue;
if (newton_bond == 0 && tag[atom1] > tag[atom2]) continue;
if (btype == 0) continue;
aset = {tag[atom1], tag[atom2]};
atoms2bond.insert(std::make_pair(aset,m++));
}
}
}
/* ----------------------------------------------------------------------
return handedness (1 or -1) of a chiral center, given ordered set of coordinates
------------------------------------------------------------------------- */
int FixBondReact::get_chirality(double four_coords[12])
{
// define oriented plane with first three coordinates
double vec1[3],vec2[3],vec3[3],vec4[3],mean3[3],dot;
for (int i = 0; i < 3; i++) {
vec1[i] = four_coords[i]-four_coords[i+3];
vec2[i] = four_coords[i+3]-four_coords[i+6];
}
MathExtra::cross3(vec1,vec2,vec3);
for (int i = 0; i < 3; i++) {
mean3[i] = (four_coords[i] + four_coords[i+3] +
four_coords[i+6])/3;
vec4[i] = four_coords[i+9] - mean3[i];
}
dot = MathExtra::dot3(vec3,vec4);
dot = dot/fabs(dot);
return (int) dot;
}
/* ----------------------------------------------------------------------
Get xspecials for current molecule templates
may need correction when specials defined explicitly in molecule templates
------------------------------------------------------------------------- */
void FixBondReact::get_molxspecials()
{
onemol_nxspecial = onemol->nspecial;
onemol_xspecial = onemol->special;
twomol_nxspecial = twomol->nspecial;
twomol_xspecial = twomol->special;
}
/* ----------------------------------------------------------------------
Determine which pre-reacted template atoms are at least three bonds
away from edge atoms.
------------------------------------------------------------------------- */
void FixBondReact::find_landlocked_atoms(int myrxn)
{
// landlocked_atoms are atoms for which all topology is contained in reacted template
// if dihedrals/impropers exist: this means that edge atoms are not in their 1-3 neighbor list
// note: due to various usage/definitions of impropers, treated same as dihedrals
// if angles exist: this means edge atoms not in their 1-2 neighbors list
// if just bonds: this just means that edge atoms are not landlocked
// Note: landlocked defined in terms of reacted template
// if no edge atoms (small reacting molecule), all atoms are landlocked
// we can delete all current topology of landlocked atoms and replace
// always remove edge atoms from landlocked list
for (int i = 0; i < twomol->natoms; i++) {
if (create_atoms[i][myrxn] == 0 && edge[equivalences[i][1][myrxn]-1][myrxn] == 1)
landlocked_atoms[i][myrxn] = 0;
else landlocked_atoms[i][myrxn] = 1;
}
int nspecial_limit = -1;
if (force->angle && twomol->angleflag) nspecial_limit = 0;
if ((force->dihedral && twomol->dihedralflag) ||
(force->improper && twomol->improperflag)) nspecial_limit = 1;
if (nspecial_limit != -1) {
for (int i = 0; i < twomol->natoms; i++) {
for (int j = 0; j < twomol_nxspecial[i][nspecial_limit]; j++) {
for (int k = 0; k < onemol->natoms; k++) {
if (equivalences[twomol_xspecial[i][j]-1][1][myrxn] == k+1 && edge[k][myrxn] == 1) {
landlocked_atoms[i][myrxn] = 0;
}
}
}
}
}
// bad molecule templates check
// if atoms change types, but aren't landlocked, that's bad
for (int i = 0; i < twomol->natoms; i++) {
if ((create_atoms[i][myrxn] == 0) &&
(twomol->type[i] != onemol->type[equivalences[i][1][myrxn]-1]) &&
(landlocked_atoms[i][myrxn] == 0))
error->all(FLERR, "Fix bond/react: Atom type affected by reaction {} is too close "
"to template edge", rxn_name[myrxn]);
}
// additionally, if a bond changes type, but neither involved atom is landlocked, bad
// would someone want to change an angle type but not bond or atom types? (etc.) ...hopefully not yet
for (int i = 0; i < twomol->natoms; i++) {
if (create_atoms[i][myrxn] == 0) {
if (landlocked_atoms[i][myrxn] == 0) {
for (int j = 0; j < twomol->num_bond[i]; j++) {
int twomol_atomj = twomol->bond_atom[i][j];
if (landlocked_atoms[twomol_atomj-1][myrxn] == 0) {
int onemol_atomi = equivalences[i][1][myrxn];
int onemol_batom;
for (int m = 0; m < onemol->num_bond[onemol_atomi-1]; m++) {
onemol_batom = onemol->bond_atom[onemol_atomi-1][m];
if ((onemol_batom == equivalences[twomol_atomj-1][1][myrxn]) &&
(twomol->bond_type[i][j] != onemol->bond_type[onemol_atomi-1][m]))
error->all(FLERR, "Fix bond/react: Bond type affected by reaction {} is "
"too close to template edge",rxn_name[myrxn]);
}
if (newton_bond) {
int onemol_atomj = equivalences[twomol_atomj-1][1][myrxn];
for (int m = 0; m < onemol->num_bond[onemol_atomj-1]; m++) {
onemol_batom = onemol->bond_atom[onemol_atomj-1][m];
if ((onemol_batom == equivalences[i][1][myrxn]) &&
(twomol->bond_type[i][j] != onemol->bond_type[onemol_atomj-1][m]))
error->all(FLERR, "Fix bond/react: Bond type affected by reaction {} is "
"too close to template edge",rxn_name[myrxn]);
}
}
}
}
}
}
}
// additionally, if a deleted atom is bonded to an atom that is not deleted, bad
for (int i = 0; i < onemol->natoms; i++) {
if (delete_atoms[i][myrxn] == 1) {
int ii = reverse_equiv[i][1][myrxn] - 1;
for (int j = 0; j < twomol_nxspecial[ii][0]; j++) {
if (delete_atoms[equivalences[twomol_xspecial[ii][j]-1][1][myrxn]-1][myrxn] == 0) {
error->all(FLERR,"Fix bond/react: A deleted atom cannot remain bonded to an atom that is not deleted");
}
}
}
}
// also, if atoms change number of bonds, but aren't landlocked, that could be bad
int warnflag = 0;
if (comm->me == 0)
for (int i = 0; i < twomol->natoms; i++) {
if ((create_atoms[i][myrxn] == 0) &&
(twomol_nxspecial[i][0] != onemol_nxspecial[equivalences[i][1][myrxn]-1][0]) &&
(landlocked_atoms[i][myrxn] == 0)) {
warnflag = 1;
break;
}
}
// also, if an atom changes any of its bonds, but is not landlocked, that could be bad
int thereflag;
if (comm->me == 0)
for (int i = 0; i < twomol->natoms; i++) {
if (landlocked_atoms[i][myrxn] == 1) continue;
for (int j = 0; j < twomol_nxspecial[i][0]; j++) {
int oneneighID = equivalences[twomol_xspecial[i][j]-1][1][myrxn];
int ii = equivalences[i][1][myrxn] - 1;
thereflag = 0;
for (int k = 0; k < onemol_nxspecial[ii][0]; k++) {
if (oneneighID == onemol_xspecial[ii][k]) {
thereflag = 1;
break;
}
}
if (thereflag == 0) {
warnflag = 1;
break;
}
}
if (warnflag == 1) break;
}
if (comm->me == 0 && warnflag == 1) error->warning(FLERR, "Fix bond/react: Atom affected "
"by reaction {} is too close to template edge",rxn_name[myrxn]);
// finally, if a created atom is not landlocked, bad!
for (int i = 0; i < twomol->natoms; i++) {
if (create_atoms[i][myrxn] == 1 && landlocked_atoms[i][myrxn] == 0) {
error->one(FLERR,"Fix bond/react: Created atom too close to template edge");
}
}
}
/* ----------------------------------------------------------------------
let's dedup global_mega_glove
allows for same site undergoing different pathways, in parallel
------------------------------------------------------------------------- */
void FixBondReact::dedup_mega_gloves(int dedup_mode)
{
// dedup_mode == LOCAL for local_dedup
// dedup_mode == GLOBAL for global_mega_glove
if (dedup_mode == GLOBAL)
for (int i = 0; i < nreacts; i++)
ghostly_rxn_count[i] = 0;
int dedup_size = 0;
if (dedup_mode == LOCAL) {
dedup_size = my_num_mega;
} else if (dedup_mode == GLOBAL) {
dedup_size = global_megasize;
}
double **dedup_glove;
memory->create(dedup_glove,max_natoms+cuff,dedup_size,"bond/react:dedup_glove");
if (dedup_mode == LOCAL) {
for (int i = 0; i < dedup_size; i++) {
for (int j = 0; j < max_natoms+cuff; j++) {
dedup_glove[j][i] = my_mega_glove[j][i];
}
}
} else if (dedup_mode == GLOBAL) {
for (int i = 0; i < dedup_size; i++) {
for (int j = 0; j < max_natoms+cuff; j++) {
dedup_glove[j][i] = global_mega_glove[j][i];
}
}
}
// dedup_mask is size dedup_size and filters reactions that have been deleted
// a value of 1 means this reaction instance has been deleted
int *dedup_mask = new int[dedup_size];
for (int i = 0; i < dedup_size; i++) {
dedup_mask[i] = 0;
}
// let's randomly mix up our reaction instances first
// then we can feel okay about ignoring ones we've already deleted (or accepted)
// based off std::shuffle
double *temp_rxn = new double[max_natoms+cuff];
for (int i = dedup_size-1; i > 0; --i) { //dedup_size
// choose random entry to swap current one with
int k = floor(random[0]->uniform()*(i+1));
// swap entries
for (int j = 0; j < max_natoms+cuff; j++)
temp_rxn[j] = dedup_glove[j][i];
for (int j = 0; j < max_natoms+cuff; j++) {
dedup_glove[j][i] = dedup_glove[j][k];
dedup_glove[j][k] = temp_rxn[j];
}
}
delete[] temp_rxn;
for (int i = 0; i < dedup_size; i++) {
if (dedup_mask[i] == 0) {
int myrxnid1 = dedup_glove[0][i];
onemol = atom->molecules[unreacted_mol[myrxnid1]];
for (int j = 0; j < onemol->natoms; j++) {
int check1 = dedup_glove[j+cuff][i];
for (int ii = i + 1; ii < dedup_size; ii++) {
if (dedup_mask[ii] == 0) {
int myrxnid2 = dedup_glove[0][ii];
twomol = atom->molecules[unreacted_mol[myrxnid2]];
for (int jj = 0; jj < twomol->natoms; jj++) {
int check2 = dedup_glove[jj+cuff][ii];
if (check2 == check1) {
dedup_mask[ii] = 1;
break;
}
}
}
}
}
}
}
// we must update local_mega_glove and local_megasize
// we can simply overwrite local_mega_glove column by column
if (dedup_mode == LOCAL) {
int my_new_megasize = 0;
for (int i = 0; i < my_num_mega; i++) {
if (dedup_mask[i] == 0) {
for (int j = 0; j < max_natoms+cuff; j++) {
my_mega_glove[j][my_new_megasize] = dedup_glove[j][i];
}
my_new_megasize++;
}
}
my_num_mega = my_new_megasize;
}
// we must update global_mega_glove and global_megasize
// we can simply overwrite global_mega_glove column by column
if (dedup_mode == GLOBAL) {
int new_global_megasize = 0;
for (int i = 0; i < global_megasize; i++) {
if (dedup_mask[i] == 0) {
ghostly_rxn_count[(int) dedup_glove[0][i]]++;
for (int j = 0; j < max_natoms + cuff; j++) {
global_mega_glove[j][new_global_megasize] = dedup_glove[j][i];
}
new_global_megasize++;
}
}
global_megasize = new_global_megasize;
}
memory->destroy(dedup_glove);
delete[] dedup_mask;
}
/* ----------------------------------------------------------------------
let's unlimit movement of newly bonded atoms after n timesteps.
we give them back to the system thermostat
------------------------------------------------------------------------- */
void FixBondReact::unlimit_bond()
{
// let's now unlimit in terms of i_limit_tags
// we just run through all nlocal, looking for > limit_duration
// then we return i_limit_tag to 0 (which removes from dynamic group)
int flag, cols;
int index1 = atom->find_custom("limit_tags",flag,cols);
int *i_limit_tags = atom->ivector[index1];
int *i_statted_tags;
if (stabilization_flag == 1) {
int index2 = atom->find_custom(statted_id,flag,cols);
i_statted_tags = atom->ivector[index2];
}
int index3 = atom->find_custom("react_tags",flag,cols);
int *i_react_tags = atom->ivector[index3];
int unlimitflag = 0;
for (int i = 0; i < atom->nlocal; i++) {
// unlimit atoms for next step! this resolves # of procs disparity, mostly
// first '1': indexing offset, second '1': for next step
if (i_limit_tags[i] != 0 && (update->ntimestep + 1 - i_limit_tags[i]) > limit_duration[i_react_tags[i]]) {
unlimitflag = 1;
i_limit_tags[i] = 0;
if (stabilization_flag == 1) i_statted_tags[i] = 1;
i_react_tags[i] = 0;
}
}
// really should only communicate this per-atom property, not entire reneighboring
MPI_Allreduce(MPI_IN_PLACE,&unlimitflag,1,MPI_INT,MPI_MAX,world);
if (unlimitflag) next_reneighbor = update->ntimestep;
}
/* ----------------------------------------------------------------------
check mega_glove for ghosts
if so, flag for broadcasting for perusal by all processors
------------------------------------------------------------------------- */
void FixBondReact::glove_ghostcheck()
{
// here we add glove to either local_mega_glove or ghostly_mega_glove
// ghostly_mega_glove includes atoms that are ghosts, either of this proc or another
// 'ghosts of another' indication taken from comm->sendlist
// also includes local gloves that overlap with ghostly gloves, to get dedup right
for (int i = 0; i < nreacts; i++)
local_rxn_count[i] = 0;
for (int i = 0; i < my_num_mega; i++) {
rxnID = (int) my_mega_glove[0][i];
onemol = atom->molecules[unreacted_mol[rxnID]];
int ghostly = 0;
#if !defined(MPI_STUBS)
if (comm->style == Comm::BRICK) {
if (create_atoms_flag[rxnID] == 1) {
ghostly = 1;
} else {
for (int j = 0; j < onemol->natoms; j++) {
int ilocal = atom->map((tagint) my_mega_glove[j+cuff][i]);
if (ilocal >= atom->nlocal || localsendlist[ilocal] == 1) {
ghostly = 1;
break;
}
}
}
} else {
ghostly = 1;
}
#endif
if (ghostly == 1) {
for (int j = 0; j < onemol->natoms+cuff; j++) {
ghostly_mega_glove[j][ghostly_num_mega] = my_mega_glove[j][i];
}
ghostly_num_mega++;
} else {
local_rxn_count[rxnID]++;
for (int j = 0; j < onemol->natoms+cuff; j++) {
local_mega_glove[j][local_num_mega] = my_mega_glove[j][i];
}
local_num_mega++;
}
}
}
/* ----------------------------------------------------------------------
broadcast entries of mega_glove which contain nonlocal atoms for perusal by all processors
------------------------------------------------------------------------- */
void FixBondReact::ghost_glovecast()
{
#if !defined(MPI_STUBS)
const int nprocs = comm->nprocs;
global_megasize = 0;
int *allncols = new int[nprocs];
for (int i = 0; i < nprocs; i++)
allncols[i] = 0;
MPI_Allgather(&ghostly_num_mega, 1, MPI_INT, allncols, 1, MPI_INT, world);
for (int i = 0; i < nprocs; i++)
global_megasize = global_megasize + allncols[i];
if (global_megasize == 0) {
delete[] allncols;
return;
}
int *allstarts = new int[nprocs];
int start = 0;
for (int i = 0; i < comm->me; i++) {
start += allncols[i];
}
MPI_Allgather(&start, 1, MPI_INT, allstarts, 1, MPI_INT, world);
MPI_Datatype columnunsized, column;
int sizes[2] = {max_natoms+cuff, global_megasize};
int subsizes[2] = {max_natoms+cuff, 1};
int starts[2] = {0,0};
MPI_Type_create_subarray (2, sizes, subsizes, starts, MPI_ORDER_C,
MPI_DOUBLE, &columnunsized);
MPI_Type_create_resized (columnunsized, 0, sizeof(double), &column);
MPI_Type_commit(&column);
memory->destroy(global_mega_glove);
memory->create(global_mega_glove,max_natoms+cuff,global_megasize,"bond/react:global_mega_glove");
for (int i = 0; i < max_natoms+cuff; i++)
for (int j = 0; j < global_megasize; j++)
global_mega_glove[i][j] = 0;
if (ghostly_num_mega > 0) {
for (int i = 0; i < max_natoms+cuff; i++) {
for (int j = 0; j < ghostly_num_mega; j++) {
global_mega_glove[i][j+start] = ghostly_mega_glove[i][j];
}
}
}
// let's send to root, dedup, then broadcast
if (comm->me == 0) {
MPI_Gatherv(MPI_IN_PLACE, ghostly_num_mega, column, // Note: some values ignored for MPI_IN_PLACE
&(global_mega_glove[0][0]), allncols, allstarts,
column, 0, world);
} else {
MPI_Gatherv(&(global_mega_glove[0][start]), ghostly_num_mega, column,
&(global_mega_glove[0][0]), allncols, allstarts,
column, 0, world);
}
if (comm->me == 0) dedup_mega_gloves(GLOBAL); // global_mega_glove mode
MPI_Bcast(&global_megasize,1,MPI_INT,0,world);
MPI_Bcast(&(global_mega_glove[0][0]), global_megasize, column, 0, world);
delete[] allstarts;
delete[] allncols;
MPI_Type_free(&column);
MPI_Type_free(&columnunsized);
#endif
}
/* ----------------------------------------------------------------------
update molecule IDs, charges, types, special lists and all topology
------------------------------------------------------------------------- */
void FixBondReact::update_everything()
{
int nlocal = atom->nlocal; // must be redefined after create atoms
int *type = atom->type;
int **nspecial = atom->nspecial;
tagint **special = atom->special;
tagint *tag = atom->tag;
AtomVec *avec = atom->avec;
int **bond_type = atom->bond_type;
tagint **bond_atom = atom->bond_atom;
int *num_bond = atom->num_bond;
// used when deleting atoms
int ndel,ndelone;
int *mark;
int nmark = nlocal;
memory->create(mark,nmark,"bond/react:mark");
for (int i = 0; i < nmark; i++) mark[i] = 0;
// used when creating atoms
addatomtag = 0;
for (int i = 0; i < nlocal; i++) addatomtag = MAX(addatomtag,tag[i]);
MPI_Allreduce(MPI_IN_PLACE,&addatomtag,1,MPI_LMP_TAGINT,MPI_MAX,world);
addatoms.clear();
// flag used to delete special interactions
int *delflag;
memory->create(delflag,atom->maxspecial,"bond/react:delflag");
// used when creating atoms
int inserted_atoms_flag = 0;
// update atom->nbonds, etc.
// TODO: correctly tally with 'newton off'
int delta_bonds = 0;
int delta_angle = 0;
int delta_dihed = 0;
int delta_imprp = 0;
// use the following per-atom arrays to keep track of reacting atoms
int flag,cols;
int index1 = atom->find_custom("limit_tags",flag,cols);
int *i_limit_tags = atom->ivector[index1];
int *i_statted_tags;
if (stabilization_flag == 1) {
int index2 = atom->find_custom(statted_id,flag,cols);
i_statted_tags = atom->ivector[index2];
}
int index3 = atom->find_custom("react_tags",flag,cols);
int *i_react_tags = atom->ivector[index3];
// pass through twice
// redefining 'update_num_mega' and 'update_mega_glove' each time
// first pass: when glove is all local atoms
// second pass: search for local atoms in global_mega_glove
// add check for local atoms as well
int update_num_mega;
tagint **update_mega_glove;
// for now, keeping rxnID in update_mega_glove, but not rest of cuff in update_mega_glove
int maxmega = MAX(local_num_mega,global_megasize);
memory->create(update_mega_glove,max_natoms+1,maxmega,"bond/react:update_mega_glove");
double *sim_total_charges;
if (rescale_charges_anyflag) memory->create(sim_total_charges,maxmega,"bond/react:sim_total_charges");
for (int pass = 0; pass < 2; pass++) {
update_num_mega = 0;
int *noccur = new int[nreacts];
for (int i = 0; i < nreacts; i++) noccur[i] = 0;
if (pass == 0) {
for (int i = 0; i < local_num_mega; i++) {
rxnID = (int) local_mega_glove[0][i];
// reactions already shuffled from dedup procedure, so can skip first N
// wait, this check needs to be after add atoms, because they can also be 'skipped' due to overlap
if (noccur[rxnID] >= nlocalkeep[rxnID]) continue;
// this will be overwritten if reaction skipped by create_atoms below
update_mega_glove[0][update_num_mega] = (tagint) local_mega_glove[0][i];
for (int j = 0; j < max_natoms; j++)
update_mega_glove[j+1][update_num_mega] = (tagint) local_mega_glove[j+cuff][i];
// atoms inserted here for serial MPI_STUBS build only
if (create_atoms_flag[rxnID] == 1) {
onemol = atom->molecules[unreacted_mol[rxnID]];
twomol = atom->molecules[reacted_mol[rxnID]];
if (insert_atoms_setup(update_mega_glove,update_num_mega)) inserted_atoms_flag = 1;
else continue;
}
noccur[rxnID]++;
if (rescale_charges_flag[rxnID]) sim_total_charges[update_num_mega] = local_mega_glove[1][i];
update_num_mega++;
}
MPI_Allreduce(MPI_IN_PLACE, &noccur[0], nreacts, MPI_INT, MPI_SUM, world);
for (rxnID = 0; rxnID < nreacts; rxnID++) reaction_count_total[rxnID] += noccur[rxnID];
} else if (pass == 1) {
for (int i = 0; i < global_megasize; i++) {
rxnID = (int) global_mega_glove[0][i];
// reactions already shuffled from dedup procedure, so can skip first N
if (noccur[rxnID] >= nghostlykeep[rxnID]) continue;
// this will be overwritten if reaction skipped by create_atoms below
update_mega_glove[0][update_num_mega] = (tagint) global_mega_glove[0][i];
for (int j = 0; j < max_natoms; j++)
update_mega_glove[j+1][update_num_mega] = (tagint) global_mega_glove[j+cuff][i];
// we can insert atoms here, now that reactions are finalized
// can't do it any earlier, due to skipped reactions (max_rxn)
// for MPI build, reactions that create atoms are always treated as 'global'
if (create_atoms_flag[rxnID] == 1) {
onemol = atom->molecules[unreacted_mol[rxnID]];
twomol = atom->molecules[reacted_mol[rxnID]];
if (insert_atoms_setup(update_mega_glove,update_num_mega)) inserted_atoms_flag = 1;
else continue;
}
noccur[rxnID]++;
reaction_count_total[rxnID]++;
if (rescale_charges_flag[rxnID]) sim_total_charges[update_num_mega] = global_mega_glove[1][i];
update_num_mega++;
}
}
delete[] noccur;
// find current max molecule ID and shift for each proc
tagint moloffset = 0;
if (molid_mode == RESET_MOL_IDS::MOLMAP) {
tagint maxmol_all = 0;
for (int i = 0; i < atom->nlocal; i++) maxmol_all = MAX(maxmol_all, atom->molecule[i]);
MPI_Allreduce(MPI_IN_PLACE, &maxmol_all, 1, MPI_LMP_TAGINT, MPI_MAX, world);
// find number of new molids needed for each proc
if (pass == 0) {
tagint molcreate = 0;
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
molcreate += nnewmolids[rxnID];
}
MPI_Scan(&molcreate, &moloffset, 1, MPI_LMP_TAGINT, MPI_SUM, world);
moloffset = moloffset - molcreate + maxmol_all;
}
if (pass == 1) moloffset = maxmol_all;
}
if (update_num_mega == 0) continue;
// for 'reset_mol_ids molmap', update molecule IDs
// assumes consistent molecule IDs in pre- and post-reaction template
// NOTE: all procs assumed to have same update_mega_glove for second pass
// NOTE: must be done before add atoms, because add_atoms deletes ghost info
if (molid_mode == RESET_MOL_IDS::MOLMAP) {
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
onemol = atom->molecules[unreacted_mol[rxnID]];
twomol = atom->molecules[reacted_mol[rxnID]];
if (!onemol->moleculeflag || !twomol->moleculeflag) continue;
tagint molmapid = -1;
for (int j = 0; j < twomol->natoms; j++) {
int neednewid = 0;
tagint *thismolid;
if (create_atoms[j][rxnID] == 1) {
for (auto & myaddatom : addatoms) {
if (myaddatom.tag == update_mega_glove[j+1][i]) {
thismolid = &(myaddatom.molecule);
neednewid = 1;
break;
}
}
} else {
int jj = equivalences[j][1][rxnID]-1;
int jlocal = atom->map(update_mega_glove[jj+1][i]);
if (jlocal < nlocal && jlocal >= 0) {
thismolid = &(atom->molecule[jlocal]);
neednewid = 1;
}
}
if (neednewid == 1) {
if (newmolids[j][rxnID] != 0) {
molmapid = moloffset + newmolids[j][rxnID];
} else {
for (int k = 0; k < onemol->natoms; k++) {
if (twomol->molecule[j] == onemol->molecule[k]) {
int klocal = atom->map(update_mega_glove[k+1][i]);
if (klocal >= 0) {
molmapid = atom->molecule[klocal];
break;
}
}
}
}
if (molmapid != -1) {
*thismolid = molmapid;
} else {
error->one(FLERR,"Fix bond/react: unable to assign molecule ID using 'molmap' option. "
"Need ghost atoms from further away");
}
thismolid = nullptr;
}
}
moloffset += nnewmolids[rxnID];
}
}
// insert all atoms for all rxns here
if (inserted_atoms_flag == 1) {
// clear to-be-overwritten ghost info
atom->nghost = 0;
atom->avec->clear_bonus();
for (auto & myaddatom : addatoms) {
atom->avec->create_atom(myaddatom.type,myaddatom.x);
int n = atom->nlocal - 1;
atom->tag[n] = myaddatom.tag;
atom->molecule[n] = myaddatom.molecule;
atom->mask[n] = myaddatom.mask;
atom->image[n] = myaddatom.image;
atom->v[n][0] = myaddatom.v[0];
atom->v[n][1] = myaddatom.v[1];
atom->v[n][2] = myaddatom.v[2];
if (atom->rmass) atom->rmass[n]= myaddatom.rmass;
modify->create_attribute(n);
}
// reset atom->map
if (atom->map_style != Atom::MAP_NONE) {
atom->map_init();
atom->map_set();
}
}
// mark to-delete atoms
nlocal = atom->nlocal;
if (nlocal > nmark) {
memory->grow(mark,nlocal,"bond/react:mark");
for (int i = nmark; i < nlocal; i++) mark[i] = 0;
nmark = nlocal;
}
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
onemol = atom->molecules[unreacted_mol[rxnID]];
for (int j = 0; j < onemol->natoms; j++) {
int iatom = atom->map(update_mega_glove[j+1][i]);
if (delete_atoms[j][rxnID] == 1 && iatom >= 0 && iatom < nlocal) {
mark[iatom] = 1;
}
}
}
// update charges and types of landlocked atoms
// also keep track of 'stabilization' groups here
int n_custom_charge;
double charge_rescale_addend;
for (int i = 0; i < update_num_mega; i++) {
charge_rescale_addend = 0;
rxnID = update_mega_glove[0][i];
twomol = atom->molecules[reacted_mol[rxnID]];
if (rescale_charges_flag[rxnID]) {
n_custom_charge = rescale_charges_flag[rxnID];
charge_rescale_addend = (sim_total_charges[i]-mol_total_charge[rxnID])/n_custom_charge;
}
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
int ilocal = atom->map(update_mega_glove[jj+1][i]);
if (ilocal >= 0 && ilocal < nlocal) {
// update->ntimestep could be 0. so add 1 throughout
i_limit_tags[ilocal] = update->ntimestep + 1;
if (stabilization_flag == 1) i_statted_tags[ilocal] = 0;
i_react_tags[ilocal] = rxnID;
if (landlocked_atoms[j][rxnID] == 1)
type[ilocal] = twomol->type[j];
if (twomol->qflag && atom->q_flag && custom_charges[jj][rxnID] == 1) {
double *q = atom->q;
q[ilocal] = twomol->q[j]+charge_rescale_addend;
}
}
}
}
int insert_num;
// very nice and easy to completely overwrite special bond info for landlocked atoms
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
onemol = atom->molecules[unreacted_mol[rxnID]];
twomol = atom->molecules[reacted_mol[rxnID]];
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
int ilocal = atom->map(update_mega_glove[jj+1][i]);
if (ilocal < nlocal && ilocal >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
for (int k = 0; k < 3; k++) {
nspecial[ilocal][k] = twomol->nspecial[j][k];
}
for (int p = 0; p < twomol->nspecial[j][2]; p++) {
special[ilocal][p] = update_mega_glove[equivalences[twomol->special[j][p]-1][1][rxnID]][i];
}
}
// now delete and replace landlocked atoms from non-landlocked atoms' special info
// delete 1-2, 1-3, 1-4 specials individually. only delete if special exists in pre-reaction template
if (landlocked_atoms[j][rxnID] == 0) {
int ispec, fspec, imolspec, fmolspec, nspecdel[3];
for (int k = 0; k < 3; k++) nspecdel[k] = 0;
for (int k = 0; k < atom->maxspecial; k++) delflag[k] = 0;
for (int specn = 0; specn < 3; specn++) {
if (specn == 0) {
imolspec = 0;
ispec = 0;
} else {
imolspec = onemol->nspecial[jj][specn-1];
ispec = nspecial[ilocal][specn-1];
}
fmolspec = onemol->nspecial[jj][specn];
fspec = nspecial[ilocal][specn];
for (int k = ispec; k < fspec; k++) {
for (int p = imolspec; p < fmolspec; p++) {
if (update_mega_glove[onemol->special[jj][p]][i] == special[ilocal][k]) {
delflag[k] = 1;
for (int m = 2; m >= specn; m--) nspecdel[m]++;
break;
}
}
}
}
int incr = 0;
for (int k = 0; k < nspecial[ilocal][2]; k++)
if (delflag[k] == 0) special[ilocal][incr++] = special[ilocal][k];
for (int m = 0; m < 3; m++) nspecial[ilocal][m] -= nspecdel[m];
// now reassign from reacted template
for (int k = 0; k < twomol->nspecial[j][2]; k++) {
if (k > twomol->nspecial[j][1] - 1) {
insert_num = nspecial[ilocal][2]++;
} else if (k > twomol->nspecial[j][0] - 1) {
insert_num = nspecial[ilocal][1]++;
nspecial[ilocal][2]++;
} else {
insert_num = nspecial[ilocal][0]++;
nspecial[ilocal][1]++;
nspecial[ilocal][2]++;
}
if (nspecial[ilocal][2] > atom->maxspecial)
error->one(FLERR,"Fix bond/react special bond generation overflow");
for (int n = nspecial[ilocal][2]-1; n > insert_num; n--) {
special[ilocal][n] = special[ilocal][n-1];
}
special[ilocal][insert_num] = update_mega_glove[equivalences[twomol->special[j][k]-1][1][rxnID]][i];
}
}
}
}
}
// next let's update bond info
// cool thing is, newton_bond issues are already taken care of in templates
// same with class2 improper issues, which is why this fix started in the first place
// also need to find any instances of bond history to update histories
auto histories = modify->get_fix_by_style("BOND_HISTORY");
int n_histories = histories.size();
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
twomol = atom->molecules[reacted_mol[rxnID]];
// let's first delete all bond info about landlocked atoms
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
delta_bonds -= num_bond[atom->map(update_mega_glove[jj+1][i])];
// If deleting all bonds, first cache then remove all histories
if (n_histories > 0)
for (auto &ihistory: histories) {
for (int n = 0; n < num_bond[atom->map(update_mega_glove[jj+1][i])]; n++)
dynamic_cast<FixBondHistory *>(ihistory)->cache_history(atom->map(update_mega_glove[jj+1][i]), n);
for (int n = 0; n < num_bond[atom->map(update_mega_glove[jj+1][i])]; n++)
dynamic_cast<FixBondHistory *>(ihistory)->delete_history(atom->map(update_mega_glove[jj+1][i]), 0);
}
num_bond[atom->map(update_mega_glove[jj+1][i])] = 0;
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = num_bond[atom->map(update_mega_glove[jj+1][i])]-1; p > -1 ; p--) {
for (int n = 0; n < twomol->natoms; n++) {
int nn = equivalences[n][1][rxnID]-1;
if (n!=j && bond_atom[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] && landlocked_atoms[n][rxnID] == 1) {
// Cache history information, shift history, then delete final element
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->cache_history(atom->map(update_mega_glove[jj+1][i]), p);
for (int m = p; m < num_bond[atom->map(update_mega_glove[jj+1][i])]-1; m++) {
bond_type[atom->map(update_mega_glove[jj+1][i])][m] = bond_type[atom->map(update_mega_glove[jj+1][i])][m+1];
bond_atom[atom->map(update_mega_glove[jj+1][i])][m] = bond_atom[atom->map(update_mega_glove[jj+1][i])][m+1];
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->shift_history(atom->map(update_mega_glove[jj+1][i]),m,m+1);
}
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->delete_history(atom->map(update_mega_glove[jj+1][i]),
num_bond[atom->map(update_mega_glove[jj+1][i])]-1);
num_bond[atom->map(update_mega_glove[jj+1][i])]--;
delta_bonds--;
}
}
}
}
}
}
// now let's add the new bond info.
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
num_bond[atom->map(update_mega_glove[jj+1][i])] = twomol->num_bond[j];
delta_bonds += twomol->num_bond[j];
for (int p = 0; p < twomol->num_bond[j]; p++) {
bond_type[atom->map(update_mega_glove[jj+1][i])][p] = twomol->bond_type[j][p];
bond_atom[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->bond_atom[j][p]-1][1][rxnID]][i];
// Check cached history data to see if bond regenerated
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->check_cache(atom->map(update_mega_glove[jj+1][i]), p);
}
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = 0; p < twomol->num_bond[j]; p++) {
if (landlocked_atoms[twomol->bond_atom[j][p]-1][rxnID] == 1) {
insert_num = num_bond[atom->map(update_mega_glove[jj+1][i])];
bond_type[atom->map(update_mega_glove[jj+1][i])][insert_num] = twomol->bond_type[j][p];
bond_atom[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->bond_atom[j][p]-1][1][rxnID]][i];
// Check cached history data to see if bond regenerated
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->check_cache(atom->map(update_mega_glove[jj+1][i]), insert_num);
num_bond[atom->map(update_mega_glove[jj+1][i])]++;
if (num_bond[atom->map(update_mega_glove[jj+1][i])] > atom->bond_per_atom)
error->one(FLERR,"Fix bond/react topology/atom exceed system topology/atom");
delta_bonds++;
}
}
}
}
}
}
if (n_histories > 0)
for (auto &ihistory: histories)
dynamic_cast<FixBondHistory *>(ihistory)->clear_cache();
// Angles! First let's delete all angle info:
if (force->angle) {
int *num_angle = atom->num_angle;
int **angle_type = atom->angle_type;
tagint **angle_atom1 = atom->angle_atom1;
tagint **angle_atom2 = atom->angle_atom2;
tagint **angle_atom3 = atom->angle_atom3;
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
twomol = atom->molecules[reacted_mol[rxnID]];
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
delta_angle -= num_angle[atom->map(update_mega_glove[jj+1][i])];
num_angle[atom->map(update_mega_glove[jj+1][i])] = 0;
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = num_angle[atom->map(update_mega_glove[jj+1][i])]-1; p > -1; p--) {
for (int n = 0; n < twomol->natoms; n++) {
int nn = equivalences[n][1][rxnID]-1;
if (n!=j && landlocked_atoms[n][rxnID] == 1 &&
(angle_atom1[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
angle_atom2[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
angle_atom3[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i])) {
for (int m = p; m < num_angle[atom->map(update_mega_glove[jj+1][i])]-1; m++) {
angle_type[atom->map(update_mega_glove[jj+1][i])][m] = angle_type[atom->map(update_mega_glove[jj+1][i])][m+1];
angle_atom1[atom->map(update_mega_glove[jj+1][i])][m] = angle_atom1[atom->map(update_mega_glove[jj+1][i])][m+1];
angle_atom2[atom->map(update_mega_glove[jj+1][i])][m] = angle_atom2[atom->map(update_mega_glove[jj+1][i])][m+1];
angle_atom3[atom->map(update_mega_glove[jj+1][i])][m] = angle_atom3[atom->map(update_mega_glove[jj+1][i])][m+1];
}
num_angle[atom->map(update_mega_glove[jj+1][i])]--;
delta_angle--;
break;
}
}
}
}
}
}
// now let's add the new angle info.
if (twomol->angleflag) {
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
num_angle[atom->map(update_mega_glove[jj+1][i])] = twomol->num_angle[j];
delta_angle += twomol->num_angle[j];
for (int p = 0; p < twomol->num_angle[j]; p++) {
angle_type[atom->map(update_mega_glove[jj+1][i])][p] = twomol->angle_type[j][p];
angle_atom1[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->angle_atom1[j][p]-1][1][rxnID]][i];
angle_atom2[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->angle_atom2[j][p]-1][1][rxnID]][i];
angle_atom3[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->angle_atom3[j][p]-1][1][rxnID]][i];
}
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = 0; p < twomol->num_angle[j]; p++) {
if (landlocked_atoms[twomol->angle_atom1[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->angle_atom2[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->angle_atom3[j][p]-1][rxnID] == 1) {
insert_num = num_angle[atom->map(update_mega_glove[jj+1][i])];
angle_type[atom->map(update_mega_glove[jj+1][i])][insert_num] = twomol->angle_type[j][p];
angle_atom1[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->angle_atom1[j][p]-1][1][rxnID]][i];
angle_atom2[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->angle_atom2[j][p]-1][1][rxnID]][i];
angle_atom3[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->angle_atom3[j][p]-1][1][rxnID]][i];
num_angle[atom->map(update_mega_glove[jj+1][i])]++;
if (num_angle[atom->map(update_mega_glove[jj+1][i])] > atom->angle_per_atom)
error->one(FLERR,"Fix bond/react topology/atom exceed system topology/atom");
delta_angle++;
}
}
}
}
}
}
}
}
// Dihedrals! first let's delete all dihedral info for landlocked atoms
if (force->dihedral) {
int *num_dihedral = atom->num_dihedral;
int **dihedral_type = atom->dihedral_type;
tagint **dihedral_atom1 = atom->dihedral_atom1;
tagint **dihedral_atom2 = atom->dihedral_atom2;
tagint **dihedral_atom3 = atom->dihedral_atom3;
tagint **dihedral_atom4 = atom->dihedral_atom4;
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
twomol = atom->molecules[reacted_mol[rxnID]];
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
delta_dihed -= num_dihedral[atom->map(update_mega_glove[jj+1][i])];
num_dihedral[atom->map(update_mega_glove[jj+1][i])] = 0;
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = num_dihedral[atom->map(update_mega_glove[jj+1][i])]-1; p > -1; p--) {
for (int n = 0; n < twomol->natoms; n++) {
int nn = equivalences[n][1][rxnID]-1;
if (n!=j && landlocked_atoms[n][rxnID] == 1 &&
(dihedral_atom1[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
dihedral_atom2[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
dihedral_atom3[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
dihedral_atom4[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i])) {
for (int m = p; m < num_dihedral[atom->map(update_mega_glove[jj+1][i])]-1; m++) {
dihedral_type[atom->map(update_mega_glove[jj+1][i])][m] = dihedral_type[atom->map(update_mega_glove[jj+1][i])][m+1];
dihedral_atom1[atom->map(update_mega_glove[jj+1][i])][m] = dihedral_atom1[atom->map(update_mega_glove[jj+1][i])][m+1];
dihedral_atom2[atom->map(update_mega_glove[jj+1][i])][m] = dihedral_atom2[atom->map(update_mega_glove[jj+1][i])][m+1];
dihedral_atom3[atom->map(update_mega_glove[jj+1][i])][m] = dihedral_atom3[atom->map(update_mega_glove[jj+1][i])][m+1];
dihedral_atom4[atom->map(update_mega_glove[jj+1][i])][m] = dihedral_atom4[atom->map(update_mega_glove[jj+1][i])][m+1];
}
num_dihedral[atom->map(update_mega_glove[jj+1][i])]--;
delta_dihed--;
break;
}
}
}
}
}
}
// now let's add new dihedral info
if (twomol->dihedralflag) {
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
num_dihedral[atom->map(update_mega_glove[jj+1][i])] = twomol->num_dihedral[j];
delta_dihed += twomol->num_dihedral[j];
for (int p = 0; p < twomol->num_dihedral[j]; p++) {
dihedral_type[atom->map(update_mega_glove[jj+1][i])][p] = twomol->dihedral_type[j][p];
dihedral_atom1[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->dihedral_atom1[j][p]-1][1][rxnID]][i];
dihedral_atom2[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->dihedral_atom2[j][p]-1][1][rxnID]][i];
dihedral_atom3[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->dihedral_atom3[j][p]-1][1][rxnID]][i];
dihedral_atom4[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->dihedral_atom4[j][p]-1][1][rxnID]][i];
}
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = 0; p < twomol->num_dihedral[j]; p++) {
if (landlocked_atoms[twomol->dihedral_atom1[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->dihedral_atom2[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->dihedral_atom3[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->dihedral_atom4[j][p]-1][rxnID] == 1) {
insert_num = num_dihedral[atom->map(update_mega_glove[jj+1][i])];
dihedral_type[atom->map(update_mega_glove[jj+1][i])][insert_num] = twomol->dihedral_type[j][p];
dihedral_atom1[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->dihedral_atom1[j][p]-1][1][rxnID]][i];
dihedral_atom2[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->dihedral_atom2[j][p]-1][1][rxnID]][i];
dihedral_atom3[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->dihedral_atom3[j][p]-1][1][rxnID]][i];
dihedral_atom4[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->dihedral_atom4[j][p]-1][1][rxnID]][i];
num_dihedral[atom->map(update_mega_glove[jj+1][i])]++;
if (num_dihedral[atom->map(update_mega_glove[jj+1][i])] > atom->dihedral_per_atom)
error->one(FLERR,"Fix bond/react topology/atom exceed system topology/atom");
delta_dihed++;
}
}
}
}
}
}
}
}
// finally IMPROPERS!!!! first let's delete all improper info for landlocked atoms
if (force->improper) {
int *num_improper = atom->num_improper;
int **improper_type = atom->improper_type;
tagint **improper_atom1 = atom->improper_atom1;
tagint **improper_atom2 = atom->improper_atom2;
tagint **improper_atom3 = atom->improper_atom3;
tagint **improper_atom4 = atom->improper_atom4;
for (int i = 0; i < update_num_mega; i++) {
rxnID = update_mega_glove[0][i];
twomol = atom->molecules[reacted_mol[rxnID]];
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
delta_imprp -= num_improper[atom->map(update_mega_glove[jj+1][i])];
num_improper[atom->map(update_mega_glove[jj+1][i])] = 0;
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = num_improper[atom->map(update_mega_glove[jj+1][i])]-1; p > -1; p--) {
for (int n = 0; n < twomol->natoms; n++) {
int nn = equivalences[n][1][rxnID]-1;
if (n!=j && landlocked_atoms[n][rxnID] == 1 &&
(improper_atom1[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
improper_atom2[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
improper_atom3[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i] ||
improper_atom4[atom->map(update_mega_glove[jj+1][i])][p] == update_mega_glove[nn+1][i])) {
for (int m = p; m < num_improper[atom->map(update_mega_glove[jj+1][i])]-1; m++) {
improper_type[atom->map(update_mega_glove[jj+1][i])][m] = improper_type[atom->map(update_mega_glove[jj+1][i])][m+1];
improper_atom1[atom->map(update_mega_glove[jj+1][i])][m] = improper_atom1[atom->map(update_mega_glove[jj+1][i])][m+1];
improper_atom2[atom->map(update_mega_glove[jj+1][i])][m] = improper_atom2[atom->map(update_mega_glove[jj+1][i])][m+1];
improper_atom3[atom->map(update_mega_glove[jj+1][i])][m] = improper_atom3[atom->map(update_mega_glove[jj+1][i])][m+1];
improper_atom4[atom->map(update_mega_glove[jj+1][i])][m] = improper_atom4[atom->map(update_mega_glove[jj+1][i])][m+1];
}
num_improper[atom->map(update_mega_glove[jj+1][i])]--;
delta_imprp--;
break;
}
}
}
}
}
}
// now let's add new improper info
if (twomol->improperflag) {
for (int j = 0; j < twomol->natoms; j++) {
int jj = equivalences[j][1][rxnID]-1;
if (atom->map(update_mega_glove[jj+1][i]) < nlocal && atom->map(update_mega_glove[jj+1][i]) >= 0) {
if (landlocked_atoms[j][rxnID] == 1) {
num_improper[atom->map(update_mega_glove[jj+1][i])] = twomol->num_improper[j];
delta_imprp += twomol->num_improper[j];
for (int p = 0; p < twomol->num_improper[j]; p++) {
improper_type[atom->map(update_mega_glove[jj+1][i])][p] = twomol->improper_type[j][p];
improper_atom1[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->improper_atom1[j][p]-1][1][rxnID]][i];
improper_atom2[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->improper_atom2[j][p]-1][1][rxnID]][i];
improper_atom3[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->improper_atom3[j][p]-1][1][rxnID]][i];
improper_atom4[atom->map(update_mega_glove[jj+1][i])][p] = update_mega_glove[equivalences[twomol->improper_atom4[j][p]-1][1][rxnID]][i];
}
}
if (landlocked_atoms[j][rxnID] == 0) {
for (int p = 0; p < twomol->num_improper[j]; p++) {
if (landlocked_atoms[twomol->improper_atom1[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->improper_atom2[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->improper_atom3[j][p]-1][rxnID] == 1 ||
landlocked_atoms[twomol->improper_atom4[j][p]-1][rxnID] == 1) {
insert_num = num_improper[atom->map(update_mega_glove[jj+1][i])];
improper_type[atom->map(update_mega_glove[jj+1][i])][insert_num] = twomol->improper_type[j][p];
improper_atom1[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->improper_atom1[j][p]-1][1][rxnID]][i];
improper_atom2[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->improper_atom2[j][p]-1][1][rxnID]][i];
improper_atom3[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->improper_atom3[j][p]-1][1][rxnID]][i];
improper_atom4[atom->map(update_mega_glove[jj+1][i])][insert_num] = update_mega_glove[equivalences[twomol->improper_atom4[j][p]-1][1][rxnID]][i];
num_improper[atom->map(update_mega_glove[jj+1][i])]++;
if (num_improper[atom->map(update_mega_glove[jj+1][i])] > atom->improper_per_atom)
error->one(FLERR,"Fix bond/react topology/atom exceed system topology/atom");
delta_imprp++;
}
}
}
}
}
}
}
}
}
memory->destroy(update_mega_glove);
if (rescale_charges_anyflag) memory->destroy(sim_total_charges);
// delete atoms. taken from fix_evaporate. but don't think it needs to be in pre_exchange
// loop in reverse order to avoid copying marked atoms
ndel = ndelone = 0;
for (int i = atom->nlocal-1; i >= 0; i--) {
if (mark[i] == 1) {
avec->copy(atom->nlocal-1,i,1);
atom->nlocal--;
ndelone++;
if (atom->avec->bonds_allow) {
if (force->newton_bond) delta_bonds += atom->num_bond[i];
else {
for (int j = 0; j < atom->num_bond[i]; j++) {
if (tag[i] < atom->bond_atom[i][j]) delta_bonds++;
}
}
}
if (atom->avec->angles_allow) {
if (force->newton_bond) delta_angle += atom->num_angle[i];
else {
for (int j = 0; j < atom->num_angle[i]; j++) {
int m = atom->map(atom->angle_atom2[i][j]);
if (m >= 0 && m < nlocal) delta_angle++;
}
}
}
if (atom->avec->dihedrals_allow) {
if (force->newton_bond) delta_dihed += atom->num_dihedral[i];
else {
for (int j = 0; j < atom->num_dihedral[i]; j++) {
int m = atom->map(atom->dihedral_atom2[i][j]);
if (m >= 0 && m < nlocal) delta_dihed++;
}
}
}
if (atom->avec->impropers_allow) {
if (force->newton_bond) delta_imprp += atom->num_improper[i];
else {
for (int j = 0; j < atom->num_improper[i]; j++) {
int m = atom->map(atom->improper_atom2[i][j]);
if (m >= 0 && m < nlocal) delta_imprp++;
}
}
}
}
}
memory->destroy(mark);
memory->destroy(delflag);
MPI_Allreduce(&ndelone,&ndel,1,MPI_INT,MPI_SUM,world);
atom->natoms -= ndel;
// done deleting atoms
// something to think about: this could done much more concisely if
// all atom-level info (bond,angles, etc...) were kinda inherited from a common data struct --JG
int Tdelta_bonds;
MPI_Allreduce(&delta_bonds,&Tdelta_bonds,1,MPI_INT,MPI_SUM,world);
atom->nbonds += Tdelta_bonds;
int Tdelta_angle;
MPI_Allreduce(&delta_angle,&Tdelta_angle,1,MPI_INT,MPI_SUM,world);
atom->nangles += Tdelta_angle;
int Tdelta_dihed;
MPI_Allreduce(&delta_dihed,&Tdelta_dihed,1,MPI_INT,MPI_SUM,world);
atom->ndihedrals += Tdelta_dihed;
int Tdelta_imprp;
MPI_Allreduce(&delta_imprp,&Tdelta_imprp,1,MPI_INT,MPI_SUM,world);
atom->nimpropers += Tdelta_imprp;
if (ndel && (atom->map_style != Atom::MAP_NONE)) {
atom->nghost = 0;
atom->map_init();
atom->map_set();
}
}
/* ----------------------------------------------------------------------
setup for inserting created atoms
atoms for all rxns are actually created all at once in update_everything
------------------------------------------------------------------------- */
int FixBondReact::insert_atoms_setup(tagint **my_update_mega_glove, int iupdate)
{
// inserting atoms based off fix_deposit->pre_exchange
int flag;
imageint *imageflags;
double **coords,lamda[3],rotmat[3][3];
double *newcoord;
double t,delx,dely,delz,rsq;
double **x = atom->x;
int nlocal = atom->nlocal;
int dimension = domain->dimension;
memory->create(coords,twomol->natoms,3,"bond/react:coords");
memory->create(imageflags,twomol->natoms,"bond/react:imageflags");
double *sublo,*subhi;
if (domain->triclinic == 0) {
sublo = domain->sublo;
subhi = domain->subhi;
} else {
sublo = domain->sublo_lamda;
subhi = domain->subhi_lamda;
}
// only proc that owns reacting atom (use ibonding),
// fits post-reaction template to reaction site, for creating atoms
int n2superpose = 0;
for (int j = 0; j < twomol->natoms; j++) {
if (modify_create_fragid[rxnID] >= 0)
if (!twomol->fragmentmask[modify_create_fragid[rxnID]][j]) continue;
if (!create_atoms[j][rxnID] && !delete_atoms[equivalences[j][1][rxnID]][rxnID])
n2superpose++;
}
int ifit = atom->map(my_update_mega_glove[ibonding[rxnID]+1][iupdate]); // use this local ID to find fitting proc
Superpose3D<double, double **> superposer(n2superpose);
int fitroot = 0;
if (ifit >= 0 && ifit < atom->nlocal) {
fitroot = comm->me;
// get 'temperatere' averaged over site, used for created atoms' vels
// note: row_offset for my_update_mega_glove is unity, not 'cuff'
t = get_temperature(my_update_mega_glove,1,iupdate);
double **xfrozen; // coordinates for the "frozen" target molecule
double **xmobile; // coordinates for the "mobile" molecule
memory->create(xfrozen,n2superpose,3,"bond/react:xfrozen");
memory->create(xmobile,n2superpose,3,"bond/react:xmobile");
tagint iatom;
tagint iref = -1; // choose first atom as reference
int fit_incr = 0;
for (int j = 0; j < twomol->natoms; j++) {
if (modify_create_fragid[rxnID] >= 0)
if (!twomol->fragmentmask[modify_create_fragid[rxnID]][j]) continue;
int ipre = equivalences[j][1][rxnID]-1; // equiv pre-reaction template index
if (!create_atoms[j][rxnID] && !delete_atoms[ipre][rxnID]) {
if (atom->map(my_update_mega_glove[ipre+1][iupdate]) < 0) {
error->warning(FLERR," eligible atoms skipped for created-atoms fit on rank {}\n",
comm->me);
continue;
}
iatom = atom->map(my_update_mega_glove[ipre+1][iupdate]);
if (iref == -1) iref = iatom;
iatom = domain->closest_image(iref,iatom);
for (int k = 0; k < 3; k++) {
xfrozen[fit_incr][k] = x[iatom][k];
xmobile[fit_incr][k] = twomol->x[j][k];
}
fit_incr++;
}
}
superposer.Superpose(xfrozen, xmobile);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
rotmat[i][j] = superposer.R[i][j];
memory->destroy(xfrozen);
memory->destroy(xmobile);
}
MPI_Allreduce(MPI_IN_PLACE,&fitroot,1,MPI_INT,MPI_SUM,world);
MPI_Bcast(&t,1,MPI_DOUBLE,fitroot,world);
// get coordinates and image flags
for (int m = 0; m < twomol->natoms; m++) {
if (create_atoms[m][rxnID] == 1) {
// apply optimal rotation/translation for created atom coords
// also map coords back into simulation box
if (fitroot == comm->me) {
MathExtra::matvec(rotmat,twomol->x[m],coords[m]);
for (int i = 0; i < 3; i++) coords[m][i] += superposer.T[i];
imageflags[m] = atom->image[ifit];
domain->remap(coords[m],imageflags[m]);
}
MPI_Bcast(&imageflags[m],1,MPI_LMP_IMAGEINT,fitroot,world);
MPI_Bcast(coords[m],3,MPI_DOUBLE,fitroot,world);
}
}
// check distance between any existing atom and inserted atom
// if less than near, abort
if (overlapsq[rxnID] > 0) {
int abortflag = 0;
for (int m = 0; m < twomol->natoms; m++) {
if (create_atoms[m][rxnID] == 1) {
for (int i = 0; i < nlocal; i++) {
delx = coords[m][0] - x[i][0];
dely = coords[m][1] - x[i][1];
delz = coords[m][2] - x[i][2];
domain->minimum_image(FLERR, delx,dely,delz);
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < overlapsq[rxnID]) {
abortflag = 1;
break;
}
}
if (abortflag) break;
}
}
// also check against previous to-be-added atoms
if (!abortflag) {
for (auto & myaddatom : addatoms) {
for (int m = 0; m < twomol->natoms; m++) {
if (create_atoms[m][rxnID] == 1) {
delx = coords[m][0] - myaddatom.x[0];
dely = coords[m][1] - myaddatom.x[1];
delz = coords[m][2] - myaddatom.x[2];
domain->minimum_image(FLERR, delx,dely,delz);
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < overlapsq[rxnID]) {
abortflag = 1;
break;
}
}
}
if (abortflag) break;
}
}
MPI_Allreduce(MPI_IN_PLACE,&abortflag,1,MPI_INT,MPI_MAX,world);
if (abortflag) {
memory->destroy(coords);
memory->destroy(imageflags);
return 0;
}
}
// check if new atoms are in my sub-box or above it if I am highest proc
// if so, add atom to my list via create_atom()
// initialize additional info about the atoms
// set group mask to "all" plus fix group
int preID; // new equivalences index
int add_count = 0;
for (int m = 0; m < twomol->natoms; m++) {
if (create_atoms[m][rxnID] == 1) {
// increase atom count
add_count++;
preID = onemol->natoms+add_count;
if (domain->triclinic) {
domain->x2lamda(coords[m],lamda);
newcoord = lamda;
} else newcoord = coords[m];
flag = 0;
if (newcoord[0] >= sublo[0] && newcoord[0] < subhi[0] &&
newcoord[1] >= sublo[1] && newcoord[1] < subhi[1] &&
newcoord[2] >= sublo[2] && newcoord[2] < subhi[2]) flag = 1;
else if (dimension == 3 && newcoord[2] >= domain->boxhi[2]) {
if (comm->layout != Comm::LAYOUT_TILED) {
if (comm->myloc[2] == comm->procgrid[2]-1 &&
newcoord[0] >= sublo[0] && newcoord[0] < subhi[0] &&
newcoord[1] >= sublo[1] && newcoord[1] < subhi[1]) flag = 1;
} else {
if (comm->mysplit[2][1] == 1.0 &&
newcoord[0] >= sublo[0] && newcoord[0] < subhi[0] &&
newcoord[1] >= sublo[1] && newcoord[1] < subhi[1]) flag = 1;
}
} else if (dimension == 2 && newcoord[1] >= domain->boxhi[1]) {
if (comm->layout != Comm::LAYOUT_TILED) {
if (comm->myloc[1] == comm->procgrid[1]-1 &&
newcoord[0] >= sublo[0] && newcoord[0] < subhi[0]) flag = 1;
} else {
if (comm->mysplit[1][1] == 1.0 &&
newcoord[0] >= sublo[0] && newcoord[0] < subhi[0]) flag = 1;
}
}
int root = 0;
addatomtag++;
if (flag) {
struct AddAtom myaddatom;
root = comm->me;
myaddatom.type = twomol->type[m];
myaddatom.x[0] = coords[m][0];
myaddatom.x[1] = coords[m][1];
myaddatom.x[2] = coords[m][2];
myaddatom.tag = addatomtag;
// locally update mega_glove
my_update_mega_glove[preID][iupdate] = myaddatom.tag;
myaddatom.mask = 1 | groupbit;
myaddatom.image = imageflags[m];
if (atom->molecule_flag) myaddatom.molecule = 0;
// guess a somewhat reasonable initial velocity based on reaction site
// further control is possible using bond_react_MASTER_group
// compute |velocity| corresponding to a given temperature t, using specific atom's mass
myaddatom.rmass = atom->rmass ? twomol->rmass[m] : atom->mass[twomol->type[m]];
double vtnorm = sqrt(t / (force->mvv2e / (dimension * force->boltz)) / myaddatom.rmass);
double myv[3];
myv[0] = random[rxnID]->uniform();
myv[1] = random[rxnID]->uniform();
myv[2] = random[rxnID]->uniform();
double vnorm = sqrt(myv[0]*myv[0] + myv[1]*myv[1] + myv[2]*myv[2]);
myaddatom.v[0] = myv[0]/vnorm*vtnorm;
myaddatom.v[1] = myv[1]/vnorm*vtnorm;
myaddatom.v[2] = myv[2]/vnorm*vtnorm;
addatoms.push_back(myaddatom);
}
// globally update mega_glove and equivalences
MPI_Allreduce(MPI_IN_PLACE,&root,1,MPI_INT,MPI_SUM,world);
MPI_Bcast(&my_update_mega_glove[preID][iupdate],1,MPI_LMP_TAGINT,root,world);
equivalences[m][0][rxnID] = m+1;
equivalences[m][1][rxnID] = preID;
reverse_equiv[preID-1][0][rxnID] = preID;
reverse_equiv[preID-1][1][rxnID] = m+1;
}
}
// reset global natoms here
// reset atom map elsewhere, after all calls to 'insert_atoms_setup'
atom->natoms += add_count;
if (atom->natoms < 0)
error->all(FLERR,"Too many total atoms");
if (addatomtag >= MAXTAGINT)
error->all(FLERR,"New atom IDs exceed maximum allowed ID");
// atom creation successful
memory->destroy(coords);
memory->destroy(imageflags);
return 1;
}
/* ----------------------------------------------------------------------
add equal-style variable to keyword argument list
------------------------------------------------------------------------- */
void FixBondReact::read_variable_keyword(const char *myarg, int keyword, int myrxn)
{
var_id[keyword][myrxn] = input->variable->find(myarg);
if (var_id[keyword][myrxn] < 0)
error->all(FLERR,"Fix bond/react: Variable name {} does not exist",myarg);
if (!input->variable->equalstyle(var_id[keyword][myrxn]))
error->all(FLERR,"Fix bond/react: Variable {} is not equal-style",myarg);
var_flag[keyword][myrxn] = 1;
}
/* ----------------------------------------------------------------------
read map file
------------------------------------------------------------------------- */
void FixBondReact::read_map_file(int myrxn)
{
int rv;
char line[MAXLINE] = {'\0'};
char keyword[MAXLINE] = {'\0'};
char *eof,*ptr;
// skip 1st line of file
eof = fgets(line,MAXLINE,fp);
if (eof == nullptr) error->one(FLERR,"Fix bond/react: Unexpected end of superimpose file");
// read header lines
// skip blank lines or lines that start with "#"
// stop when read an unrecognized line
ncreate = 0;
while (true) {
readline(line);
// trim anything from '#' onward
// if line is blank, continue
if ((ptr = strchr(line,'#'))) *ptr = '\0';
if (strspn(line," \t\n\r") == strlen(line)) continue;
if (strstr(line,"edgeIDs")) sscanf(line,"%d",&nedge);
else if (strstr(line,"equivalences")) {
rv = sscanf(line,"%d",&nequivalent);
if (rv != 1) error->one(FLERR, "Map file header is incorrectly formatted");
if (nequivalent != onemol->natoms)
error->one(FLERR,"Fix bond/react: Number of equivalences in map file must "
"equal number of atoms in reaction templates");
}
else if (strstr(line,"deleteIDs")) {
rv = sscanf(line,"%d",&ndelete);
if (rv != 1) error->one(FLERR, "Map file header is incorrectly formatted");
} else if (strstr(line,"createIDs")) {
rv = sscanf(line,"%d",&ncreate);
if (rv != 1) error->one(FLERR, "Map file header is incorrectly formatted");
} else if (strstr(line,"chiralIDs")) {
rv = sscanf(line,"%d",&nchiral);
if (rv != 1) error->one(FLERR, "Map file header is incorrectly formatted");
} else if (strstr(line,"constraints")) {
rv = sscanf(line,"%d",&nconstraints[myrxn]);
if (rv != 1) error->one(FLERR, "Map file header is incorrectly formatted");
if (maxnconstraints < nconstraints[myrxn]) maxnconstraints = nconstraints[myrxn];
constraints.resize(maxnconstraints, std::vector<Constraint>(nreacts));
} else break;
}
if (ncreate == 0 && onemol->natoms != twomol->natoms)
error->all(FLERR,"Fix bond/react: Reaction templates must contain the same number of atoms");
else if (ncreate > 0 && onemol->natoms + ncreate != twomol->natoms)
error->all(FLERR,"Fix bond/react: Incorrect number of created atoms");
// grab keyword and skip next line
parse_keyword(0,line,keyword);
readline(line);
// loop over sections of superimpose file
int equivflag = 0, bondflag = 0;
while (strlen(keyword)) {
if (strcmp(keyword,"InitiatorIDs") == 0 || strcmp(keyword,"BondingIDs") == 0) {
if (strcmp(keyword,"BondingIDs") == 0)
if (comm->me == 0) error->warning(FLERR,"Fix bond/react: The BondingIDs section title has been deprecated. Please use InitiatorIDs instead.");
bondflag = 1;
readline(line);
rv = sscanf(line,"%d",&ibonding[myrxn]);
if (rv != 1) error->one(FLERR, "InitiatorIDs section is incorrectly formatted");
if (ibonding[myrxn] > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
readline(line);
rv = sscanf(line,"%d",&jbonding[myrxn]);
if (rv != 1) error->one(FLERR, "InitiatorIDs section is incorrectly formatted");
if (jbonding[myrxn] > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
} else if (strcmp(keyword,"EdgeIDs") == 0) {
EdgeIDs(line, myrxn);
} else if (strcmp(keyword,"Equivalences") == 0) {
equivflag = 1;
Equivalences(line, myrxn);
} else if (strcmp(keyword,"DeleteIDs") == 0) {
DeleteAtoms(line, myrxn);
} else if (strcmp(keyword,"CreateIDs") == 0) {
CreateAtoms(line, myrxn);
} else if (strcmp(keyword,"ChiralIDs") == 0) {
ChiralCenters(line, myrxn);
} else if (strcmp(keyword,"Constraints") == 0) {
ReadConstraints(line, myrxn);
} else error->one(FLERR,"Fix bond/react: Unknown section in map file");
parse_keyword(1,line,keyword);
}
// error check
for (int i = 0; i < onemol->natoms; i++) {
int my_equiv = reverse_equiv[i][1][myrxn];
if (create_atoms[my_equiv-1][myrxn] == 1)
error->all(FLERR,"Fix bond/react: Created atoms cannot also be listed in Equivalences section\n");
}
// error check
if (bondflag == 0 || equivflag == 0)
error->all(FLERR,"Fix bond/react: Map file missing InitiatorIDs or Equivalences section\n");
}
void FixBondReact::EdgeIDs(char *line, int myrxn)
{
// puts a 1 at edge(edgeID)
int tmp,rv;
for (int i = 0; i < nedge; i++) {
readline(line);
rv = sscanf(line,"%d",&tmp);
if (rv != 1) error->one(FLERR, "EdgeIDs section is incorrectly formatted");
if (tmp > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
edge[tmp-1][myrxn] = 1;
}
}
void FixBondReact::Equivalences(char *line, int myrxn)
{
int tmp1,tmp2,rv;
for (int i = 0; i < nequivalent; i++) {
readline(line);
rv = sscanf(line,"%d %d",&tmp1,&tmp2);
if (rv != 2) error->one(FLERR, "Equivalences section is incorrectly formatted");
if (tmp1 > onemol->natoms || tmp2 > twomol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
//equivalences is-> clmn 1: post-reacted, clmn 2: pre-reacted
equivalences[tmp2-1][0][myrxn] = tmp2;
equivalences[tmp2-1][1][myrxn] = tmp1;
//reverse_equiv is-> clmn 1: pre-reacted, clmn 2: post-reacted
reverse_equiv[tmp1-1][0][myrxn] = tmp1;
reverse_equiv[tmp1-1][1][myrxn] = tmp2;
}
// sanity check for one-to-one mapping for equivalences
for (int i = 0; i < twomol->natoms; i++)
for (int j = i+1; j < twomol->natoms; j++)
if (equivalences[i][0][myrxn] == equivalences[j][0][myrxn] ||
equivalences[i][1][myrxn] == equivalences[j][1][myrxn])
error->one(FLERR,"Fix bond/react: Repeated atoms IDs in Equivalences section");
}
void FixBondReact::DeleteAtoms(char *line, int myrxn)
{
int tmp,rv;
for (int i = 0; i < ndelete; i++) {
readline(line);
rv = sscanf(line,"%d",&tmp);
if (rv != 1) error->one(FLERR, "DeleteIDs section is incorrectly formatted");
if (tmp > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
delete_atoms[tmp-1][myrxn] = 1;
}
}
void FixBondReact::CreateAtoms(char *line, int myrxn)
{
create_atoms_flag[myrxn] = 1;
int tmp,rv;
for (int i = 0; i < ncreate; i++) {
readline(line);
rv = sscanf(line,"%d",&tmp);
if (rv != 1) error->one(FLERR, "CreateIDs section is incorrectly formatted");
if (tmp > twomol->natoms)
error->one(FLERR,"Fix bond/react: Invalid atom ID in CreateIDs section of map file");
create_atoms[tmp-1][myrxn] = 1;
}
if (twomol->xflag == 0)
error->one(FLERR,"Fix bond/react: 'Coords' section required in post-reaction template when creating new atoms");
}
void FixBondReact::CustomCharges(int ifragment, int myrxn)
{
for (int i = 0; i < onemol->natoms; i++)
if (onemol->fragmentmask[ifragment][i])
custom_charges[i][myrxn] = 1;
else
custom_charges[i][myrxn] = 0;
}
void FixBondReact::ChiralCenters(char *line, int myrxn)
{
int tmp,rv;
for (int i = 0; i < nchiral; i++) {
readline(line);
rv = sscanf(line,"%d",&tmp);
if (rv != 1) error->one(FLERR, "ChiralIDs section is incorrectly formatted");
if (tmp > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID in map file");
chiral_atoms[tmp-1][0][myrxn] = 1;
if (onemol->xflag == 0)
error->one(FLERR,"Fix bond/react: Molecule template 'Coords' section required for chiralIDs keyword");
if ((int) onemol_nxspecial[tmp-1][0] != 4)
error->one(FLERR,"Fix bond/react: Chiral atoms must have exactly four first neighbors");
for (int j = 0; j < 4; j++) {
for (int k = j+1; k < 4; k++) {
if (onemol->type[onemol_xspecial[tmp-1][j]-1] ==
onemol->type[onemol_xspecial[tmp-1][k]-1])
error->one(FLERR,"Fix bond/react: First neighbors of chiral atoms must be of mutually different types");
}
}
// record order of atom types, and coords
double my4coords[12];
for (int j = 0; j < 4; j++) {
chiral_atoms[tmp-1][j+2][myrxn] = onemol->type[onemol_xspecial[tmp-1][j]-1];
for (int k = 0; k < 3; k++) {
my4coords[3*j+k] = onemol->x[onemol_xspecial[tmp-1][j]-1][k];
}
}
// get orientation
chiral_atoms[tmp-1][1][myrxn] = get_chirality(my4coords);
}
}
void FixBondReact::ReadConstraints(char *line, int myrxn)
{
int rv;
double tmp[MAXCONARGS];
char **strargs,*ptr,*lptr;
memory->create(strargs,MAXCONARGS,MAXLINE,"bond/react:strargs");
auto constraint_type = new char[MAXLINE];
strcpy(constraintstr[myrxn],"("); // string for boolean constraint logic
for (int i = 0; i < nconstraints[myrxn]; i++) {
readline(line);
// find left parentheses, add to constraintstr, and update line
for (int j = 0; j < (int)strlen(line); j++) {
if (line[j] == '(') strcat(constraintstr[myrxn],"(");
if (isalpha(line[j])) {
line = line + j;
break;
}
}
// 'C' indicates where to sub in next constraint
strcat(constraintstr[myrxn],"C");
// special consideration for 'custom' constraint
// find final double quote, or skip two words
lptr = line;
if ((ptr = strrchr(lptr,'\"'))) lptr = ptr+1;
else {
while (lptr[0] != ' ') lptr++; // skip first 'word'
while (lptr[0] == ' ' || lptr[0] == '\t') lptr++; // skip blanks
while (lptr[0] != ' ') lptr++; // skip second 'word'
}
// find right parentheses
for (int j = 0; j < (int)strlen(lptr); j++)
if (lptr[j] == ')') strcat(constraintstr[myrxn],")");
// find logic symbols, and trim line via ptr
if ((ptr = strstr(lptr,"&&"))) {
strcat(constraintstr[myrxn],"&&");
*ptr = '\0';
} else if ((ptr = strstr(lptr,"||"))) {
strcat(constraintstr[myrxn],"||");
*ptr = '\0';
} else if (i+1 < nconstraints[myrxn]) {
strcat(constraintstr[myrxn],"&&");
}
if ((ptr = strchr(lptr,')')))
*ptr = '\0';
rv = sscanf(line,"%s",constraint_type);
if (rv != 1) error->one(FLERR, "Constraints section is incorrectly formatted");
if (strcmp(constraint_type,"distance") == 0) {
constraints[i][myrxn].type = DISTANCE;
rv = sscanf(line,"%*s %s %s %lg %lg",strargs[0],strargs[1],&tmp[0],&tmp[1]);
if (rv != 4) error->one(FLERR, "Distance constraint is incorrectly formatted");
readID(strargs[0], i, myrxn, 0);
readID(strargs[1], i, myrxn, 1);
// cutoffs
constraints[i][myrxn].par[0] = tmp[0]*tmp[0]; // using square of distance
constraints[i][myrxn].par[1] = tmp[1]*tmp[1];
} else if (strcmp(constraint_type,"angle") == 0) {
constraints[i][myrxn].type = ANGLE;
rv = sscanf(line,"%*s %s %s %s %lg %lg",strargs[0],strargs[1],strargs[2],&tmp[0],&tmp[1]);
if (rv != 5) error->one(FLERR, "Angle constraint is incorrectly formatted");
readID(strargs[0], i, myrxn, 0);
readID(strargs[1], i, myrxn, 1);
readID(strargs[2], i, myrxn, 2);
constraints[i][myrxn].par[0] = tmp[0]/180.0 * MY_PI;
constraints[i][myrxn].par[1] = tmp[1]/180.0 * MY_PI;
} else if (strcmp(constraint_type,"dihedral") == 0) {
constraints[i][myrxn].type = DIHEDRAL;
tmp[2] = 181.0; // impossible range
tmp[3] = 182.0;
rv = sscanf(line,"%*s %s %s %s %s %lg %lg %lg %lg",strargs[0],strargs[1],
strargs[2],strargs[3],&tmp[0],&tmp[1],&tmp[2],&tmp[3]);
if (rv != 6 && rv != 8) error->one(FLERR, "Dihedral constraint is incorrectly formatted");
readID(strargs[0], i, myrxn, 0);
readID(strargs[1], i, myrxn, 1);
readID(strargs[2], i, myrxn, 2);
readID(strargs[3], i, myrxn, 3);
constraints[i][myrxn].par[0] = tmp[0]/180.0 * MY_PI;
constraints[i][myrxn].par[1] = tmp[1]/180.0 * MY_PI;
constraints[i][myrxn].par[2] = tmp[2]/180.0 * MY_PI;
constraints[i][myrxn].par[3] = tmp[3]/180.0 * MY_PI;
} else if (strcmp(constraint_type,"arrhenius") == 0) {
constraints[i][myrxn].type = ARRHENIUS;
constraints[i][myrxn].par[0] = narrhenius++;
rv = sscanf(line,"%*s %lg %lg %lg %lg",&tmp[0],&tmp[1],&tmp[2],&tmp[3]);
if (rv != 4) error->one(FLERR, "Arrhenius constraint is incorrectly formatted");
constraints[i][myrxn].par[1] = tmp[0];
constraints[i][myrxn].par[2] = tmp[1];
constraints[i][myrxn].par[3] = tmp[2];
constraints[i][myrxn].par[4] = tmp[3];
} else if (strcmp(constraint_type,"rmsd") == 0) {
constraints[i][myrxn].type = RMSD;
strcpy(strargs[0],"0");
rv = sscanf(line,"%*s %lg %s",&tmp[0],strargs[0]);
if (rv != 1 && rv != 2) error->one(FLERR, "RMSD constraint is incorrectly formatted");
constraints[i][myrxn].par[0] = tmp[0]; // RMSDmax
constraints[i][myrxn].id[0] = -1; // optional molecule fragment
if (isalpha(strargs[0][0])) {
int ifragment = onemol->findfragment(strargs[0]);
if (ifragment < 0) error->one(FLERR,"Fix bond/react: Molecule fragment does not exist");
else constraints[i][myrxn].id[0] = ifragment;
}
} else if (strcmp(constraint_type,"custom") == 0) {
constraints[i][myrxn].type = CUSTOM;
std::vector<std::string> args = utils::split_words(line);
constraints[i][myrxn].str = args[1];
} else error->one(FLERR,"Fix bond/react: Illegal constraint type in 'Constraints' section of map file");
}
strcat(constraintstr[myrxn],")"); // close boolean constraint logic string
delete[] constraint_type;
memory->destroy(strargs);
}
/* ----------------------------------------------------------------------
if ID starts with character, assume it is a pre-reaction molecule fragment ID
otherwise, it is a pre-reaction atom ID
---------------------------------------------------------------------- */
void FixBondReact::readID(char *strarg, int iconstr, int myrxn, int i)
{
if (isalpha(strarg[0])) {
constraints[iconstr][myrxn].idtype[i] = FRAG; // fragment vs. atom ID flag
int ifragment = onemol->findfragment(strarg);
if (ifragment < 0)
error->one(FLERR,"Fix bond/react: Molecule fragment {} does not exist", strarg);
constraints[iconstr][myrxn].id[i] = ifragment;
} else {
constraints[iconstr][myrxn].idtype[i] = ATOM; // fragment vs. atom ID flag
int iatom = utils::inumeric(FLERR, strarg, true, lmp);
if (iatom > onemol->natoms)
error->one(FLERR,"Fix bond/react: Invalid template atom ID {} in map file", strarg);
constraints[iconstr][myrxn].id[i] = iatom;
}
}
void FixBondReact::open(char *file)
{
fp = fopen(file,"r");
if (fp == nullptr) error->one(FLERR, "Fix bond/react: Cannot open map file {}", file);
}
void FixBondReact::readline(char *line)
{
int n;
if (comm->me == 0) {
if (fgets(line,MAXLINE,fp) == nullptr) n = 0;
else n = strlen(line) + 1;
}
MPI_Bcast(&n,1,MPI_INT,0,world);
if (n == 0) error->all(FLERR,"Fix bond/react: Unexpected end of map file");
MPI_Bcast(line,n,MPI_CHAR,0,world);
}
void FixBondReact::parse_keyword(int flag, char *line, char *keyword)
{
if (flag) {
// read upto non-blank line plus 1 following line
// eof is set to 1 if any read hits end-of-file
int eof = 0;
if (comm->me == 0) {
if (fgets(line,MAXLINE,fp) == nullptr) eof = 1;
while (eof == 0 && strspn(line," \t\n\r") == strlen(line)) {
if (fgets(line,MAXLINE,fp) == nullptr) eof = 1;
}
if (fgets(keyword,MAXLINE,fp) == nullptr) eof = 1;
}
// if eof, set keyword empty and return
MPI_Bcast(&eof,1,MPI_INT,0,world);
if (eof) {
keyword[0] = '\0';
return;
}
// bcast keyword line to all procs
int n;
if (comm->me == 0) n = strlen(line) + 1;
MPI_Bcast(&n,1,MPI_INT,0,world);
MPI_Bcast(line,n,MPI_CHAR,0,world);
}
// copy non-whitespace portion of line into keyword
int start = strspn(line," \t\n\r");
int stop = strlen(line) - 1;
while (line[stop] == ' ' || line[stop] == '\t'
|| line[stop] == '\n' || line[stop] == '\r') stop--;
line[stop+1] = '\0';
strcpy(keyword,&line[start]);
}
/* ---------------------------------------------------------------------- */
double FixBondReact::compute_vector(int n)
{
// now we print just the totals for each reaction instance
return (double) reaction_count_total[n];
}
/* ---------------------------------------------------------------------- */
void FixBondReact::post_integrate_respa(int ilevel, int /*iloop*/)
{
if (ilevel == nlevels_respa-1) post_integrate();
}
/* ---------------------------------------------------------------------- */
void FixBondReact::post_force(int /*vflag*/)
{
if (molid_mode == RESET_MOL_IDS::YES) reset_mol_ids->reset();
}
/* ---------------------------------------------------------------------- */
int FixBondReact::pack_forward_comm(int n, int *list, double *buf,
int /*pbc_flag*/, int * /*pbc*/)
{
int i,j,k,m,ns;
m = 0;
if (commflag == 1) {
for (i = 0; i < n; i++) {
j = list[i];
for (k = 0; k < ncustomvars; k++)
buf[m++] = vvec[j][k];
}
return m;
}
if (commflag == 2) {
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(partner[j]).d;
}
return m;
}
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
buf[m++] = ubuf(finalpartner[j]).d;
ns = nxspecial[j][0];
buf[m++] = ubuf(ns).d;
for (k = 0; k < ns; k++)
buf[m++] = ubuf(xspecial[j][k]).d;
}
return m;
}
/* ---------------------------------------------------------------------- */
void FixBondReact::unpack_forward_comm(int n, int first, double *buf)
{
int i,j,k,m,ns,last;
m = 0;
last = first + n;
if (commflag == 1) {
for (i = first; i < last; i++)
for (k = 0; k < ncustomvars; k++)
vvec[i][k] = buf[m++];
} else if (commflag == 2) {
for (i = first; i < last; i++)
partner[i] = (tagint) ubuf(buf[m++]).i;
} else {
m = 0;
last = first + n;
for (i = first; i < last; i++) {
finalpartner[i] = (tagint) ubuf(buf[m++]).i;
ns = (int) ubuf(buf[m++]).i;
nxspecial[i][0] = ns;
for (j = 0; j < ns; j++)
xspecial[i][j] = (tagint) ubuf(buf[m++]).i;
}
}
}
/* ---------------------------------------------------------------------- */
int FixBondReact::pack_reverse_comm(int n, int first, double *buf)
{
int i,m,last;
m = 0;
last = first + n;
for (i = first; i < last; i++) {
buf[m++] = ubuf(partner[i]).d;
if (closeneigh[rxnID] != 0)
buf[m++] = distsq[i][1];
else
buf[m++] = distsq[i][0];
}
return m;
}
/* ---------------------------------------------------------------------- */
void FixBondReact::unpack_reverse_comm(int n, int *list, double *buf)
{
int i,j,m;
m = 0;
for (i = 0; i < n; i++) {
j = list[i];
if (closeneigh[rxnID] != 0) {
if (buf[m+1] < distsq[j][1]) {
partner[j] = (tagint) ubuf(buf[m++]).i;
distsq[j][1] = buf[m++];
} else m += 2;
} else {
if (buf[m+1] > distsq[j][0]) {
partner[j] = (tagint) ubuf(buf[m++]).i;
distsq[j][0] = buf[m++];
} else m += 2;
}
}
}
/* ----------------------------------------------------------------------
write Set data to restart file
------------------------------------------------------------------------- */
void FixBondReact::write_restart(FILE *fp)
{
int revision = 1;
set[0].nreacts = nreacts;
set[0].max_rate_limit_steps = max_rate_limit_steps;
for (int i = 0; i < nreacts; i++) {
set[i].reaction_count_total = reaction_count_total[i];
strncpy(set[i].rxn_name,rxn_name[i],MAXNAME-1);
set[i].rxn_name[MAXNAME-1] = '\0';
}
int rbufcount = max_rate_limit_steps*nreacts;
int *rbuf;
if (rbufcount) {
memory->create(rbuf,rbufcount,"bond/react:rbuf");
memcpy(rbuf,&store_rxn_count[0][0],sizeof(int)*rbufcount);
}
if (comm->me == 0) {
int size = nreacts*sizeof(Set)+(rbufcount+1)*sizeof(int);
fwrite(&size,sizeof(int),1,fp);
fwrite(&revision,sizeof(int),1,fp);
fwrite(set,sizeof(Set),nreacts,fp);
if (rbufcount) fwrite(rbuf,sizeof(int),rbufcount,fp);
}
if (rbufcount) memory->destroy(rbuf);
}
/* ----------------------------------------------------------------------
use selected state info from restart file to restart the Fix
bond/react restart revisions numbers added after LAMMPS version 3 Nov 2022
------------------------------------------------------------------------- */
void FixBondReact::restart(char *buf)
{
int n,revision,r_nreacts,r_max_rate_limit_steps,ibufcount,n2cpy;
int **ibuf;
n = 0;
if (lmp->restart_ver > utils::date2num("3 Nov 2022")) revision = buf[n++];
else revision = 0;
Set *set_restart = (Set *) &buf[n*sizeof(int)];
r_nreacts = set_restart[0].nreacts;
n2cpy = 0;
if (revision > 0) {
r_max_rate_limit_steps = set_restart[0].max_rate_limit_steps;
if (r_max_rate_limit_steps > 0) {
ibufcount = r_max_rate_limit_steps*r_nreacts;
memory->create(ibuf,r_max_rate_limit_steps,r_nreacts,"bond/react:ibuf");
memcpy(&ibuf[0][0],&buf[sizeof(int)+r_nreacts*sizeof(Set)],sizeof(int)*ibufcount);
n2cpy = r_max_rate_limit_steps;
}
}
if (max_rate_limit_steps < n2cpy) n2cpy = max_rate_limit_steps;
for (int i = 0; i < r_nreacts; i++) {
for (int j = 0; j < nreacts; j++) {
if (strcmp(set_restart[i].rxn_name,rxn_name[j]) == 0) {
reaction_count_total[j] = set_restart[i].reaction_count_total;
// read rate_limit restart information
for (int k = 0; k < n2cpy; k++)
store_rxn_count[k][j] = ibuf[k][i];
}
}
}
if (revision > 0 && r_max_rate_limit_steps > 0) memory->destroy(ibuf);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double FixBondReact::memory_usage()
{
int nmax = atom->nmax;
double bytes = (double)nmax * sizeof(int);
bytes = 2*nmax * sizeof(tagint);
bytes += (double)nmax * sizeof(double);
return bytes;
}
/* ---------------------------------------------------------------------- */
void FixBondReact::print_bb()
{
#if 0
//fix bond/create cargo code. eg nbonds needs to be added
for (int i = 0; i < atom->nlocal; i++) {
// printf("TAG " TAGINT_FORMAT ": %d nbonds: ",atom->tag[i],atom->num_bond[i]);
for (int j = 0; j < atom->num_bond[i]; j++) {
// printf(" " TAGINT_FORMAT,atom->bond_atom[i][j]);
}
// printf("\n");
// printf("TAG " TAGINT_FORMAT ": %d nangles: ",atom->tag[i],atom->num_angle[i]);
for (int j = 0; j < atom->num_angle[i]; j++) {
// printf(" " TAGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT ",",
atom->angle_atom1[i][j], atom->angle_atom2[i][j],
atom->angle_atom3[i][j]);
}
// printf("\n");
// printf("TAG " TAGINT_FORMAT ": %d ndihedrals: ",atom->tag[i],atom->num_dihedral[i]);
for (int j = 0; j < atom->num_dihedral[i]; j++) {
// printf(" " TAGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT ",", atom->dihedral_atom1[i][j],
atom->dihedral_atom2[i][j],atom->dihedral_atom3[i][j],
atom->dihedral_atom4[i][j]);
}
// printf("\n");
// printf("TAG " TAGINT_FORMAT ": %d nimpropers: ",atom->tag[i],atom->num_improper[i]);
for (int j = 0; j < atom->num_improper[i]; j++) {
// printf(" " TAGINT_FORMAT " " TAGINT_FORMAT " " TAGINT_FORMAT " "
TAGINT_FORMAT ",",atom->improper_atom1[i][j],
atom->improper_atom2[i][j],atom->improper_atom3[i][j],
atom->improper_atom4[i][j]);
}
// printf("\n");
// printf("TAG " TAGINT_FORMAT ": %d %d %d nspecial: ",atom->tag[i],
atom->nspecial[i][0],atom->nspecial[i][1],atom->nspecial[i][2]);
for (int j = 0; j < atom->nspecial[i][2]; j++) {
printf(" " TAGINT_FORMAT,atom->special[i][j]);
}
// printf("\n");
}
#endif
}