This update includes one new feature (neural-network based collective variables), several small enhancements (including an automatic definition of grid boundaries for angle-based CVs, and a normalization option for eigenvector-based CVs), bugfixes and documentation improvements. Usage information for specific features included in the Colvars library (i.e. not just the library as a whole) is now also reported to the screen or LAMMPS logfile (as is done already in other LAMMPS classes). Notable to LAMMPS code development are the removals of duplicated code and of ambiguously-named preprocessor defines in the Colvars headers. Since the last PR, the existing regression tests have also been running automatically via GitHub Actions. The following pull requests in the Colvars repository are relevant to LAMMPS: - 475 Remove fatal error condition https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin) - 474 Allow normalizing eigenvector vector components to deal with unit change https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin) - 470 Better error handling in the initialization of NeuralNetwork CV https://github.com/Colvars/colvars/pull/470 (@HanatoK) - 468 Add examples of histogram configuration, with and without explicit grid parameters https://github.com/Colvars/colvars/pull/468 (@giacomofiorin) - 464 Fix #463 using more fine-grained features https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin) - 447 [RFC] New option "scaledBiasingForce" for colvarbias https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin) - 444 [RFC] Implementation of dense neural network as CV https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin) - 443 Fix explicit gradient dependency of sub-CVs https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin) - 442 Persistent bias count https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin) - 437 Return type of bias from scripting interface https://github.com/Colvars/colvars/pull/437 (@giacomofiorin) - 434 More flexible use of boundaries from colvars by grids https://github.com/Colvars/colvars/pull/434 (@jhenin) - 433 Prevent double-free in linearCombination https://github.com/Colvars/colvars/pull/433 (@HanatoK) - 428 More complete documentation for index file format (NDX) https://github.com/Colvars/colvars/pull/428 (@giacomofiorin) - 426 Integrate functional version of backup_file() into base proxy class https://github.com/Colvars/colvars/pull/426 (@giacomofiorin) - 424 Track CVC inheritance when documenting feature usage https://github.com/Colvars/colvars/pull/424 (@giacomofiorin) - 419 Generate citation report while running computations https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin) - 415 Rebin metadynamics bias from explicit hills when available https://github.com/Colvars/colvars/pull/415 (@giacomofiorin) - 312 Ignore a keyword if it has content to the left of it (regardless of braces) https://github.com/Colvars/colvars/pull/312 (@giacomofiorin) Authors: @giacomofiorin, @HanatoK, @jhenin
798 lines
40 KiB
C++
798 lines
40 KiB
C++
#if (__cplusplus >= 201103L)
|
||
|
||
// This file is part of the Collective Variables module (Colvars).
|
||
// The original version of Colvars and its updates are located at:
|
||
// https://github.com/Colvars/colvars
|
||
// Please update all Colvars source files before making any changes.
|
||
// If you wish to distribute your changes, please submit them to the
|
||
// Colvars repository at GitHub.
|
||
|
||
#include <numeric>
|
||
#include <algorithm>
|
||
#include <cmath>
|
||
#include <cstdlib>
|
||
#include <limits>
|
||
|
||
#include "colvarmodule.h"
|
||
#include "colvarvalue.h"
|
||
#include "colvarparse.h"
|
||
#include "colvar.h"
|
||
#include "colvarcomp.h"
|
||
|
||
colvar::CartesianBasedPath::CartesianBasedPath(std::string const &conf): cvc(conf), atoms(nullptr), reference_frames(0) {
|
||
// Parse selected atoms
|
||
atoms = parse_group(conf, "atoms");
|
||
has_user_defined_fitting = false;
|
||
std::string fitting_conf;
|
||
if (key_lookup(conf, "fittingAtoms", &fitting_conf)) {
|
||
has_user_defined_fitting = true;
|
||
}
|
||
// Lookup reference column of PDB
|
||
// Copied from the RMSD class
|
||
std::string reference_column;
|
||
double reference_column_value;
|
||
if (get_keyval(conf, "refPositionsCol", reference_column, std::string(""))) {
|
||
bool found = get_keyval(conf, "refPositionsColValue", reference_column_value, 0.0);
|
||
if (found && reference_column_value == 0.0) {
|
||
cvm::error("Error: refPositionsColValue, "
|
||
"if provided, must be non-zero.\n");
|
||
return;
|
||
}
|
||
}
|
||
// Lookup all reference frames
|
||
bool has_frames = true;
|
||
total_reference_frames = 0;
|
||
while (has_frames) {
|
||
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(total_reference_frames + 1);
|
||
if (key_lookup(conf, reference_position_file_lookup.c_str())) {
|
||
std::string reference_position_filename;
|
||
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
|
||
std::vector<cvm::atom_pos> reference_position(atoms->size());
|
||
cvm::load_coords(reference_position_filename.c_str(), &reference_position, atoms, reference_column, reference_column_value);
|
||
reference_frames.push_back(reference_position);
|
||
++total_reference_frames;
|
||
} else {
|
||
has_frames = false;
|
||
}
|
||
}
|
||
// Setup alignment to compute RMSD with respect to reference frames
|
||
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
|
||
cvm::atom_group* tmp_atoms = parse_group(conf, "atoms");
|
||
if (!has_user_defined_fitting) {
|
||
// Swipe from the rmsd class
|
||
tmp_atoms->enable(f_ag_center);
|
||
tmp_atoms->enable(f_ag_rotate);
|
||
tmp_atoms->ref_pos = reference_frames[i_frame];
|
||
tmp_atoms->center_ref_pos();
|
||
tmp_atoms->enable(f_ag_fit_gradients);
|
||
tmp_atoms->rot.request_group1_gradients(tmp_atoms->size());
|
||
tmp_atoms->rot.request_group2_gradients(tmp_atoms->size());
|
||
comp_atoms.push_back(tmp_atoms);
|
||
} else {
|
||
// parse a group of atoms for fitting
|
||
std::string fitting_group_name = std::string("fittingAtoms") + cvm::to_str(i_frame);
|
||
cvm::atom_group* tmp_fitting_atoms = new cvm::atom_group(fitting_group_name.c_str());
|
||
tmp_fitting_atoms->parse(fitting_conf);
|
||
tmp_fitting_atoms->disable(f_ag_scalable);
|
||
tmp_fitting_atoms->fit_gradients.assign(tmp_fitting_atoms->size(), cvm::atom_pos(0.0, 0.0, 0.0));
|
||
std::string reference_position_file_lookup = "refPositionsFile" + cvm::to_str(i_frame + 1);
|
||
std::string reference_position_filename;
|
||
get_keyval(conf, reference_position_file_lookup.c_str(), reference_position_filename, std::string(""));
|
||
std::vector<cvm::atom_pos> reference_fitting_position(tmp_fitting_atoms->size());
|
||
cvm::load_coords(reference_position_filename.c_str(), &reference_fitting_position, tmp_fitting_atoms, reference_column, reference_column_value);
|
||
// setup the atom group for calculating
|
||
tmp_atoms->enable(f_ag_center);
|
||
tmp_atoms->enable(f_ag_rotate);
|
||
tmp_atoms->b_user_defined_fit = true;
|
||
tmp_atoms->disable(f_ag_scalable);
|
||
tmp_atoms->ref_pos = reference_fitting_position;
|
||
tmp_atoms->center_ref_pos();
|
||
tmp_atoms->enable(f_ag_fit_gradients);
|
||
tmp_atoms->enable(f_ag_fitting_group);
|
||
tmp_atoms->fitting_group = tmp_fitting_atoms;
|
||
tmp_atoms->rot.request_group1_gradients(tmp_fitting_atoms->size());
|
||
tmp_atoms->rot.request_group2_gradients(tmp_fitting_atoms->size());
|
||
reference_fitting_frames.push_back(reference_fitting_position);
|
||
comp_atoms.push_back(tmp_atoms);
|
||
}
|
||
}
|
||
x.type(colvarvalue::type_scalar);
|
||
// Don't use implicit gradient
|
||
enable(f_cvc_explicit_gradient);
|
||
}
|
||
|
||
colvar::CartesianBasedPath::~CartesianBasedPath() {
|
||
for (auto it_comp_atoms = comp_atoms.begin(); it_comp_atoms != comp_atoms.end(); ++it_comp_atoms) {
|
||
if (*it_comp_atoms != nullptr) {
|
||
delete (*it_comp_atoms);
|
||
(*it_comp_atoms) = nullptr;
|
||
}
|
||
}
|
||
// Avoid double-freeing due to CVC-in-CVC construct
|
||
atom_groups.clear();
|
||
}
|
||
|
||
void colvar::CartesianBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
|
||
for (size_t i_frame = 0; i_frame < reference_frames.size(); ++i_frame) {
|
||
cvm::real frame_rmsd = 0.0;
|
||
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
frame_rmsd += ((*(comp_atoms[i_frame]))[i_atom].pos - reference_frames[i_frame][i_atom]).norm2();
|
||
}
|
||
frame_rmsd /= cvm::real(atoms->size());
|
||
frame_rmsd = cvm::sqrt(frame_rmsd);
|
||
result[i_frame] = frame_rmsd;
|
||
}
|
||
}
|
||
|
||
colvar::gspath::gspath(std::string const &conf): CartesianBasedPath(conf) {
|
||
set_function_type("gspath");
|
||
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
|
||
if (use_second_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
|
||
}
|
||
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
|
||
if (use_third_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
|
||
}
|
||
if (total_reference_frames < 2) {
|
||
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspath requires at least 2 frames.\n");
|
||
return;
|
||
}
|
||
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::S>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame);
|
||
cvm::log(std::string("Geometric pathCV(s) is initialized.\n"));
|
||
cvm::log(std::string("Geometric pathCV(s) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
|
||
}
|
||
|
||
void colvar::gspath::updateDistanceToReferenceFrames() {
|
||
computeDistanceToReferenceFrames(frame_distances);
|
||
}
|
||
|
||
void colvar::gspath::prepareVectors() {
|
||
size_t i_atom;
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
// v1 = s_m - z
|
||
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
|
||
// v2 = z - s_(m-1)
|
||
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
|
||
}
|
||
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
|
||
cvm::atom_pos reference_cog_1, reference_cog_2;
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
|
||
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
|
||
}
|
||
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
|
||
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
|
||
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
|
||
}
|
||
if (has_user_defined_fitting) {
|
||
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
|
||
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
|
||
}
|
||
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
|
||
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2(reference_fitting_frames[min_frame_index_2].size());
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
|
||
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
|
||
}
|
||
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
|
||
} else {
|
||
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
|
||
}
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
v3[i_atom] = rot_v3.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
|
||
}
|
||
} else {
|
||
cvm::atom_pos reference_cog_1, reference_cog_3;
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
|
||
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
|
||
}
|
||
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
|
||
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
|
||
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
|
||
}
|
||
if (has_user_defined_fitting) {
|
||
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_3;
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
|
||
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
|
||
}
|
||
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
|
||
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1(reference_fitting_frames[min_frame_index_1].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
|
||
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
|
||
}
|
||
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
|
||
} else {
|
||
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
|
||
}
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
// v3 = s_(m+1) - s_m
|
||
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gspath::calc_value() {
|
||
computeValue();
|
||
x = s;
|
||
}
|
||
|
||
void colvar::gspath::calc_gradients() {
|
||
computeDerivatives();
|
||
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
|
||
// dS(v1, v2(r), v3) / dr = ∂S/∂v1 * dv1/dr + ∂S/∂v2 * dv2/dr
|
||
// dv1/dr = [fitting matrix 1][-1, ..., -1]
|
||
// dv2/dr = [fitting matrix 2][1, ..., 1]
|
||
// ∂S/∂v1 = ± (∂f/∂v1) / (2M)
|
||
// ∂S/∂v2 = ± (∂f/∂v2) / (2M)
|
||
// dS(v1, v2(r), v3) / dr = -1.0 * ± (∂f/∂v1) / (2M) + ± (∂f/∂v2) / (2M)
|
||
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_atom_grad_v1[0] = -1.0 * sign * 0.5 * dfdv1[i_atom][0] / M;
|
||
tmp_atom_grad_v1[1] = -1.0 * sign * 0.5 * dfdv1[i_atom][1] / M;
|
||
tmp_atom_grad_v1[2] = -1.0 * sign * 0.5 * dfdv1[i_atom][2] / M;
|
||
tmp_atom_grad_v2[0] = sign * 0.5 * dfdv2[i_atom][0] / M;
|
||
tmp_atom_grad_v2[1] = sign * 0.5 * dfdv2[i_atom][1] / M;
|
||
tmp_atom_grad_v2[2] = sign * 0.5 * dfdv2[i_atom][2] / M;
|
||
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
|
||
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
|
||
}
|
||
}
|
||
|
||
void colvar::gspath::apply_force(colvarvalue const &force) {
|
||
// The force applied to this CV is scalar type
|
||
cvm::real const &F = force.real_value;
|
||
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
|
||
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
|
||
}
|
||
|
||
colvar::gzpath::gzpath(std::string const &conf): CartesianBasedPath(conf) {
|
||
set_function_type("gzpath");
|
||
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
|
||
if (use_second_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
|
||
}
|
||
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
|
||
if (use_third_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
|
||
}
|
||
bool b_use_z_square = false;
|
||
get_keyval(conf, "useZsquare", b_use_z_square, false);
|
||
if (b_use_z_square == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
|
||
}
|
||
if (total_reference_frames < 2) {
|
||
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpath requires at least 2 frames.\n");
|
||
return;
|
||
}
|
||
GeometricPathCV::GeometricPathBase<cvm::atom_pos, cvm::real, GeometricPathCV::path_sz::Z>::initialize(atoms->size(), cvm::atom_pos(), total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
|
||
// Logging
|
||
cvm::log(std::string("Geometric pathCV(z) is initialized.\n"));
|
||
cvm::log(std::string("Geometric pathCV(z) loaded ") + cvm::to_str(reference_frames.size()) + std::string(" frames.\n"));
|
||
}
|
||
|
||
void colvar::gzpath::updateDistanceToReferenceFrames() {
|
||
computeDistanceToReferenceFrames(frame_distances);
|
||
}
|
||
|
||
void colvar::gzpath::prepareVectors() {
|
||
cvm::atom_pos reference_cog_1, reference_cog_2;
|
||
size_t i_atom;
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
reference_cog_1 += reference_frames[min_frame_index_1][i_atom];
|
||
reference_cog_2 += reference_frames[min_frame_index_2][i_atom];
|
||
}
|
||
reference_cog_1 /= cvm::real(reference_frames[min_frame_index_1].size());
|
||
reference_cog_2 /= cvm::real(reference_frames[min_frame_index_2].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_1(reference_frames[min_frame_index_1].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_2(reference_frames[min_frame_index_2].size());
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_reference_frame_1[i_atom] = reference_frames[min_frame_index_1][i_atom] - reference_cog_1;
|
||
tmp_reference_frame_2[i_atom] = reference_frames[min_frame_index_2][i_atom] - reference_cog_2;
|
||
}
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_1;
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_2;
|
||
if (has_user_defined_fitting) {
|
||
cvm::atom_pos reference_fitting_cog_1, reference_fitting_cog_2;
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
reference_fitting_cog_1 += reference_fitting_frames[min_frame_index_1][i_atom];
|
||
reference_fitting_cog_2 += reference_fitting_frames[min_frame_index_2][i_atom];
|
||
}
|
||
reference_fitting_cog_1 /= cvm::real(reference_fitting_frames[min_frame_index_1].size());
|
||
reference_fitting_cog_2 /= cvm::real(reference_fitting_frames[min_frame_index_2].size());
|
||
tmp_reference_fitting_frame_1.resize(reference_fitting_frames[min_frame_index_1].size());
|
||
tmp_reference_fitting_frame_2.resize(reference_fitting_frames[min_frame_index_2].size());
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_1].size(); ++i_atom) {
|
||
tmp_reference_fitting_frame_1[i_atom] = reference_fitting_frames[min_frame_index_1][i_atom] - reference_fitting_cog_1;
|
||
tmp_reference_fitting_frame_2[i_atom] = reference_fitting_frames[min_frame_index_2][i_atom] - reference_fitting_cog_2;
|
||
}
|
||
rot_v4.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_2);
|
||
} else {
|
||
rot_v4.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_2);
|
||
}
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
v1[i_atom] = reference_frames[min_frame_index_1][i_atom] - (*(comp_atoms[min_frame_index_1]))[i_atom].pos;
|
||
v2[i_atom] = (*(comp_atoms[min_frame_index_2]))[i_atom].pos - reference_frames[min_frame_index_2][i_atom];
|
||
// v4 only computes in gzpath
|
||
// v4 = s_m - s_(m-1)
|
||
v4[i_atom] = rot_v4.q.rotate(tmp_reference_frame_1[i_atom]) - tmp_reference_frame_2[i_atom];
|
||
}
|
||
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
|
||
v3 = v4;
|
||
} else {
|
||
cvm::atom_pos reference_cog_3;
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
reference_cog_3 += reference_frames[min_frame_index_3][i_atom];
|
||
}
|
||
reference_cog_3 /= cvm::real(reference_frames[min_frame_index_3].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_frame_3(reference_frames[min_frame_index_3].size());
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_reference_frame_3[i_atom] = reference_frames[min_frame_index_3][i_atom] - reference_cog_3;
|
||
}
|
||
if (has_user_defined_fitting) {
|
||
cvm::atom_pos reference_fitting_cog_3;
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
|
||
reference_fitting_cog_3 += reference_fitting_frames[min_frame_index_3][i_atom];
|
||
}
|
||
reference_fitting_cog_3 /= cvm::real(reference_fitting_frames[min_frame_index_3].size());
|
||
std::vector<cvm::atom_pos> tmp_reference_fitting_frame_3(reference_fitting_frames[min_frame_index_3].size());
|
||
for (i_atom = 0; i_atom < reference_fitting_frames[min_frame_index_3].size(); ++i_atom) {
|
||
tmp_reference_fitting_frame_3[i_atom] = reference_fitting_frames[min_frame_index_3][i_atom] - reference_fitting_cog_3;
|
||
}
|
||
rot_v3.calc_optimal_rotation(tmp_reference_fitting_frame_1, tmp_reference_fitting_frame_3);
|
||
} else {
|
||
rot_v3.calc_optimal_rotation(tmp_reference_frame_1, tmp_reference_frame_3);
|
||
}
|
||
for (i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
// v3 = s_(m+1) - s_m
|
||
v3[i_atom] = tmp_reference_frame_3[i_atom] - rot_v3.q.rotate(tmp_reference_frame_1[i_atom]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gzpath::calc_value() {
|
||
computeValue();
|
||
x = z;
|
||
}
|
||
|
||
void colvar::gzpath::calc_gradients() {
|
||
computeDerivatives();
|
||
cvm::rvector tmp_atom_grad_v1, tmp_atom_grad_v2;
|
||
for (size_t i_atom = 0; i_atom < atoms->size(); ++i_atom) {
|
||
tmp_atom_grad_v1 = -1.0 * dzdv1[i_atom];
|
||
tmp_atom_grad_v2 = dzdv2[i_atom];
|
||
(*(comp_atoms[min_frame_index_1]))[i_atom].grad += tmp_atom_grad_v1;
|
||
(*(comp_atoms[min_frame_index_2]))[i_atom].grad += tmp_atom_grad_v2;
|
||
}
|
||
}
|
||
|
||
void colvar::gzpath::apply_force(colvarvalue const &force) {
|
||
// The force applied to this CV is scalar type
|
||
cvm::real const &F = force.real_value;
|
||
(*(comp_atoms[min_frame_index_1])).apply_colvar_force(F);
|
||
(*(comp_atoms[min_frame_index_2])).apply_colvar_force(F);
|
||
}
|
||
|
||
|
||
colvar::CVBasedPath::CVBasedPath(std::string const &conf): cvc(conf) {
|
||
// Lookup all available sub-cvcs
|
||
for (auto it_cv_map = colvar::get_global_cvc_map().begin(); it_cv_map != colvar::get_global_cvc_map().end(); ++it_cv_map) {
|
||
if (key_lookup(conf, it_cv_map->first.c_str())) {
|
||
std::vector<std::string> sub_cvc_confs;
|
||
get_key_string_multi_value(conf, it_cv_map->first.c_str(), sub_cvc_confs);
|
||
for (auto it_sub_cvc_conf = sub_cvc_confs.begin(); it_sub_cvc_conf != sub_cvc_confs.end(); ++it_sub_cvc_conf) {
|
||
cv.push_back((it_cv_map->second)(*(it_sub_cvc_conf)));
|
||
}
|
||
}
|
||
}
|
||
// Sort all sub CVs by their names
|
||
std::sort(cv.begin(), cv.end(), colvar::compare_cvc);
|
||
// Register atom groups and determine the colvar type for reference
|
||
std::vector<colvarvalue> tmp_cv;
|
||
for (auto it_sub_cv = cv.begin(); it_sub_cv != cv.end(); ++it_sub_cv) {
|
||
for (auto it_atom_group = (*it_sub_cv)->atom_groups.begin(); it_atom_group != (*it_sub_cv)->atom_groups.end(); ++it_atom_group) {
|
||
register_atom_group(*it_atom_group);
|
||
}
|
||
colvarvalue tmp_i_cv((*it_sub_cv)->value());
|
||
tmp_i_cv.reset();
|
||
tmp_cv.push_back(tmp_i_cv);
|
||
}
|
||
// Read path file
|
||
// Lookup all reference CV values
|
||
std::string path_filename;
|
||
get_keyval(conf, "pathFile", path_filename);
|
||
cvm::log(std::string("Reading path file: ") + path_filename + std::string("\n"));
|
||
std::ifstream ifs_path(path_filename);
|
||
if (!ifs_path.is_open()) {
|
||
cvm::error("Error: failed to open path file.\n");
|
||
return;
|
||
}
|
||
std::string line;
|
||
const std::string token(" ");
|
||
total_reference_frames = 0;
|
||
while (std::getline(ifs_path, line)) {
|
||
std::vector<std::string> fields;
|
||
split_string(line, token, fields);
|
||
size_t num_value_required = 0;
|
||
cvm::log(std::string("Reading reference frame ") + cvm::to_str(total_reference_frames + 1) + std::string("\n"));
|
||
for (size_t i_cv = 0; i_cv < tmp_cv.size(); ++i_cv) {
|
||
const size_t value_size = tmp_cv[i_cv].size();
|
||
num_value_required += value_size;
|
||
cvm::log(std::string("Reading CV ") + cv[i_cv]->name + std::string(" with ") + cvm::to_str(value_size) + std::string(" value(s)\n"));
|
||
if (num_value_required <= fields.size()) {
|
||
size_t start_index = num_value_required - value_size;
|
||
for (size_t i = start_index; i < num_value_required; ++i) {
|
||
tmp_cv[i_cv][i - start_index] = std::atof(fields[i].c_str());
|
||
cvm::log(cvm::to_str(tmp_cv[i_cv][i - start_index]));
|
||
}
|
||
} else {
|
||
cvm::error("Error: incorrect format of path file.\n");
|
||
return;
|
||
}
|
||
}
|
||
if (!fields.empty()) {
|
||
ref_cv.push_back(tmp_cv);
|
||
++total_reference_frames;
|
||
}
|
||
}
|
||
if (total_reference_frames <= 1) {
|
||
cvm::error("Error: there is only 1 or 0 reference frame, which doesn't constitute a path.\n");
|
||
return;
|
||
}
|
||
if (cv.size() == 0) {
|
||
cvm::error("Error: the CV " + name +
|
||
" expects one or more nesting components.\n");
|
||
return;
|
||
}
|
||
x.type(colvarvalue::type_scalar);
|
||
use_explicit_gradients = true;
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
if (!cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
||
use_explicit_gradients = false;
|
||
}
|
||
}
|
||
if (!use_explicit_gradients) {
|
||
disable(f_cvc_explicit_gradient);
|
||
}
|
||
}
|
||
|
||
void colvar::CVBasedPath::computeDistanceToReferenceFrames(std::vector<cvm::real>& result) {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
cv[i_cv]->calc_value();
|
||
}
|
||
for (size_t i_frame = 0; i_frame < ref_cv.size(); ++i_frame) {
|
||
cvm::real rmsd_i = 0.0;
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
|
||
colvarvalue current_cv_value(cv[i_cv]->value());
|
||
// polynomial combination allowed
|
||
if (current_cv_value.type() == colvarvalue::type_scalar) {
|
||
// wrapping is already in dist2
|
||
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)), ref_cv_value.real_value);
|
||
} else {
|
||
rmsd_i += cv[i_cv]->dist2(cv[i_cv]->sup_coeff * current_cv_value, ref_cv_value);
|
||
}
|
||
}
|
||
rmsd_i /= cvm::real(cv.size());
|
||
rmsd_i = cvm::sqrt(rmsd_i);
|
||
result[i_frame] = rmsd_i;
|
||
}
|
||
}
|
||
|
||
void colvar::CVBasedPath::computeDistanceBetweenReferenceFrames(std::vector<cvm::real>& result) const {
|
||
if (ref_cv.size() < 2) return;
|
||
for (size_t i_frame = 1; i_frame < ref_cv.size(); ++i_frame) {
|
||
cvm::real dist_ij = 0.0;
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
colvarvalue ref_cv_value(ref_cv[i_frame][i_cv]);
|
||
colvarvalue prev_ref_cv_value(ref_cv[i_frame-1][i_cv]);
|
||
dist_ij += cv[i_cv]->dist2(ref_cv_value, prev_ref_cv_value);
|
||
}
|
||
dist_ij = cvm::sqrt(dist_ij);
|
||
result[i_frame-1] = dist_ij;
|
||
}
|
||
}
|
||
|
||
cvm::real colvar::CVBasedPath::getPolynomialFactorOfCVGradient(size_t i_cv) const {
|
||
cvm::real factor_polynomial = 1.0;
|
||
if (cv[i_cv]->value().type() == colvarvalue::type_scalar) {
|
||
factor_polynomial = cv[i_cv]->sup_coeff * cv[i_cv]->sup_np * cvm::pow(cv[i_cv]->value().real_value, cv[i_cv]->sup_np - 1);
|
||
} else {
|
||
factor_polynomial = cv[i_cv]->sup_coeff;
|
||
}
|
||
return factor_polynomial;
|
||
}
|
||
|
||
colvar::CVBasedPath::~CVBasedPath() {
|
||
// Recall the steps we initialize the sub-CVCs:
|
||
// 1. Lookup all sub-CVCs and then register the atom groups for sub-CVCs
|
||
// in their constructors;
|
||
// 2. Iterate over all sub-CVCs, get the pointers of their atom groups
|
||
// groups, and register again in the parent (current) CVC.
|
||
// That being said, the atom groups become children of the sub-CVCs at
|
||
// first, and then become children of the parent CVC.
|
||
// So, to destruct this class (parent CVC class), we need to remove the
|
||
// dependencies of the atom groups to the parent CVC at first.
|
||
remove_all_children();
|
||
// Then we remove the dependencies of the atom groups to the sub-CVCs
|
||
// in their destructors.
|
||
for (auto it = cv.begin(); it != cv.end(); ++it) {
|
||
delete (*it);
|
||
}
|
||
// The last step is cleaning up the list of atom groups.
|
||
atom_groups.clear();
|
||
}
|
||
|
||
colvar::gspathCV::gspathCV(std::string const &conf): CVBasedPath(conf) {
|
||
set_function_type("gspathCV");
|
||
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
|
||
// Initialize variables for future calculation
|
||
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
|
||
if (use_second_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path s(σ) will use the second closest frame to compute s_(m-1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m-1)\n"));
|
||
}
|
||
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
|
||
if (use_third_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path s(σ) will use the third closest frame to compute s_(m+1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path s(σ) will use the neighbouring frame to compute s_(m+1)\n"));
|
||
}
|
||
if (total_reference_frames < 2) {
|
||
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gspathCV requires at least 2 frames.\n");
|
||
return;
|
||
}
|
||
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::S>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame);
|
||
x.type(colvarvalue::type_scalar);
|
||
}
|
||
|
||
colvar::gspathCV::~gspathCV() {}
|
||
|
||
void colvar::gspathCV::updateDistanceToReferenceFrames() {
|
||
computeDistanceToReferenceFrames(frame_distances);
|
||
}
|
||
|
||
void colvar::gspathCV::prepareVectors() {
|
||
// Compute v1, v2 and v3
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// values of sub-cvc are computed in update_distances
|
||
// cv[i_cv]->calc_value();
|
||
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
|
||
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
|
||
colvarvalue current_cv_value(cv[i_cv]->value());
|
||
// polynomial combination allowed
|
||
if (current_cv_value.type() == colvarvalue::type_scalar) {
|
||
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
|
||
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
|
||
} else {
|
||
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
|
||
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
|
||
}
|
||
cv[i_cv]->wrap(v1[i_cv]);
|
||
cv[i_cv]->wrap(v2[i_cv]);
|
||
}
|
||
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
|
||
cv[i_cv]->wrap(v3[i_cv]);
|
||
}
|
||
} else {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
|
||
cv[i_cv]->wrap(v3[i_cv]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gspathCV::calc_value() {
|
||
computeValue();
|
||
x = s;
|
||
}
|
||
|
||
void colvar::gspathCV::calc_gradients() {
|
||
computeDerivatives();
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// No matter whether the i-th cv uses implicit gradient, compute it first.
|
||
cv[i_cv]->calc_gradients();
|
||
// If the gradient is not implicit, then add the gradients to its atom groups
|
||
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
||
// Temporary variables storing gradients
|
||
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
|
||
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
|
||
// Compute factors for polynomial combinations
|
||
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
||
// Loop over all elements of the corresponding colvar value
|
||
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
|
||
// ds/dz, z = vector of CVs
|
||
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
|
||
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
|
||
// Apply the gradients to the atom groups in i-th cv
|
||
// Loop over all atom groups
|
||
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
||
// Loop over all atoms in the k-th atom group
|
||
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
|
||
// Chain rule
|
||
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gspathCV::apply_force(colvarvalue const &force) {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// If this CV us explicit gradients, then atomic gradients is already calculated
|
||
// We can apply the force to atom groups directly
|
||
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
||
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
||
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
|
||
}
|
||
} else {
|
||
// Temporary variables storing gradients
|
||
colvarvalue tmp_cv_grad_v1(cv[i_cv]->value());
|
||
colvarvalue tmp_cv_grad_v2(cv[i_cv]->value());
|
||
// Compute factors for polynomial combinations
|
||
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
||
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
|
||
// ds/dz, z = vector of CVs
|
||
tmp_cv_grad_v1[j_elem] = -1.0 * sign * 0.5 * dfdv1[i_cv][j_elem] / M;
|
||
tmp_cv_grad_v2[j_elem] = sign * 0.5 * dfdv2[i_cv][j_elem] / M;
|
||
}
|
||
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
|
||
cv[i_cv]->apply_force(cv_force);
|
||
}
|
||
}
|
||
}
|
||
|
||
colvar::gzpathCV::gzpathCV(std::string const &conf): CVBasedPath(conf) {
|
||
set_function_type("gzpathCV");
|
||
cvm::log(std::string("Total number of frames: ") + cvm::to_str(total_reference_frames) + std::string("\n"));
|
||
// Initialize variables for future calculation
|
||
M = cvm::real(total_reference_frames - 1);
|
||
m = 1.0;
|
||
get_keyval(conf, "useSecondClosestFrame", use_second_closest_frame, true);
|
||
if (use_second_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the second closest frame to compute s_(m-1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m-1)\n"));
|
||
}
|
||
get_keyval(conf, "useThirdClosestFrame", use_third_closest_frame, false);
|
||
if (use_third_closest_frame == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the third closest frame to compute s_(m+1)\n"));
|
||
} else {
|
||
cvm::log(std::string("Geometric path z(σ) will use the neighbouring frame to compute s_(m+1)\n"));
|
||
}
|
||
bool b_use_z_square = false;
|
||
get_keyval(conf, "useZsquare", b_use_z_square, false);
|
||
if (b_use_z_square == true) {
|
||
cvm::log(std::string("Geometric path z(σ) will use the square of distance from current frame to path compute z\n"));
|
||
}
|
||
if (total_reference_frames < 2) {
|
||
cvm::error("Error: you have specified " + cvm::to_str(total_reference_frames) + " reference frames, but gzpathCV requires at least 2 frames.\n");
|
||
return;
|
||
}
|
||
GeometricPathCV::GeometricPathBase<colvarvalue, cvm::real, GeometricPathCV::path_sz::Z>::initialize(cv.size(), ref_cv[0], total_reference_frames, use_second_closest_frame, use_third_closest_frame, b_use_z_square);
|
||
x.type(colvarvalue::type_scalar);
|
||
}
|
||
|
||
colvar::gzpathCV::~gzpathCV() {
|
||
}
|
||
|
||
void colvar::gzpathCV::updateDistanceToReferenceFrames() {
|
||
computeDistanceToReferenceFrames(frame_distances);
|
||
}
|
||
|
||
void colvar::gzpathCV::prepareVectors() {
|
||
// Compute v1, v2 and v3
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// values of sub-cvc are computed in update_distances
|
||
// cv[i_cv]->calc_value();
|
||
colvarvalue f1_ref_cv_i_value(ref_cv[min_frame_index_1][i_cv]);
|
||
colvarvalue f2_ref_cv_i_value(ref_cv[min_frame_index_2][i_cv]);
|
||
colvarvalue current_cv_value(cv[i_cv]->value());
|
||
// polynomial combination allowed
|
||
if (current_cv_value.type() == colvarvalue::type_scalar) {
|
||
v1[i_cv] = f1_ref_cv_i_value.real_value - cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
|
||
v2[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np)) - f2_ref_cv_i_value.real_value;
|
||
} else {
|
||
v1[i_cv] = f1_ref_cv_i_value - cv[i_cv]->sup_coeff * current_cv_value;
|
||
v2[i_cv] = cv[i_cv]->sup_coeff * current_cv_value - f2_ref_cv_i_value;
|
||
}
|
||
v4[i_cv] = f1_ref_cv_i_value - f2_ref_cv_i_value;
|
||
cv[i_cv]->wrap(v1[i_cv]);
|
||
cv[i_cv]->wrap(v2[i_cv]);
|
||
cv[i_cv]->wrap(v4[i_cv]);
|
||
}
|
||
if (min_frame_index_3 < 0 || min_frame_index_3 > M) {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
v3[i_cv] = ref_cv[min_frame_index_1][i_cv] - ref_cv[min_frame_index_2][i_cv];
|
||
cv[i_cv]->wrap(v3[i_cv]);
|
||
}
|
||
} else {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
v3[i_cv] = ref_cv[min_frame_index_3][i_cv] - ref_cv[min_frame_index_1][i_cv];
|
||
cv[i_cv]->wrap(v3[i_cv]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gzpathCV::calc_value() {
|
||
computeValue();
|
||
x = z;
|
||
}
|
||
|
||
void colvar::gzpathCV::calc_gradients() {
|
||
computeDerivatives();
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// No matter whether the i-th cv uses implicit gradient, compute it first.
|
||
cv[i_cv]->calc_gradients();
|
||
// If the gradient is not implicit, then add the gradients to its atom groups
|
||
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
||
// Temporary variables storing gradients
|
||
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
|
||
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
|
||
// Compute factors for polynomial combinations
|
||
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
||
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
|
||
// Apply the gradients to the atom groups in i-th cv
|
||
// Loop over all atom groups
|
||
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
||
// Loop over all atoms in the k-th atom group
|
||
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
|
||
// Chain rule
|
||
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * ((*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v1[j_elem] + (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad * tmp_cv_grad_v2[j_elem]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void colvar::gzpathCV::apply_force(colvarvalue const &force) {
|
||
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
||
// If this CV us explicit gradients, then atomic gradients is already calculated
|
||
// We can apply the force to atom groups directly
|
||
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
||
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
||
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
|
||
}
|
||
} else {
|
||
colvarvalue tmp_cv_grad_v1 = -1.0 * dzdv1[i_cv];
|
||
colvarvalue tmp_cv_grad_v2 = 1.0 * dzdv2[i_cv];
|
||
// Temporary variables storing gradients
|
||
// Compute factors for polynomial combinations
|
||
cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
||
colvarvalue cv_force = force.real_value * factor_polynomial * (tmp_cv_grad_v1 + tmp_cv_grad_v2);
|
||
cv[i_cv]->apply_force(cv_force);
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif
|