Files
lammps/lib/colvars/colvarcomp_rotations.cpp
Giacomo Fiorin 1220bea011 Update Colvars to version 2022-05-09
This update includes one new feature (neural-network based collective
variables), several small enhancements (including an automatic definition of
grid boundaries for angle-based CVs, and a normalization option for
eigenvector-based CVs), bugfixes and documentation improvements.

Usage information for specific features included in the Colvars library
(i.e. not just the library as a whole) is now also reported to the screen or
LAMMPS logfile (as is done already in other LAMMPS classes).

Notable to LAMMPS code development are the removals of duplicated code and of
ambiguously-named preprocessor defines in the Colvars headers.  Since the
last PR, the existing regression tests have also been running automatically
via GitHub Actions.

The following pull requests in the Colvars repository are relevant to LAMMPS:

- 475 Remove fatal error condition
  https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin)

- 474 Allow normalizing eigenvector vector components to deal with unit change
  https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin)

- 470 Better error handling in the initialization of NeuralNetwork CV
  https://github.com/Colvars/colvars/pull/470 (@HanatoK)

- 468 Add examples of histogram configuration, with and without explicit grid parameters
  https://github.com/Colvars/colvars/pull/468 (@giacomofiorin)

- 464 Fix #463 using more fine-grained features
  https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin)

- 447 [RFC] New option "scaledBiasingForce" for colvarbias
  https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin)

- 444 [RFC] Implementation of dense neural network as CV
  https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin)

- 443 Fix explicit gradient dependency of sub-CVs
  https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin)

- 442 Persistent bias count
  https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin)

- 437 Return type of bias from scripting interface
  https://github.com/Colvars/colvars/pull/437 (@giacomofiorin)

- 434 More flexible use of boundaries from colvars by grids
  https://github.com/Colvars/colvars/pull/434 (@jhenin)

- 433 Prevent double-free in linearCombination
  https://github.com/Colvars/colvars/pull/433 (@HanatoK)

- 428 More complete documentation for index file format (NDX)
  https://github.com/Colvars/colvars/pull/428 (@giacomofiorin)

- 426 Integrate functional version of backup_file() into base proxy class
  https://github.com/Colvars/colvars/pull/426 (@giacomofiorin)

- 424 Track CVC inheritance when documenting feature usage
  https://github.com/Colvars/colvars/pull/424 (@giacomofiorin)

- 419 Generate citation report while running computations
  https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin)

- 415 Rebin metadynamics bias from explicit hills when available
  https://github.com/Colvars/colvars/pull/415 (@giacomofiorin)

- 312 Ignore a keyword if it has content to the left of it (regardless of braces)
  https://github.com/Colvars/colvars/pull/312 (@giacomofiorin)

Authors: @giacomofiorin, @HanatoK, @jhenin
2022-05-10 11:24:54 -04:00

768 lines
19 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvarparse.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::orientation::orientation(std::string const &conf)
: cvc()
{
set_function_type("orientation");
disable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_quaternion);
colvar::orientation::init(conf);
}
int colvar::orientation::init(std::string const &conf)
{
int error_code = cvc::init(conf);
atoms = parse_group(conf, "atoms");
ref_pos.reserve(atoms->size());
if (get_keyval(conf, "refPositions", ref_pos, ref_pos)) {
cvm::log("Using reference positions from input file.\n");
if (ref_pos.size() != atoms->size()) {
return cvm::error("Error: reference positions do not "
"match the number of requested atoms.\n", COLVARS_INPUT_ERROR);
}
}
{
std::string file_name;
if (get_keyval(conf, "refPositionsFile", file_name)) {
std::string file_col;
double file_col_value=0.0;
if (get_keyval(conf, "refPositionsCol", file_col, std::string(""))) {
// use PDB flags if column is provided
bool found = get_keyval(conf, "refPositionsColValue", file_col_value, 0.0);
if (found && file_col_value==0.0) {
return cvm::error("Error: refPositionsColValue, "
"if provided, must be non-zero.\n", COLVARS_INPUT_ERROR);
}
}
ref_pos.resize(atoms->size());
cvm::load_coords(file_name.c_str(), &ref_pos, atoms,
file_col, file_col_value);
}
}
if (!ref_pos.size()) {
return cvm::error("Error: must define a set of "
"reference coordinates.\n", COLVARS_INPUT_ERROR);
}
cvm::log("Centering the reference coordinates: it is "
"assumed that each atom is the closest "
"periodic image to the center of geometry.\n");
cvm::rvector ref_cog(0.0, 0.0, 0.0);
size_t i;
for (i = 0; i < ref_pos.size(); i++) {
ref_cog += ref_pos[i];
}
ref_cog /= cvm::real(ref_pos.size());
for (i = 0; i < ref_pos.size(); i++) {
ref_pos[i] -= ref_cog;
}
get_keyval(conf, "closestToQuaternion", ref_quat, cvm::quaternion(1.0, 0.0, 0.0, 0.0));
// initialize rot member data
if (!atoms->noforce) {
rot.request_group2_gradients(atoms->size());
}
return error_code;
}
colvar::orientation::orientation()
: cvc()
{
set_function_type("orientation");
disable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_quaternion);
}
void colvar::orientation::calc_value()
{
rot.b_debug_gradients = is_enabled(f_cvc_debug_gradient);
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
if ((rot.q).inner(ref_quat) >= 0.0) {
x.quaternion_value = rot.q;
} else {
x.quaternion_value = -1.0 * rot.q;
}
}
void colvar::orientation::calc_gradients()
{
// gradients have already been calculated and stored within the
// member object "rot"; we're not using the "grad" member of each
// atom object, because it only can represent the gradient of a
// scalar colvar
}
void colvar::orientation::apply_force(colvarvalue const &force)
{
cvm::quaternion const &FQ = force.quaternion_value;
if (!atoms->noforce) {
for (size_t ia = 0; ia < atoms->size(); ia++) {
for (size_t i = 0; i < 4; i++) {
(*atoms)[ia].apply_force(FQ[i] * rot.dQ0_2[ia][i]);
}
}
}
}
cvm::real colvar::orientation::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.quaternion_value.dist2(x2);
}
colvarvalue colvar::orientation::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x1.quaternion_value.dist2_grad(x2);
}
colvarvalue colvar::orientation::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
return x2.quaternion_value.dist2_grad(x1);
}
colvar::orientation_angle::orientation_angle(std::string const &conf)
: orientation()
{
set_function_type("orientationAngle");
init_as_angle();
enable(f_cvc_explicit_gradient);
orientation_angle::init(conf);
}
int colvar::orientation_angle::init(std::string const &conf)
{
return orientation::init(conf);
}
void colvar::orientation_angle::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
if ((rot.q).q0 >= 0.0) {
x.real_value = (180.0/PI) * 2.0 * cvm::acos((rot.q).q0);
} else {
x.real_value = (180.0/PI) * 2.0 * cvm::acos(-1.0 * (rot.q).q0);
}
}
void colvar::orientation_angle::calc_gradients()
{
cvm::real const dxdq0 =
( ((rot.q).q0 * (rot.q).q0 < 1.0) ?
((180.0 / PI) * (-2.0) / cvm::sqrt(1.0 - ((rot.q).q0 * (rot.q).q0))) :
0.0 );
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]);
}
}
void colvar::orientation_angle::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(orientation_angle)
colvar::orientation_proj::orientation_proj(std::string const &conf)
: orientation()
{
set_function_type("orientationProj");
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
init_scalar_boundaries(0.0, 1.0);
orientation_proj::init(conf);
}
int colvar::orientation_proj::init(std::string const &conf)
{
return orientation::init(conf);
}
void colvar::orientation_proj::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = 2.0 * (rot.q).q0 * (rot.q).q0 - 1.0;
}
void colvar::orientation_proj::calc_gradients()
{
cvm::real const dxdq0 = 2.0 * 2.0 * (rot.q).q0;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]);
}
}
void colvar::orientation_proj::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(orientation_proj)
colvar::tilt::tilt(std::string const &conf)
: orientation()
{
set_function_type("tilt");
x.type(colvarvalue::type_scalar);
enable(f_cvc_explicit_gradient);
init_scalar_boundaries(-1.0, 1.0);
tilt::init(conf);
}
int colvar::tilt::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0));
if (axis.norm2() != 1.0) {
axis /= axis.norm();
cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n");
}
return error_code;
}
void colvar::tilt::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = rot.cos_theta(axis);
}
void colvar::tilt::calc_gradients()
{
cvm::quaternion const dxdq = rot.dcos_theta_dq(axis);
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0);
for (size_t iq = 0; iq < 4; iq++) {
(*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]);
}
}
}
void colvar::tilt::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
simple_scalar_dist_functions(tilt)
colvar::spin_angle::spin_angle(std::string const &conf)
: orientation()
{
set_function_type("spinAngle");
init_as_periodic_angle();
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
spin_angle::init(conf);
}
int colvar::spin_angle::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
get_keyval(conf, "axis", axis, cvm::rvector(0.0, 0.0, 1.0));
if (axis.norm2() != 1.0) {
axis /= axis.norm();
cvm::log("Normalizing rotation axis to "+cvm::to_str(axis)+".\n");
}
return error_code;
}
colvar::spin_angle::spin_angle()
: orientation()
{
set_function_type("spinAngle");
period = 360.0;
enable(f_cvc_periodic);
enable(f_cvc_explicit_gradient);
x.type(colvarvalue::type_scalar);
}
void colvar::spin_angle::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
x.real_value = rot.spin_angle(axis);
this->wrap(x);
}
void colvar::spin_angle::calc_gradients()
{
cvm::quaternion const dxdq = rot.dspin_angle_dq(axis);
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = cvm::rvector(0.0, 0.0, 0.0);
for (size_t iq = 0; iq < 4; iq++) {
(*atoms)[ia].grad += (dxdq[iq] * (rot.dQ0_2[ia])[iq]);
}
}
}
void colvar::spin_angle::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::spin_angle::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::spin_angle::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::spin_angle::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::spin_angle::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_phi::euler_phi(std::string const &conf)
: orientation()
{
set_function_type("eulerPhi");
init_as_periodic_angle();
enable(f_cvc_explicit_gradient);
euler_phi::init(conf);
}
colvar::euler_phi::euler_phi()
: orientation()
{
set_function_type("eulerPhi");
init_as_periodic_angle();
enable(f_cvc_explicit_gradient);
}
int colvar::euler_phi::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_phi::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real tmp_y = 2 * (q0 * q1 + q2 * q3);
const cvm::real tmp_x = 1 - 2 * (q1 * q1 + q2 * q2);
x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI);
}
void colvar::euler_phi::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = (2 * q0 * q1 + 2 * q2 * q3) * (2 * q0 * q1 + 2 * q2 * q3) + (-2 * q1 * q1 - 2 * q2 * q2 + 1) * (-2 * q1 * q1 - 2 * q2 * q2 + 1);
const cvm::real dxdq0 = (180.0/PI) * 2 * q1 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator;
const cvm::real dxdq1 = (180.0/PI) * (2 * q0 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) - 4 * q1 * (-2 * q0 * q1 - 2 * q2 * q3)) / denominator;
const cvm::real dxdq2 = (180.0/PI) * (-4 * q2 * (-2 * q0 * q1 - 2 * q2 * q3) + 2 * q3 * (-2 * q1 * q1 - 2 * q2 * q2 + 1)) / denominator;
const cvm::real dxdq3 = (180.0/PI) * 2 * q2 * (-2 * q1 * q1 - 2 * q2 * q2 + 1) / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_phi::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_phi::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::euler_phi::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::euler_phi::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::euler_phi::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_psi::euler_psi(std::string const &conf)
: orientation()
{
set_function_type("eulerPsi");
init_as_periodic_angle();
enable(f_cvc_explicit_gradient);
euler_psi::init(conf);
}
colvar::euler_psi::euler_psi()
: orientation()
{
set_function_type("eulerPsi");
init_as_periodic_angle();
enable(f_cvc_explicit_gradient);
}
int colvar::euler_psi::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_psi::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real tmp_y = 2 * (q0 * q3 + q1 * q2);
const cvm::real tmp_x = 1 - 2 * (q2 * q2 + q3 * q3);
x.real_value = cvm::atan2(tmp_y, tmp_x) * (180.0/PI);
}
void colvar::euler_psi::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = (2 * q0 * q3 + 2 * q1 * q2) * (2 * q0 * q3 + 2 * q1 * q2) + (-2 * q2 * q2 - 2 * q3 * q3 + 1) * (-2 * q2 * q2 - 2 * q3 * q3 + 1);
const cvm::real dxdq0 = (180.0/PI) * 2 * q3 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator;
const cvm::real dxdq1 = (180.0/PI) * 2 * q2 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) / denominator;
const cvm::real dxdq2 = (180.0/PI) * (2 * q1 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q2 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator;
const cvm::real dxdq3 = (180.0/PI) * (2 * q0 * (-2 * q2 * q2 - 2 * q3 * q3 + 1) - 4 * q3 * (-2 * q0 * q3 - 2 * q1 * q2)) / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_psi::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_psi::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return diff * diff;
}
colvarvalue colvar::euler_psi::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return 2.0 * diff;
}
colvarvalue colvar::euler_psi::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
return (-2.0) * diff;
}
void colvar::euler_psi::wrap(colvarvalue &x_unwrapped) const
{
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
x_unwrapped.real_value -= 360.0;
return;
}
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
x_unwrapped.real_value += 360.0;
return;
}
return;
}
colvar::euler_theta::euler_theta(std::string const &conf)
: orientation()
{
set_function_type("eulerTheta");
init_as_angle();
enable(f_cvc_explicit_gradient);
euler_theta::init(conf);
}
colvar::euler_theta::euler_theta()
: orientation()
{
set_function_type("eulerTheta");
init_as_angle();
enable(f_cvc_explicit_gradient);
}
int colvar::euler_theta::init(std::string const &conf)
{
int error_code = COLVARS_OK;
error_code |= orientation::init(conf);
return error_code;
}
void colvar::euler_theta::calc_value()
{
atoms_cog = atoms->center_of_geometry();
rot.calc_optimal_rotation(ref_pos, atoms->positions_shifted(-1.0 * atoms_cog));
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
x.real_value = cvm::asin(2 * (q0 * q2 - q3 * q1)) * (180.0/PI);
}
void colvar::euler_theta::calc_gradients()
{
const cvm::real& q0 = rot.q.q0;
const cvm::real& q1 = rot.q.q1;
const cvm::real& q2 = rot.q.q2;
const cvm::real& q3 = rot.q.q3;
const cvm::real denominator = cvm::sqrt(1 - (2 * q0 * q2 - 2 * q1 * q3) * (2 * q0 * q2 - 2 * q1 * q3));
const cvm::real dxdq0 = (180.0/PI) * 2 * q2 / denominator;
const cvm::real dxdq1 = (180.0/PI) * -2 * q3 / denominator;
const cvm::real dxdq2 = (180.0/PI) * 2 * q0 / denominator;
const cvm::real dxdq3 = (180.0/PI) * -2 * q1 / denominator;
for (size_t ia = 0; ia < atoms->size(); ia++) {
(*atoms)[ia].grad = (dxdq0 * (rot.dQ0_2[ia])[0]) +
(dxdq1 * (rot.dQ0_2[ia])[1]) +
(dxdq2 * (rot.dQ0_2[ia])[2]) +
(dxdq3 * (rot.dQ0_2[ia])[3]);
}
}
void colvar::euler_theta::apply_force(colvarvalue const &force)
{
cvm::real const &fw = force.real_value;
if (!atoms->noforce) {
atoms->apply_colvar_force(fw);
}
}
cvm::real colvar::euler_theta::dist2(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2(x1, x2);
}
colvarvalue colvar::euler_theta::dist2_lgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2_lgrad(x1, x2);
}
colvarvalue colvar::euler_theta::dist2_rgrad(colvarvalue const &x1,
colvarvalue const &x2) const
{
// theta angle is not periodic
return cvc::dist2_rgrad(x1, x2);
}