Files
lammps/examples/kim/log.10Feb21.in.kim-pm-property.clang.4
2021-02-25 08:23:26 -06:00

239 lines
11 KiB
Groff

LAMMPS (10 Feb 2021)
# kim property example
#
# For detailed information of this example please refer to:
# `https://openkim.org/doc/evaluation/tutorial-lammps/`
#
# Description:
#
# This example is designed to calculate the cohesive energy corresponding to
# the equilibrium FCC lattice constant for
# `LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_004` model for
# argon. The material properties computed in LAMMPS are represented as a
# standard KIM property instance format. (See
# `https://openkim.org/doc/schema/properties-framework/` and
# `https://lammps.sandia.gov/doc/kim_commands.html` for further details).
# Then the created property instance is written to a file named `results.edn`
# using the `kim property dump` command.
#
# Requirement:
#
# This example requires LAMMPS built with the Python 3.6 or later package
# installed. See the `https://lammps.sandia.gov/doc/python.html` doc page for
# more info on building LAMMPS with the version of Python on your system.
# After successfully building LAMMPS with Python, you need to install the
# kim-property Python package, See the
# `https://lammps.sandia.gov/doc/Build_extras.html#kim` doc page for
# further details.
#
# This example requires that the KIM Portable Model (PM)
# `LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_004`
# is installed. This can be done with the command
# kim-api-collections-management install user LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_004
# If this command does not work, you may need to setup your PATH to find the utility.
# If you installed the kim-api using the LAMMPS CMake build, you can do the following
# (where the current working directory is assumed to be the LAMMPS build directory)
# source ./kim_build-prefix/bin/kim-api-activate
# If you installed the kim-api using the LAMMPS Make build, you can do the following
# (where the current working directory is assumed to be the LAMMPS src directory)
# source ../lib/kim/installed-kim-api-X.Y.Z/bin/kim-api-activate
# (where you should relplace X.Y.Z with the appropriate kim-api version number).
#
# Or, see `https://openkim.org/doc/obtaining-models` for alternative options.
#
# Initialize interatomic potential (KIM model) and units
atom_style atomic
# Set the OpenKIM model that will be used
kim init LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_004 metal
#=== BEGIN kim init ==========================================
units metal
neighbor 2.0 bin # Angstroms
timestep 1.0e-3 # picoseconds
This model has 3 mutable parameters.
No. | Parameter name | data type | extent
-----------------------------------------------------
1 | cutoff | "Double" | 1
2 | epsilon | "Double" | 1
3 | sigma | "Double" | 1
#=== END kim init ============================================
# the equilibrium lattice constant for the fcc structure
variable lattice_constant equal 5.248509056866169
# Periodic boundary conditions along all three dimensions
boundary p p p
# Create an FCC lattice with the lattice spacing
# using a single conventional (orthogonal) unit cell
lattice fcc ${lattice_constant}
lattice fcc 5.24850905686617
Lattice spacing in x,y,z = 5.2485091 5.2485091 5.2485091
region box block 0 1 0 1 0 1 units lattice
create_box 1 box
Created orthogonal box = (0.0000000 0.0000000 0.0000000) to (5.2485091 5.2485091 5.2485091)
1 by 2 by 2 MPI processor grid
create_atoms 1 box
Created 4 atoms
create_atoms CPU = 0.001 seconds
mass 1 39.948
# Specify the KIM interactions
kim interactions Ar
#=== BEGIN kim interactions ==================================
pair_style kim LJ_Shifted_Bernardes_1958MedCutoff_Ar__MO_126566794224_004
pair_coeff * * Ar
#=== END kim interactions ====================================
# Compute energy
run 0
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
Your simulation uses code contributions which should be cited:
- OpenKIM: https://doi.org/10.1007/s11837-011-0102-6
@Article{tadmor:elliott:2011,
author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker},
title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels},
journal = {{JOM}},
year = 2011,
volume = 63,
number = 17,
pages = {17},
doi = {10.1007/s11837-011-0102-6}
}
- OpenKIM potential: https://openkim.org/cite/MO_126566794224_004#item-citation
@Comment
{
\documentclass{article}
\usepackage{url}
\begin{document}
This Model originally published in \cite{MO_126566794224_004a} is archived in OpenKIM~\cite{MO_126566794224_004, MD_498634107543_004, tadmor:elliott:2011, elliott:tadmor:2011}.
\bibliographystyle{vancouver}
\bibliography{kimcite-MO_126566794224_004.bib}
\end{document}
}
@Misc{MO_126566794224_004,
author = {Ellad Tadmor},
title = {{L}ennard-{J}ones model (shifted) for {A}r with parameters from {B}ernardes (1958) (medium precision cutoff) v004},
doi = {10.25950/9f98b989},
howpublished = {OpenKIM, \url{https://doi.org/10.25950/9f98b989}},
keywords = {OpenKIM, Model, MO_126566794224_004},
publisher = {OpenKIM},
year = 2020,
}
@Misc{MD_498634107543_004,
author = {Ellad Tadmor},
title = {{D}river for the {L}ennard-{J}ones model uniformly shifted to have zero energy at the cutoff radius v004},
doi = {10.25950/bdffd6a6},
howpublished = {OpenKIM, \url{https://doi.org/10.25950/9f98b989}},
keywords = {OpenKIM, Model Driver, MD_498634107543_004},
publisher = {OpenKIM},
year = 2020,
}
@Article{tadmor:elliott:2011,
author = {E. B. Tadmor and R. S. Elliott and J. P. Sethna and R. E. Miller and C. A. Becker},
title = {The potential of atomistic simulations and the {K}nowledgebase of {I}nteratomic {M}odels},
journal = {{JOM}},
year = {2011},
volume = {63},
number = {7},
pages = {17},
doi = {10.1007/s11837-011-0102-6},
}
@Misc{elliott:tadmor:2011,
author = {Ryan S. Elliott and Ellad B. Tadmor},
title = {{K}nowledgebase of {I}nteratomic {M}odels ({KIM}) Application Programming Interface ({API})},
howpublished = {\url{https://openkim.org/kim-api}},
publisher = {OpenKIM},
year = 2011,
doi = {10.25950/ff8f563a},
}
@Article{MO_126566794224_004a,
author = {Newton Bernardes},
doi = {10.1103/PhysRev.112.1534},
issue = {5},
journal = {Physical Review},
pages = {1534--1539},
publisher = {American Physical Society},
title = {Theory of Solid {N}e, {A}, {K}r, and {X}e at 0{K}},
volume = {112},
year = {1958},
}
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 15.5
ghost atom cutoff = 15.5
binsize = 7.75, bins = 1 1 1
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair kim, perpetual
attributes: full, newton off, cut 15.5
pair build: full/bin/atomonly
stencil: full/bin/3d
bin: standard
Per MPI rank memory allocation (min/avg/max) = 3.165 | 3.165 | 3.165 Mbytes
Step Temp E_pair E_mol TotEng Press
0 0 -0.34602203 0 -0.34602203 0.00061471244
Loop time of 1.5e-06 on 4 procs for 0 steps with 4 atoms
100.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0 | 0 | 0 | 0.0 | 0.00
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0 | 0 | 0 | 0.0 | 0.00
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 1.5e-06 | | |100.00
Nlocal: 1.00000 ave 1 max 1 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 935.000 ave 935 max 935 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 0.00000 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0
FullNghs: 428.000 ave 428 max 428 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1712
Ave neighs/atom = 428.00000
Neighbor list builds = 0
Dangerous builds = 0
# Get cohesive energy
variable natoms equal "count(all)"
variable ecohesive equal "-pe/v_natoms"
# Create a property instance
kim property create 1 cohesive-potential-energy-cubic-crystal
#=== kim property ===========================================
# Set all the key-value pairs for this property instance
kim property modify 1 key short-name source-value 1 fcc key species source-value 1 Ar key a source-value ${lattice_constant} source-unit angstrom key basis-atom-coordinates source-value 1 1:3 0.0 0.0 0.0 source-value 2 1:3 0.0 0.5 0.5 source-value 3 1:3 0.5 0.0 0.5 source-value 4 1:3 0.5 0.5 0.0 key space-group source-value Fm-3m key cohesive-potential-energy source-value ${ecohesive} source-unit eV
kim property modify 1 key short-name source-value 1 fcc key species source-value 1 Ar key a source-value 5.24850905686617 source-unit angstrom key basis-atom-coordinates source-value 1 1:3 0.0 0.0 0.0 source-value 2 1:3 0.0 0.5 0.5 source-value 3 1:3 0.5 0.0 0.5 source-value 4 1:3 0.5 0.5 0.0 key space-group source-value Fm-3m key cohesive-potential-energy source-value ${ecohesive} source-unit eV
kim property modify 1 key short-name source-value 1 fcc key species source-value 1 Ar key a source-value 5.24850905686617 source-unit angstrom key basis-atom-coordinates source-value 1 1:3 0.0 0.0 0.0 source-value 2 1:3 0.0 0.5 0.5 source-value 3 1:3 0.5 0.0 0.5 source-value 4 1:3 0.5 0.5 0.0 key space-group source-value Fm-3m key cohesive-potential-energy source-value 0.0865055084950538 source-unit eV
#=== kim property ===========================================
# Dump the results in a file
kim property dump "results.edn"
#=== kim property ===========================================
Total wall time: 0:00:00