Files
lammps/src/GPU/pair_amoeba_gpu.cpp
2024-01-25 02:17:28 -05:00

2077 lines
62 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Trung Nguyen (Northwestern/UChicago)
------------------------------------------------------------------------- */
#include "pair_amoeba_gpu.h"
#include "amoeba_convolution_gpu.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "fix_store_atom.h"
#include "force.h"
#include "gpu_extra.h"
#include "info.h"
#include "math_const.h"
#include "memory.h"
#include "my_page.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "suffix.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace MathConst;
// same as in amoeba_induce.cpp
enum{INDUCE,RSD,SETUP_AMOEBA,SETUP_HIPPO,KMPOLE,AMGROUP}; // forward comm
enum{FIELD,ZRSD,TORQUE,UFLD}; // reverse comm
enum{VDWL,REPULSE,QFER,DISP,MPOLE,POLAR,USOLV,DISP_LONG,MPOLE_LONG,POLAR_LONG};
enum{MUTUAL,OPT,TCG,DIRECT};
enum{GEAR,ASPC,LSQR};
enum{BUILD,APPLY};
enum{GORDON1,GORDON2};
// same as in pair_amoeba.cpp
enum{MPOLE_GRID,POLAR_GRID,POLAR_GRIDC,DISP_GRID,INDUCE_GRID,INDUCE_GRIDC};
static constexpr double DEBYE = 4.80321; // conversion factor from q-Angs (real units) to Debye
// External functions from cuda library for atom decomposition
int amoeba_gpu_init(const int ntypes, const int max_amtype, const int max_amclass,
const double *host_pdamp, const double *host_thole,
const double *host_dirdamp, const int* host_amtype2class,
const double *host_special_hal, const double *host_special_repel,
const double *host_special_disp, const double *host_special_mpole,
const double *host_special_polar_wscale,
const double *host_special_polar_piscale,
const double *host_special_polar_pscale,
const double *host_csix, const double *host_adisp,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const int maxspecial15,
const double cell_size, int &gpu_mode, FILE *screen,
const double polar_dscale, const double polar_uscale);
void amoeba_gpu_clear();
int** amoeba_gpu_precompute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *host_amtype,
int *host_amgroup, double **host_rpole,
double **host_uind, double **host_uinp, double *host_pval,
double *sublo, double *subhi, tagint *tag,
int **nspecial, tagint **special,
int *nspecial15, tagint **special15,
const bool eflag_in, const bool vflag_in,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time,
bool &success, double *host_q, double *boxlo, double *prd);
void amoeba_gpu_compute_multipole_real(const int ago, const int inum, const int nall,
double **host_x, int *host_type, int *host_amtype, int *host_amgroup,
double **host_rpole, double *sublo, double *subhi, tagint *tag,
int **nspecial, tagint **special, int* nspecial15, tagint** special15,
const bool eflag, const bool vflag, const bool eatom, const bool vatom,
int &host_start, int **ilist, int **jnum, const double cpu_time,
bool &success, const double aewald, const double felec, const double off2,
double *host_q, double *boxlo, double *prd, void **tq_ptr);
void amoeba_gpu_compute_udirect2b(int *host_amtype, int *host_amgroup,
double **host_rpole, double **host_uind, double **host_uinp,
const double aewald, const double off2, void **fieldp_ptr);
void amoeba_gpu_compute_umutual2b(int *host_amtype, int *host_amgroup,
double **host_rpole, double **host_uind, double **host_uinp,
const double aewald, const double off2, void **fieldp_ptr);
void amoeba_gpu_update_fieldp(void **fieldp_ptr);
void amoeba_gpu_precompute_kspace(const int inum_full, const int bsorder,
double ***host_thetai1, double ***host_thetai2,
double ***host_thetai3, int** igrid,
const int nzlo_out, const int nzhi_out,
const int nylo_out, const int nyhi_out,
const int nxlo_out, const int nxhi_out);
void amoeba_gpu_fphi_uind(double ****host_grid_brick, void **host_fdip_phi1,
void **host_fdip_phi2, void **host_fdip_sum_phi);
void amoeba_gpu_fphi_mpole(double ***host_grid_brick, void **host_fdip_sum_phi,
const double felec);
void amoeba_gpu_compute_polar_real(int *host_amtype, int *host_amgroup,
double **host_rpole, double **host_uind, double **host_uinp,
const bool eflag, const bool vflag, const bool eatom, const bool vatom,
const double aewald, const double felec, const double off2,
void **tq_ptr);
double amoeba_gpu_bytes();
/* ---------------------------------------------------------------------- */
PairAmoebaGPU::PairAmoebaGPU(LAMMPS *lmp) : PairAmoeba(lmp), gpu_mode(GPU_FORCE)
{
respa_enable = 0;
reinitflag = 0;
cpu_time = 0.0;
suffix_flag |= Suffix::GPU;
fieldp_pinned = nullptr;
tq_pinned = nullptr;
gpu_hal_ready = false; // true for AMOEBA when ready
gpu_repulsion_ready = false; // always false for AMOEBA
gpu_dispersion_real_ready = false; // always false for AMOEBA
gpu_multipole_real_ready = true; // need to be true for precompute()
gpu_udirect2b_ready = true;
gpu_umutual1_ready = true;
gpu_fphi_uind_ready = true;
gpu_umutual2b_ready = true;
gpu_polar_real_ready = true; // need to be true for copying data from device back to host
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairAmoebaGPU::~PairAmoebaGPU()
{
amoeba_gpu_clear();
}
/* ---------------------------------------------------------------------- */
void PairAmoebaGPU::compute(int eflag, int vflag)
{
if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0)
neighbor->build_topology();
PairAmoeba::compute(eflag, vflag);
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairAmoebaGPU::init_style()
{
PairAmoeba::init_style();
// Repeat cutsq calculation because done after call to init_style
double maxcut = -1.0;
double cut;
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
cut = init_one(i,j);
cut *= cut;
if (cut > maxcut)
maxcut = cut;
cutsq[i][j] = cutsq[j][i] = cut;
} else
cutsq[i][j] = cutsq[j][i] = 0.0;
}
}
double cell_size = sqrt(maxcut) + neighbor->skin;
int maxspecial=0;
int maxspecial15=0;
if (atom->molecular != Atom::ATOMIC) {
maxspecial=atom->maxspecial;
maxspecial15=atom->maxspecial15;
}
int mnf = 5e-2 * neighbor->oneatom;
int success = amoeba_gpu_init(atom->ntypes+1, max_amtype, max_amclass,
pdamp, thole, dirdamp, amtype2class, special_hal,
special_repel, special_disp, special_mpole,
special_polar_wscale, special_polar_piscale,
special_polar_pscale, csix, adisp, atom->nlocal,
atom->nlocal+atom->nghost, mnf, maxspecial,
maxspecial15, cell_size, gpu_mode, screen,
polar_dscale, polar_uscale);
GPU_EXTRA::check_flag(success,error,world);
if (gpu_mode == GPU_FORCE)
error->all(FLERR,"Pair style amoeba/gpu does not support neigh no for now");
acc_float = Info::has_accelerator_feature("GPU", "precision", "single");
// replace with the gpu counterpart
if (gpu_umutual1_ready) {
if (use_ewald && ic_kspace) {
delete ic_kspace;
ic_kspace =
new AmoebaConvolutionGPU(lmp,this,nefft1,nefft2,nefft3,bsporder,INDUCE_GRIDC);
}
}
}
/* ----------------------------------------------------------------------
multipole_real = real-space portion of mulipole interactions
adapted from Tinker emreal1d() routine
------------------------------------------------------------------------- */
void PairAmoebaGPU::multipole_real()
{
if (!gpu_multipole_real_ready) {
PairAmoeba::multipole_real();
return;
}
int eflag=1, vflag=1;
double **f = atom->f;
int nall = atom->nlocal + atom->nghost;
int inum, host_start;
bool success = true;
int *ilist, *numneigh;
double sublo[3],subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda,domain->subhi_lamda,sublo,subhi);
}
inum = atom->nlocal;
amoeba_gpu_precompute(neighbor->ago, inum, nall, atom->x,
atom->type, amtype, amgroup, rpole,
nullptr, nullptr, nullptr,
sublo, subhi, atom->tag,
atom->nspecial, atom->special,
atom->nspecial15, atom->special15,
eflag, vflag, eflag_atom, vflag_atom,
host_start, &ilist, &numneigh, cpu_time,
success, atom->q, domain->boxlo, domain->prd);
if (!success)
error->one(FLERR,"Insufficient memory on accelerator");
// select the correct cutoff for the term
if (use_ewald) choose(MPOLE_LONG);
else choose(MPOLE);
// set the energy unit conversion factor for multipolar real-space calculation
double felec = electric / am_dielectric;
amoeba_gpu_compute_multipole_real(neighbor->ago, inum, nall, atom->x,
atom->type, amtype, amgroup, rpole,
sublo, subhi, atom->tag,
atom->nspecial, atom->special,
atom->nspecial15, atom->special15,
eflag, vflag, eflag_atom, vflag_atom,
host_start, &ilist, &numneigh, cpu_time,
success, aewald, felec, off2, atom->q,
domain->boxlo, domain->prd, &tq_pinned);
// reference to the tep array from GPU lib
if (acc_float) {
auto *tq_ptr = (float *)tq_pinned;
compute_force_from_torque<float>(tq_ptr, f, virmpole); // fmpole
} else {
auto *tq_ptr = (double *)tq_pinned;
compute_force_from_torque<double>(tq_ptr, f, virmpole); // fmpole
}
}
/* ----------------------------------------------------------------------
induce = induced dipole moments via pre-conditioned CG solver
adapted from Tinker induce0a() routine
NOTE: Almost the same in the CPU version, except that there is no need
to call reverse_comm() for crstyle = FIELD;
------------------------------------------------------------------------- */
void PairAmoebaGPU::induce()
{
bool done;
int i,j,m,itype;
int iter,maxiter;
double polmin;
double eps,epsold;
double epsd,epsp;
double udsum,upsum;
double a,ap,b,bp;
double sum,sump,term;
double reduce[4],allreduce[4];
// set cutoffs, taper coeffs, and PME params
// create qfac here, free at end of polar()
if (use_ewald) choose(POLAR_LONG);
else choose(POLAR);
// owned atoms
int nlocal = atom->nlocal;
// zero out the induced dipoles at each site
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uind[i][j] = 0.0;
uinp[i][j] = 0.0;
}
}
// get the electrostatic field due to permanent multipoles
dfield0c(field,fieldp);
// need reverse_comm if dfield0c (i.e. udirect2b) is CPU-only
if (!gpu_udirect2b_ready) {
crstyle = FIELD;
comm->reverse_comm(this);
}
// set induced dipoles to polarizability times direct field
for (i = 0; i < nlocal; i++) {
itype = amtype[i];
for (j = 0; j < 3; j++) {
udir[i][j] = polarity[itype] * field[i][j];
udirp[i][j] = polarity[itype] * fieldp[i][j];
if (pcgguess) {
uind[i][j] = udir[i][j];
uinp[i][j] = udirp[i][j];
}
}
}
// allocate memory and make early host-device transfers
// must be done before the first ufield0c
// NOTE: this is for ic_kspace, and thetai[1-3]
if (ic_kspace)
amoeba_gpu_precompute_kspace(atom->nlocal, bsorder, thetai1, thetai2,
thetai3, igrid,
ic_kspace->nzlo_out, ic_kspace->nzhi_out,
ic_kspace->nylo_out, ic_kspace->nyhi_out,
ic_kspace->nxlo_out, ic_kspace->nxhi_out);
// get induced dipoles via the OPT extrapolation method
// NOTE: any way to rewrite these loops to avoid allocating
// uopt,uoptp with a optorder+1 dimension, just optorder ??
// since no need to store optorder+1 values after these loops
if (poltyp == OPT) {
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uopt[i][0][j] = udir[i][j];
uoptp[i][0][j] = udirp[i][j];
}
}
for (m = 1; m <= optorder; m++) {
optlevel = m - 1; // used in umutual1() for fopt,foptp
cfstyle = INDUCE;
comm->forward_comm(this);
ufield0c(field,fieldp);
if (!gpu_umutual2b_ready) {
crstyle = FIELD;
comm->reverse_comm(this);
}
for (i = 0; i < nlocal; i++) {
itype = amtype[i];
for (j = 0; j < 3; j++) {
uopt[i][m][j] = polarity[itype] * field[i][j];
uoptp[i][m][j] = polarity[itype] * fieldp[i][j];
uind[i][j] = uopt[i][m][j];
uinp[i][j] = uoptp[i][m][j];
}
}
}
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uind[i][j] = 0.0;
uinp[i][j] = 0.0;
usum[i][j] = 0.0;
usump[i][j] = 0.0;
for (m = 0; m <= optorder; m++) {
usum[i][j] += uopt[i][m][j];
usump[i][j] += uoptp[i][m][j];
uind[i][j] += copt[m]*usum[i][j];
uinp[i][j] += copt[m]*usump[i][j];
}
}
}
}
// set tolerances for computation of mutual induced dipoles
if (poltyp == MUTUAL) {
done = false;
maxiter = 100;
iter = 0;
polmin = 0.00000001;
eps = 100.0;
// estimate induced dipoles using a polynomial predictor
if (use_pred && nualt == maxualt) {
ulspred();
double ***udalt = fixudalt->tstore;
double ***upalt = fixupalt->tstore;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
udsum = 0.0;
upsum = 0.0;
for (m = 0; m < nualt; m++) {
udsum += bpred[m]*udalt[i][m][j];
upsum += bpredp[m]*upalt[i][m][j];
}
uind[i][j] = udsum;
uinp[i][j] = upsum;
}
}
}
// estimate induced dipoles via inertial extended Lagrangian
// not supported for now
// requires uaux,upaux to persist with each atom
// also requires a velocity vector(s) to persist
// also requires updating uaux,upaux in the Verlet integration
/*
if (use_ielscf) {
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uind[i][j] = uaux[i][j];
uinp[i][j] = upaux[i][j];
}
}
}
*/
// get the electrostatic field due to induced dipoles
cfstyle = INDUCE;
comm->forward_comm(this);
ufield0c(field,fieldp);
if (!gpu_umutual2b_ready) {
crstyle = FIELD;
comm->reverse_comm(this);
}
// set initial conjugate gradient residual and conjugate vector
for (i = 0; i < nlocal; i++) {
itype = amtype[i];
poli[i] = MAX(polmin,polarity[itype]);
for (j = 0; j < 3; j++) {
if (pcgguess) {
rsd[i][j] = (udir[i][j]-uind[i][j])/poli[i] + field[i][j];
rsdp[i][j] = (udirp[i][j]-uinp[i][j])/poli[i] + fieldp[i][j];
} else {
rsd[i][j] = udir[i][j] / poli[i];
rsdp[i][j] = udirp[i][j] / poli[i];
}
zrsd[i][j] = rsd[i][j];
zrsdp[i][j] = rsdp[i][j];
}
}
if (pcgprec) {
cfstyle = RSD;
comm->forward_comm(this);
uscale0b(BUILD,rsd,rsdp,zrsd,zrsdp);
uscale0b(APPLY,rsd,rsdp,zrsd,zrsdp);
crstyle = ZRSD;
comm->reverse_comm(this);
}
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
conj[i][j] = zrsd[i][j];
conjp[i][j] = zrsdp[i][j];
}
}
// conjugate gradient iteration of the mutual induced dipoles
while (!done) {
iter++;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
vec[i][j] = uind[i][j];
vecp[i][j] = uinp[i][j];
uind[i][j] = conj[i][j];
uinp[i][j] = conjp[i][j];
}
}
cfstyle = INDUCE;
comm->forward_comm(this);
ufield0c(field,fieldp);
if (!gpu_umutual2b_ready) {
crstyle = FIELD;
comm->reverse_comm(this);
}
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uind[i][j] = vec[i][j];
uinp[i][j] = vecp[i][j];
vec[i][j] = conj[i][j]/poli[i] - field[i][j];
vecp[i][j] = conjp[i][j]/poli[i] - fieldp[i][j];
}
}
a = 0.0;
ap = 0.0;
sum = 0.0;
sump = 0.0;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
a += conj[i][j]*vec[i][j];
ap += conjp[i][j]*vecp[i][j];
sum += rsd[i][j]*zrsd[i][j];
sump += rsdp[i][j]*zrsdp[i][j];
}
}
reduce[0] = a;
reduce[1] = ap;
reduce[2] = sum;
reduce[3] = sump;
MPI_Allreduce(reduce,allreduce,4,MPI_DOUBLE,MPI_SUM,world);
a = allreduce[0];
ap = allreduce[1];
sum = allreduce[2];
sump = allreduce[3];
if (a != 0.0) a = sum / a;
if (ap != 0.0) ap = sump / ap;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
uind[i][j] = uind[i][j] + a*conj[i][j];
uinp[i][j] = uinp[i][j] + ap*conjp[i][j];
rsd[i][j] = rsd[i][j] - a*vec[i][j];
rsdp[i][j] = rsdp[i][j] - ap*vecp[i][j];
zrsd[i][j] = rsd[i][j];
zrsdp[i][j] = rsdp[i][j];
}
}
if (pcgprec) {
cfstyle = RSD;
comm->forward_comm(this);
uscale0b(APPLY,rsd,rsdp,zrsd,zrsdp);
crstyle = ZRSD;
comm->reverse_comm(this);
}
b = 0.0;
bp = 0.0;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
b += rsd[i][j]*zrsd[i][j];
bp += rsdp[i][j]*zrsdp[i][j];
}
}
reduce[0] = b;
reduce[1] = bp;
MPI_Allreduce(reduce,allreduce,4,MPI_DOUBLE,MPI_SUM,world);
b = allreduce[0];
bp = allreduce[1];
if (sum != 0.0) b /= sum;
if (sump != 0.0) bp /= sump;
epsd = 0.0;
epsp = 0.0;
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
conj[i][j] = zrsd[i][j] + b*conj[i][j];
conjp[i][j] = zrsdp[i][j] + bp*conjp[i][j];
epsd += rsd[i][j]*rsd[i][j];
epsp += rsdp[i][j]*rsdp[i][j];
}
}
reduce[0] = epsd;
reduce[1] = epsp;
MPI_Allreduce(reduce,allreduce,4,MPI_DOUBLE,MPI_SUM,world);
epsd = allreduce[0];
epsp = allreduce[1];
// check the convergence of the mutual induced dipoles
epsold = eps;
eps = MAX(epsd,epsp);
eps = DEBYE * sqrt(eps/atom->natoms);
if (eps < poleps) done = true;
if (eps > epsold) done = true;
if (iter >= politer) done = true;
// apply a "peek" iteration to the mutual induced dipoles
if (done) {
for (i = 0; i < nlocal; i++) {
term = pcgpeek * poli[i];
for (j = 0; j < 3; j++) {
uind[i][j] += term*rsd[i][j];
uinp[i][j] += term*rsdp[i][j];
}
}
}
}
// terminate the calculation if dipoles failed to converge
// NOTE: could make this an error
if (iter >= maxiter || eps > epsold)
if (comm->me == 0)
error->warning(FLERR,"AMOEBA induced dipoles did not converge");
}
// update the lists of previous induced dipole values
// shift previous m values up to m+1, add new values at m = 0
// only when preconditioner is used
if (use_pred) {
double ***udalt = fixudalt->tstore;
double ***upalt = fixupalt->tstore;
nualt = MIN(nualt+1,maxualt);
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
for (m = nualt-1; m > 0; m--) {
udalt[i][m][j] = udalt[i][m-1][j];
upalt[i][m][j] = upalt[i][m-1][j];
}
udalt[i][0][j] = uind[i][j];
upalt[i][0][j] = uinp[i][j];
}
}
}
}
/* ----------------------------------------------------------------------
udirect2b = Ewald real direct field via list
udirect2b computes the real space contribution of the permanent
atomic multipole moments to the field via a neighbor list
------------------------------------------------------------------------- */
void PairAmoebaGPU::udirect2b(double **field, double **fieldp)
{
if (!gpu_udirect2b_ready) {
PairAmoeba::udirect2b(field, fieldp);
return;
}
int inum;
double sublo[3],subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda,domain->subhi_lamda,sublo,subhi);
}
inum = atom->nlocal;
// select the correct cutoff (off2) for the term
if (use_ewald) choose(POLAR_LONG);
else choose(POLAR);
amoeba_gpu_compute_udirect2b(amtype, amgroup, rpole, uind, uinp,
aewald, off2, &fieldp_pinned);
// rebuild dipole-dipole pair list and store pairwise dipole matrices
// done one atom at a time in real-space double loop over atoms & neighs
// NOTE: for the moment the tdipdip values are computed just in time in umutual2b()
// so no need to call ubdirect2b_cpu().
// udirect2b_cpu();
// accumulate the field and fieldp values from the GPU lib
// field and fieldp may already have some nonzero values from kspace (udirect1)
int nlocal = atom->nlocal;
if (acc_float) {
auto field_ptr = (float *)fieldp_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
field[i][0] += field_ptr[idx];
field[i][1] += field_ptr[idx+1];
field[i][2] += field_ptr[idx+2];
}
field_ptr += 3*inum;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
fieldp[i][0] += field_ptr[idx];
fieldp[i][1] += field_ptr[idx+1];
fieldp[i][2] += field_ptr[idx+2];
}
} else {
auto field_ptr = (double *)fieldp_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
field[i][0] += field_ptr[idx];
field[i][1] += field_ptr[idx+1];
field[i][2] += field_ptr[idx+2];
}
field_ptr += 3*inum;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
fieldp[i][0] += field_ptr[idx];
fieldp[i][1] += field_ptr[idx+1];
fieldp[i][2] += field_ptr[idx+2];
}
}
}
/* ----------------------------------------------------------------------
udirect2b = Ewald real direct field via list
udirect2b computes the real space contribution of the permanent
atomic multipole moments to the field via a neighbor list
------------------------------------------------------------------------- */
void PairAmoebaGPU::udirect2b_cpu()
{
int i,j,m,n,ii,jj,jextra,ndip,itype,jtype,igroup,jgroup;
double xr,yr,zr,r,r2;
double rr1,rr2,rr3,rr5;
double bfac,exp2a;
double ralpha,aefac;
double aesq2,aesq2n;
double pdi,pti;
double pgamma;
double damp,expdamp;
double scale3,scale5;
double scalek;
double bn[4],bcn[3];
double factor_uscale;
int inum,jnum;
int *ilist,*jlist,*numneigh,**firstneigh;
double **x = atom->x;
// neigh list
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// NOTE: doesn't this have a problem if aewald is tiny ??
aesq2 = 2.0 * aewald * aewald;
aesq2n = 0.0;
if (aewald > 0.0) aesq2n = 1.0 / (MY_PIS*aewald);
// rebuild dipole-dipole pair list and store pairwise dipole matrices
// done one atom at a time in real-space double loop over atoms & neighs
int *neighptr;
double *tdipdip;
// compute the real space portion of the Ewald summation
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = amtype[i];
igroup = amgroup[i];
jlist = firstneigh[i];
jnum = numneigh[i];
n = ndip = 0;
neighptr = ipage_dipole->vget();
tdipdip = dpage_dipdip->vget();
pdi = pdamp[itype];
pti = thole[itype];
// evaluate all sites within the cutoff distance
for (jj = 0; jj < jnum; jj++) {
jextra = jlist[jj];
j = jextra & NEIGHMASK15;
xr = x[j][0] - x[i][0];
yr = x[j][1] - x[i][1];
zr = x[j][2] - x[i][2];
r2 = xr*xr + yr* yr + zr*zr;
if (r2 > off2) continue;
jtype = amtype[j];
jgroup = amgroup[j];
if (igroup == jgroup) factor_uscale = polar_uscale;
else factor_uscale = 1.0;
r = sqrt(r2);
rr1 = 1.0 / r;
rr2 = rr1 * rr1;
rr3 = rr2 * rr1;
rr5 = 3.0 * rr2 * rr3;
// calculate the real space Ewald error function terms
ralpha = aewald * r;
bn[0] = erfc(ralpha) * rr1;
exp2a = exp(-ralpha*ralpha);
aefac = aesq2n;
for (m = 1; m <= 3; m++) {
bfac = m+m-1;
aefac = aesq2 * aefac;
bn[m] = (bfac*bn[m-1]+aefac*exp2a) * rr2;
}
// find terms needed later to compute mutual polarization
if (poltyp != DIRECT) {
scale3 = 1.0;
scale5 = 1.0;
damp = pdi * pdamp[jtype];
if (damp != 0.0) {
pgamma = MIN(pti,thole[jtype]);
damp = pgamma * pow(r/damp,3.0);
if (damp < 50.0) {
expdamp = exp(-damp);
scale3 = 1.0 - expdamp;
scale5 = 1.0 - expdamp*(1.0+damp);
}
}
scalek = factor_uscale;
bcn[0] = bn[1] - (1.0-scalek*scale3)*rr3;
bcn[1] = bn[2] - (1.0-scalek*scale5)*rr5;
neighptr[n++] = j;
tdipdip[ndip++] = -bcn[0] + bcn[1]*xr*xr;
tdipdip[ndip++] = bcn[1]*xr*yr;
tdipdip[ndip++] = bcn[1]*xr*zr;
tdipdip[ndip++] = -bcn[0] + bcn[1]*yr*yr;
tdipdip[ndip++] = bcn[1]*yr*zr;
tdipdip[ndip++] = -bcn[0] + bcn[1]*zr*zr;
} else {
if (comm->me == 0) printf("i = %d: j = %d: poltyp == DIRECT\n", i, j);
}
} // jj
firstneigh_dipole[i] = neighptr;
firstneigh_dipdip[i] = tdipdip;
numneigh_dipole[i] = n;
ipage_dipole->vgot(n);
dpage_dipdip->vgot(ndip);
}
}
/* ----------------------------------------------------------------------
ufield0c = mutual induction via Ewald sum
ufield0c computes the mutual electrostatic field due to
induced dipole moments via Ewald summation
------------------------------------------------------------------------- */
void PairAmoebaGPU::ufield0c(double **field, double **fieldp)
{
double term;
// zero field,fieldp for owned and ghost atoms
int nlocal = atom->nlocal;
int nall = nlocal + atom->nghost;
memset(&field[0][0], 0, 3*nall *sizeof(double));
memset(&fieldp[0][0], 0, 3*nall *sizeof(double));
// get the real space portion of the mutual field first
double time0, time1, time2;
MPI_Barrier(world);
time0 = platform::walltime();
if (polar_rspace_flag) umutual2b(field,fieldp);
time1 = platform::walltime();
// get the reciprocal space part of the mutual field
if (polar_kspace_flag) umutual1(field,fieldp);
time2 = platform::walltime();
// add the self-energy portion of the mutual field
term = (4.0/3.0) * aewald*aewald*aewald / MY_PIS;
for (int i = 0; i < nlocal; i++) {
field[i][0] += term*uind[i][0];
field[i][1] += term*uind[i][1];
field[i][2] += term*uind[i][2];
}
for (int i = 0; i < nlocal; i++) {
fieldp[i][0] += term*uinp[i][0];
fieldp[i][1] += term*uinp[i][1];
fieldp[i][2] += term*uinp[i][2];
}
// accumulate the field and fieldp values from the real-space portion from umutual2b() on the GPU
// field and fieldp may already have some nonzero values from kspace (umutual1 and self)
amoeba_gpu_update_fieldp(&fieldp_pinned);
int inum = atom->nlocal;
if (acc_float) {
auto field_ptr = (float *)fieldp_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
field[i][0] += field_ptr[idx];
field[i][1] += field_ptr[idx+1];
field[i][2] += field_ptr[idx+2];
}
field_ptr += 3*inum;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
fieldp[i][0] += field_ptr[idx];
fieldp[i][1] += field_ptr[idx+1];
fieldp[i][2] += field_ptr[idx+2];
}
} else {
auto field_ptr = (double *)fieldp_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
field[i][0] += field_ptr[idx];
field[i][1] += field_ptr[idx+1];
field[i][2] += field_ptr[idx+2];
}
field_ptr += 3*inum;
for (int i = 0; i < nlocal; i++) {
int idx = 3*i;
fieldp[i][0] += field_ptr[idx];
fieldp[i][1] += field_ptr[idx+1];
fieldp[i][2] += field_ptr[idx+2];
}
}
// accumulate timing information
time_mutual_rspace += time1 - time0;
time_mutual_kspace += time2 - time1;
}
/* ----------------------------------------------------------------------
umutual1 = Ewald recip mutual induced field
umutual1 computes the reciprocal space contribution of the
induced atomic dipole moments to the field
------------------------------------------------------------------------- */
void PairAmoebaGPU::umutual1(double **field, double **fieldp)
{
int m,n;
int nxlo,nxhi,nylo,nyhi,nzlo,nzhi;
double term;
double a[3][3]; // indices not flipped vs Fortran
// return if the Ewald coefficient is zero
if (aewald < 1.0e-6) return;
// convert Cartesian dipoles to fractional coordinates
for (int j = 0; j < 3; j++) {
a[0][j] = nfft1 * recip[0][j];
a[1][j] = nfft2 * recip[1][j];
a[2][j] = nfft3 * recip[2][j];
}
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++) {
fuind[i][0] = a[0][0]*uind[i][0] + a[0][1]*uind[i][1] + a[0][2]*uind[i][2];
fuind[i][1] = a[1][0]*uind[i][0] + a[1][1]*uind[i][1] + a[1][2]*uind[i][2];
fuind[i][2] = a[2][0]*uind[i][0] + a[2][1]*uind[i][1] + a[2][2]*uind[i][2];
}
for (int i = 0; i < nlocal; i++) {
fuinp[i][0] = a[0][0]*uinp[i][0] + a[0][1]*uinp[i][1] + a[0][2]*uinp[i][2];
fuinp[i][1] = a[1][0]*uinp[i][0] + a[1][1]*uinp[i][1] + a[1][2]*uinp[i][2];
fuinp[i][2] = a[2][0]*uinp[i][0] + a[2][1]*uinp[i][1] + a[2][2]*uinp[i][2];
}
// gridpre = my portion of 4d grid in brick decomp w/ ghost values
FFT_SCALAR ****gridpre = (FFT_SCALAR ****) ic_kspace->zero();
// map 2 values to grid
double time0, time1;
MPI_Barrier(world);
time0 = platform::walltime();
grid_uind(fuind,fuinp,gridpre);
time1 = platform::walltime();
time_grid_uind += (time1 - time0);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomposition
FFT_SCALAR *gridfft = ic_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
nxlo = ic_kspace->nxlo_fft;
nxhi = ic_kspace->nxhi_fft;
nylo = ic_kspace->nylo_fft;
nyhi = ic_kspace->nyhi_fft;
nzlo = ic_kspace->nzlo_fft;
nzhi = ic_kspace->nzhi_fft;
// use qfac values stored in udirect1()
m = n = 0;
for (int k = nzlo; k <= nzhi; k++) {
for (int j = nylo; j <= nyhi; j++) {
for (int i = nxlo; i <= nxhi; i++) {
term = qfac[m++];
gridfft[n] *= term;
gridfft[n+1] *= term;
n += 2;
}
}
}
// post-convolution operations including backward FFT
// gridppost = my portion of 4d grid in brick decomp w/ ghost values
FFT_SCALAR ****gridpost = (FFT_SCALAR ****) ic_kspace->post_convolution();
// get potential
MPI_Barrier(world);
time0 = platform::walltime();
fphi_uind(gridpost,fdip_phi1,fdip_phi2,fdip_sum_phi);
time1 = platform::walltime();
time_fphi_uind += (time1 - time0);
// store fractional reciprocal potentials for OPT method
if (poltyp == OPT) {
for (int i = 0; i < nlocal; i++) {
for (int j = 0; j < 10; j++) {
fopt[i][optlevel][j] = fdip_phi1[i][j];
foptp[i][optlevel][j] = fdip_phi2[i][j];
}
}
}
for (int i = 0; i < nlocal; i++) {
double dfx = a[0][0]*fdip_phi1[i][1] +
a[0][1]*fdip_phi1[i][2] + a[0][2]*fdip_phi1[i][3];
double dfy = a[1][0]*fdip_phi1[i][1] +
a[1][1]*fdip_phi1[i][2] + a[1][2]*fdip_phi1[i][3];
double dfz = a[2][0]*fdip_phi1[i][1] +
a[2][1]*fdip_phi1[i][2] + a[2][2]*fdip_phi1[i][3];
field[i][0] -= dfx;
field[i][1] -= dfy;
field[i][2] -= dfz;
}
for (int i = 0; i < nlocal; i++) {
double dfx = a[0][0]*fdip_phi2[i][1] +
a[0][1]*fdip_phi2[i][2] + a[0][2]*fdip_phi2[i][3];
double dfy = a[1][0]*fdip_phi2[i][1] +
a[1][1]*fdip_phi2[i][2] + a[1][2]*fdip_phi2[i][3];
double dfz = a[2][0]*fdip_phi2[i][1] +
a[2][1]*fdip_phi2[i][2] + a[2][2]*fdip_phi2[i][3];
fieldp[i][0] -= dfx;
fieldp[i][1] -= dfy;
fieldp[i][2] -= dfz;
}
}
/* ----------------------------------------------------------------------
fphi_uind = induced potential from grid
fphi_uind extracts the induced dipole potential from the particle mesh Ewald grid
------------------------------------------------------------------------- */
void PairAmoebaGPU::fphi_uind(FFT_SCALAR ****grid, double **fdip_phi1,
double **fdip_phi2, double **fdip_sum_phi)
{
if (!gpu_fphi_uind_ready) {
PairAmoeba::fphi_uind(grid, fdip_phi1, fdip_phi2, fdip_sum_phi);
return;
}
void* fdip_phi1_pinned = nullptr;
void* fdip_phi2_pinned = nullptr;
void* fdip_sum_phi_pinned = nullptr;
amoeba_gpu_fphi_uind(grid, &fdip_phi1_pinned, &fdip_phi2_pinned,
&fdip_sum_phi_pinned);
int nlocal = atom->nlocal;
if (acc_float) {
auto _fdip_phi1_ptr = (float *)fdip_phi1_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 10; m++) {
fdip_phi1[i][m] = _fdip_phi1_ptr[n];
n += nlocal;
}
}
auto _fdip_phi2_ptr = (float *)fdip_phi2_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 10; m++) {
fdip_phi2[i][m] = _fdip_phi2_ptr[n];
n += nlocal;
}
}
auto _fdip_sum_phi_ptr = (float *)fdip_sum_phi_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 20; m++) {
fdip_sum_phi[i][m] = _fdip_sum_phi_ptr[n];
n += nlocal;
}
}
} else {
auto _fdip_phi1_ptr = (double *)fdip_phi1_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 10; m++) {
fdip_phi1[i][m] = _fdip_phi1_ptr[n];
n += nlocal;
}
}
auto _fdip_phi2_ptr = (double *)fdip_phi2_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 10; m++) {
fdip_phi2[i][m] = _fdip_phi2_ptr[n];
n += nlocal;
}
}
auto _fdip_sum_phi_ptr = (double *)fdip_sum_phi_pinned;
for (int i = 0; i < nlocal; i++) {
int n = i;
for (int m = 0; m < 20; m++) {
fdip_sum_phi[i][m] = _fdip_sum_phi_ptr[n];
n += nlocal;
}
}
}
}
/* ----------------------------------------------------------------------
umutual2b = Ewald real mutual field via list
umutual2b computes the real space contribution of the induced
atomic dipole moments to the field via a neighbor list
------------------------------------------------------------------------- */
void PairAmoebaGPU::umutual2b(double **field, double **fieldp)
{
if (!gpu_umutual2b_ready) {
PairAmoeba::umutual2b(field, fieldp);
return;
}
double sublo[3],subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda,domain->subhi_lamda,sublo,subhi);
}
// select the correct cutoff (off2) for the term
if (use_ewald) choose(POLAR_LONG);
else choose(POLAR);
amoeba_gpu_compute_umutual2b(amtype, amgroup, rpole, uind, uinp,
aewald, off2, &fieldp_pinned);
}
/* ----------------------------------------------------------------------
polar_real = real-space portion of induced dipole polarization
adapted from Tinker epreal1d() routine
------------------------------------------------------------------------- */
void PairAmoebaGPU::polar_real()
{
if (!gpu_polar_real_ready) {
PairAmoeba::polar_real();
return;
}
int eflag=1, vflag=1;
double **f = atom->f;
double sublo[3],subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda,domain->subhi_lamda,sublo,subhi);
}
// select the correct cutoff and aewald for the term
if (use_ewald) choose(POLAR_LONG);
else choose(POLAR);
// set the energy unit conversion factor for polar real-space calculation
double felec = 0.5 * electric / am_dielectric;
amoeba_gpu_compute_polar_real(amtype, amgroup, rpole, uind, uinp,
eflag, vflag, eflag_atom, vflag_atom,
aewald, felec, off2, &tq_pinned);
// reference to the tep array from GPU lib
if (acc_float) {
auto *tep_ptr = (float *)tq_pinned;
compute_force_from_torque<float>(tep_ptr, f, virpolar); // fpolar
} else {
auto *tep_ptr = (double *)tq_pinned;
compute_force_from_torque<double>(tep_ptr, f, virpolar); // fpolar
}
}
/* ----------------------------------------------------------------------
polar_kspace = KSpace portion of induced dipole polarization
adapted from Tinker eprecip1() routine
same as PairAmoeba, except that fphi_uind() is reimplemented here
------------------------------------------------------------------------- */
void PairAmoebaGPU::polar_kspace()
{
int i,j,k,m,n;
int nhalf1,nhalf2,nhalf3;
int nxlo,nxhi,nylo,nyhi,nzlo,nzhi;
int j1,j2,j3;
int ix,iy,iz;
double eterm,felec;
double r1,r2,r3;
double h1,h2,h3;
double f1,f2,f3;
double xix,yix,zix;
double xiy,yiy,ziy;
double xiz,yiz,ziz;
double vxx,vyy,vzz;
double vxy,vxz,vyz;
double volterm,denom;
double hsq,expterm;
double term,pterm;
double vterm,struc2;
double tep[3];
double fix[3],fiy[3],fiz[3];
double cphid[4],cphip[4];
double a[3][3]; // indices not flipped vs Fortran
bool gpu_fphi_mpole_ready = true;
// indices into the electrostatic field array
// decremented by 1 versus Fortran
int deriv1[10] = {1, 4, 7, 8, 10, 15, 17, 13, 14, 19};
int deriv2[10] = {2, 7, 5, 9, 13, 11, 18, 15, 19, 16};
int deriv3[10] = {3, 8, 9, 6, 14, 16, 12, 19, 17, 18};
// return if the Ewald coefficient is zero
if (aewald < 1.0e-6) return;
// owned atoms
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
double volbox = domain->prd[0] * domain->prd[1] * domain->prd[2];
pterm = pow((MY_PI/aewald),2.0);
volterm = MY_PI * volbox;
// initialize variables required for the scalar summation
felec = electric / am_dielectric;
// remove scalar sum virial from prior multipole FFT
// can only do this if multipoles were computed with same aeewald = apewald
// else need to re-compute it via new long-range solve
nfft1 = p_kspace->nx;
nfft2 = p_kspace->ny;
nfft3 = p_kspace->nz;
bsorder = p_kspace->order;
nhalf1 = (nfft1+1) / 2;
nhalf2 = (nfft2+1) / 2;
nhalf3 = (nfft3+1) / 2;
nxlo = p_kspace->nxlo_fft;
nxhi = p_kspace->nxhi_fft;
nylo = p_kspace->nylo_fft;
nyhi = p_kspace->nyhi_fft;
nzlo = p_kspace->nzlo_fft;
nzhi = p_kspace->nzhi_fft;
// use previous results or compute new qfac and convolution
if (aewald == aeewald) {
vxx = -vmsave[0];
vyy = -vmsave[1];
vzz = -vmsave[2];
vxy = -vmsave[3];
vxz = -vmsave[4];
vyz = -vmsave[5];
} else {
// setup stencil size and B-spline coefficients
moduli();
bspline_fill();
// allocate memory and make early host-device transfers
// NOTE: this is for p_kspace, and igrid and thetai[1-3] are filled by bpsline_fill
if (gpu_fphi_mpole_ready) {
amoeba_gpu_precompute_kspace(atom->nlocal, bsorder,
thetai1, thetai2, thetai3, igrid,
p_kspace->nzlo_out, p_kspace->nzhi_out,
p_kspace->nylo_out, p_kspace->nyhi_out,
p_kspace->nxlo_out, p_kspace->nxhi_out);
}
// convert Cartesian multipoles to fractional coordinates
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
FFT_SCALAR ***gridpre = (FFT_SCALAR ***) p_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomp as 1d vector
FFT_SCALAR *gridfft = p_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
// zero virial accumulation variables
vxx = vyy = vzz = vxy = vxz = vyz = 0.0;
// perform convolution on K-space points I own
m = n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
r1 = (i >= nhalf1) ? i-nfft1 : i;
r2 = (j >= nhalf2) ? j-nfft2 : j;
r3 = (k >= nhalf3) ? k-nfft3 : k;
h1 = recip[0][0]*r1 + recip[0][1]*r2 + recip[0][2]*r3; // matvec
h2 = recip[1][0]*r1 + recip[1][1]*r2 + recip[1][2]*r3;
h3 = recip[2][0]*r1 + recip[2][1]*r2 + recip[2][2]*r3;
hsq = h1*h1 + h2*h2 + h3*h3;
term = -pterm * hsq;
expterm = 0.0;
if (term > -50.0 && hsq != 0.0) {
denom = volterm*hsq*bsmod1[i]*bsmod2[j]*bsmod3[k];
if (hsq) expterm = exp(term) / denom;
struc2 = gridfft[n]*gridfft[n] + gridfft[n+1]*gridfft[n+1];
eterm = 0.5 * felec * expterm * struc2;
vterm = (2.0/hsq) * (1.0-term) * eterm;
vxx -= h1*h1*vterm - eterm;
vyy -= h2*h2*vterm - eterm;
vzz -= h3*h3*vterm - eterm;
vxy -= h1*h2*vterm;
vxz -= h1*h3*vterm;
vyz -= h2*h3*vterm;
}
expterm = qfac[m++];
gridfft[n] *= expterm;
gridfft[n+1] *= expterm;
n += 2;
}
}
}
// post-convolution operations including backward FFT
// gridppost = my portion of 3d grid in brick decomp w/ ghost values
FFT_SCALAR ***gridpost = (FFT_SCALAR ***) p_kspace->post_convolution();
// get potential
if (!gpu_fphi_mpole_ready) {
fphi_mpole(gridpost,fphi);
for (i = 0; i < nlocal; i++) {
for (k = 0; k < 20; k++)
fphi[i][k] *= felec;
}
} else {
void* fphi_pinned = nullptr;
amoeba_gpu_fphi_mpole(gridpost, &fphi_pinned, felec);
if (acc_float) {
auto _fphi_ptr = (float *)fphi_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = i;
for (int m = 0; m < 20; m++) {
fphi[i][m] = _fphi_ptr[idx];
idx += nlocal;
}
}
} else {
auto _fphi_ptr = (double *)fphi_pinned;
for (int i = 0; i < nlocal; i++) {
int idx = i;
for (int m = 0; m < 20; m++) {
fphi[i][m] = _fphi_ptr[idx];
idx += nlocal;
}
}
}
}
// convert field from fractional to Cartesian
fphi_to_cphi(fphi,cphi);
}
// convert Cartesian induced dipoles to fractional coordinates
for (i = 0; i < 3; i++) {
a[0][i] = nfft1 * recip[0][i];
a[1][i] = nfft2 * recip[1][i];
a[2][i] = nfft3 * recip[2][i];
}
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 3; j++) {
fuind[i][j] = a[j][0]*uind[i][0] + a[j][1]*uind[i][1] + a[j][2]*uind[i][2];
fuinp[i][j] = a[j][0]*uinp[i][0] + a[j][1]*uinp[i][1] + a[j][2]*uinp[i][2];
}
}
// gridpre2 = my portion of 4d grid in brick decomp w/ ghost values
FFT_SCALAR ****gridpre2 = (FFT_SCALAR ****) pc_kspace->zero();
// map 2 values to grid
grid_uind(fuind,fuinp,gridpre2);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomposition
FFT_SCALAR *gridfft = pc_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
// use qfac values from above or from induce()
m = n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
term = qfac[m++];
gridfft[n] *= term;
gridfft[n+1] *= term;
n += 2;
}
}
}
// post-convolution operations including backward FFT
// gridppost = my portion of 4d grid in brick decomp w/ ghost values
FFT_SCALAR ****gridpost = (FFT_SCALAR ****) pc_kspace->post_convolution();
// get potential
fphi_uind(gridpost,fphid,fphip,fphidp);
// TODO: port the remaining loops to the GPU
for (i = 0; i < nlocal; i++) {
for (j = 1; j < 10; j++) {
fphid[i][j] = felec * fphid[i][j];
fphip[i][j] = felec * fphip[i][j];
}
for (j = 0; j < 20; j++)
fphidp[i][j] = felec * fphidp[i][j];
}
// increment the dipole polarization gradient contributions
for (i = 0; i < nlocal; i++) {
f1 = 0.0;
f2 = 0.0;
f3 = 0.0;
for (k = 0; k < 3; k++) {
j1 = deriv1[k+1];
j2 = deriv2[k+1];
j3 = deriv3[k+1];
f1 += (fuind[i][k]+fuinp[i][k])*fphi[i][j1];
f2 += (fuind[i][k]+fuinp[i][k])*fphi[i][j2];
f3 += (fuind[i][k]+fuinp[i][k])*fphi[i][j3];
if (poltyp == MUTUAL) {
f1 += fuind[i][k]*fphip[i][j1] + fuinp[i][k]*fphid[i][j1];
f2 += fuind[i][k]*fphip[i][j2] + fuinp[i][k]*fphid[i][j2];
f3 += fuind[i][k]*fphip[i][j3] + fuinp[i][k]*fphid[i][j3];
}
}
for (k = 0; k < 10; k++) {
f1 += fmp[i][k]*fphidp[i][deriv1[k]];
f2 += fmp[i][k]*fphidp[i][deriv2[k]];
f3 += fmp[i][k]*fphidp[i][deriv3[k]];
}
f1 *= 0.5 * nfft1;
f2 *= 0.5 * nfft2;
f3 *= 0.5 * nfft3;
h1 = recip[0][0]*f1 + recip[0][1]*f2 + recip[0][2]*f3;
h2 = recip[1][0]*f1 + recip[1][1]*f2 + recip[1][2]*f3;
h3 = recip[2][0]*f1 + recip[2][1]*f2 + recip[2][2]*f3;
f[i][0] -= h1;
f[i][1] -= h2;
f[i][2] -= h3;
}
// set the potential to be the induced dipole average
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 10; j++)
fphidp[i][j] *= 0.5;
}
fphi_to_cphi(fphidp,cphidp);
// get the fractional to Cartesian transformation matrix
//frac_to_cart();
// increment the dipole polarization virial contributions
for (i = 0; i < nlocal; i++) {
for (j = 1; j < 4; j++) {
cphid[j] = 0.0;
cphip[j] = 0.0;
for (k = 1; k < 4; k++) {
cphid[j] += ftc[j][k]*fphid[i][k];
cphip[j] += ftc[j][k]*fphip[i][k];
}
}
vxx -= cmp[i][1]*cphidp[i][1] +
0.5*((uind[i][0]+uinp[i][0])*cphi[i][1]);
vyy -= cmp[i][2]*cphidp[i][2] +
0.5*((uind[i][1]+uinp[i][1])*cphi[i][2]);
vzz -= cmp[i][3]*cphidp[i][3] +
0.5*((uind[i][2]+uinp[i][2])*cphi[i][3]);
vxy -= 0.5*(cphidp[i][1]*cmp[i][2]+cphidp[i][2]*cmp[i][1]) +
0.25*((uind[i][1]+uinp[i][1])*cphi[i][1] +
(uind[i][0]+uinp[i][0])*cphi[i][2]);
vyz -= 0.5*(cphidp[i][2]*cmp[i][3]+cphidp[i][3]*cmp[i][2]) +
0.25*((uind[i][2]+uinp[i][2])*cphi[i][2] +
(uind[i][1]+uinp[i][1])*cphi[i][3]);
vxz -= 0.5*(cphidp[i][1]*cmp[i][3]+cphidp[i][3]*cmp[i][1]) +
0.25*((uind[i][2]+uinp[i][2])*cphi[i][1] +
(uind[i][0]+uinp[i][0])*cphi[i][3]);
vxx -= 2.0*cmp[i][4]*cphidp[i][4] + cmp[i][7]*cphidp[i][7] +
cmp[i][8]*cphidp[i][8];
vyy -= 2.0*cmp[i][5]*cphidp[i][5] + cmp[i][7]*cphidp[i][7] +
cmp[i][9]*cphidp[i][9];
vzz -= 2.0*cmp[i][6]*cphidp[i][6] + cmp[i][8]*cphidp[i][8] +
cmp[i][9]*cphidp[i][9];
vxy -= (cmp[i][4]+cmp[i][5])*cphidp[i][7] +
0.5*(cmp[i][7]*(cphidp[i][5]+cphidp[i][4]) +
cmp[i][8]*cphidp[i][9]+cmp[i][9]*cphidp[i][8]);
vyz -= (cmp[i][5]+cmp[i][6])*cphidp[i][9] +
0.5*(cmp[i][9]*(cphidp[i][5]+cphidp[i][6]) +
cmp[i][7]*cphidp[i][8]+cmp[i][8]*cphidp[i][7]);
vxz -= (cmp[i][4]+cmp[i][6])*cphidp[i][8] +
0.5*(cmp[i][8]*(cphidp[i][4]+cphidp[i][6]) +
cmp[i][7]*cphidp[i][9]+cmp[i][9]*cphidp[i][7]);
if (poltyp == MUTUAL) {
vxx -= 0.5 * (cphid[1]*uinp[i][0]+cphip[1]*uind[i][0]);
vyy -= 0.5 * (cphid[2]*uinp[i][1]+cphip[2]*uind[i][1]);
vzz -= 0.5 * (cphid[3]*uinp[i][2]+cphip[3]*uind[i][2]);
vxy -= 0.25 * (cphid[1]*uinp[i][1]+cphip[1]*uind[i][1] +
cphid[2]*uinp[i][0]+cphip[2]*uind[i][0]);
vyz -= 0.25 * (cphid[2]*uinp[i][2]+cphip[2]*uind[i][2] +
cphid[3]*uinp[i][1]+cphip[3]*uind[i][1]);
vxz -= 0.25 * (cphid[1]*uinp[i][2]+cphip[1]*uind[i][2] +
cphid[3]*uinp[i][0]+cphip[3]*uind[i][0]);
}
}
// resolve site torques then increment forces and virial
for (i = 0; i < nlocal; i++) {
tep[0] = cmp[i][3]*cphidp[i][2] - cmp[i][2]*cphidp[i][3] +
2.0*(cmp[i][6]-cmp[i][5])*cphidp[i][9] + cmp[i][8]*cphidp[i][7] +
cmp[i][9]*cphidp[i][5]- cmp[i][7]*cphidp[i][8] - cmp[i][9]*cphidp[i][6];
tep[1] = cmp[i][1]*cphidp[i][3] - cmp[i][3]*cphidp[i][1] +
2.0*(cmp[i][4]-cmp[i][6])*cphidp[i][8] + cmp[i][7]*cphidp[i][9] +
cmp[i][8]*cphidp[i][6] - cmp[i][8]*cphidp[i][4] - cmp[i][9]*cphidp[i][7];
tep[2] = cmp[i][2]*cphidp[i][1] - cmp[i][1]*cphidp[i][2] +
2.0*(cmp[i][5]-cmp[i][4])*cphidp[i][7] + cmp[i][7]*cphidp[i][4] +
cmp[i][9]*cphidp[i][8] - cmp[i][7]*cphidp[i][5] - cmp[i][8]*cphidp[i][9];
torque2force(i,tep,fix,fiy,fiz,f);
iz = zaxis2local[i];
ix = xaxis2local[i];
iy = yaxis2local[i];
xiz = x[iz][0] - x[i][0];
yiz = x[iz][1] - x[i][1];
ziz = x[iz][2] - x[i][2];
xix = x[ix][0] - x[i][0];
yix = x[ix][1] - x[i][1];
zix = x[ix][2] - x[i][2];
xiy = x[iy][0] - x[i][0];
yiy = x[iy][1] - x[i][1];
ziy = x[iy][2] - x[i][2];
vxx += xix*fix[0] + xiy*fiy[0] + xiz*fiz[0];
vyy += yix*fix[1] + yiy*fiy[1] + yiz*fiz[1];
vzz += zix*fix[2] + ziy*fiy[2] + ziz*fiz[2];
vxy += 0.5*(yix*fix[0] + yiy*fiy[0] + yiz*fiz[0] +
xix*fix[1] + xiy*fiy[1] + xiz*fiz[1]);
vyz += 0.5*(zix*fix[1] + ziy*fiy[1] + ziz*fiz[1] +
yix*fix[2] + yiy*fiy[2] + yiz*fiz[2]);
vxz += 0.5*(zix*fix[0] + ziy*fiy[0] + ziz*fiz[0] +
xix*fix[2] + xiy*fiy[2] + xiz*fiz[2]);
}
// account for dipole response terms in the OPT method
if (poltyp == OPT) {
for (i = 0; i < nlocal; i++) {
for (k = 0; k < optorder; k++) {
for (j = 1; j < 10; j++) {
fphid[i][j] = felec * fopt[i][k][j];
fphip[i][j] = felec * foptp[i][k][j];
}
for (m = 0; m < optorder-k; m++) {
for (j = 0; j < 3; j++) {
fuind[i][j] = a[0][j]*uopt[i][m][0] + a[1][j]*uopt[i][m][1] +
a[2][j]*uopt[i][m][2];
fuinp[i][j] = a[0][j]*uoptp[i][m][0] + a[1][j]*uoptp[i][m][1] +
a[2][j]*uoptp[i][m][2];
}
f1 = 0.0;
f2 = 0.0;
f3 = 0.0;
for (j = 0; j < 3; j++) {
j1 = deriv1[j+1];
j2 = deriv2[j+1];
j3 = deriv3[j+1];
f1 += fuind[i][j]*fphip[i][j1] + fuinp[i][j]*fphid[i][j1];
f2 += fuind[i][j]*fphip[i][j2] + fuinp[i][j]*fphid[i][j2];
f3 += fuind[i][j]*fphip[i][j3] + fuinp[i][j]*fphid[i][j3];
}
f1 *= 0.5 * nfft1;
f2 *= 0.5 * nfft2;
f3 *= 0.5 * nfft3;
h1 = recip[0][0]*f1 + recip[0][1]*f2 + recip[0][2]*f3;
h2 = recip[1][0]*f1 + recip[1][1]*f2 + recip[1][2]*f3;
h3 = recip[2][0]*f1 + recip[2][1]*f2 + recip[2][2]*f3;
f[i][0] -= copm[k+m+1]*h1;
f[i][1] -= copm[k+m+1]*h2;
f[i][2] -= copm[k+m+1]*h3;
for (j = 1; j < 4; j++) {
cphid[j] = 0.0;
cphip[j] = 0.0;
for (j1 = 1; j1 < 4; j1++) {
cphid[j] += ftc[j][j1]*fphid[i][j1];
cphip[j] += ftc[j][j1]*fphip[i][j1];
}
}
vxx -= 0.5*copm[k+m+1] *
(cphid[1]*uoptp[i][m][0] + cphip[1]*uopt[i][m][0]);
vyy -= 0.5*copm[k+m+1] *
(cphid[2]*uoptp[i][m][1]+ cphip[2]*uopt[i][m][1]);
vzz -= 0.5*copm[k+m+1] *
(cphid[3]*uoptp[i][m][2]+ cphip[3]*uopt[i][m][2]);
vxy -= 0.25*copm[k+m+1] *
(cphid[1]*uoptp[i][m][1]+ cphip[1]*uopt[i][m][1]+
cphid[2]*uoptp[i][m][0]+ cphip[2]*uopt[i][m][0]);
vyz -= 0.25*copm[k+m+1] *
(cphid[1]*uoptp[i][m][2]+ cphip[1]*uopt[i][m][2]+
cphid[3]*uoptp[i][m][0]+ cphip[3]*uopt[i][m][0]);
vxz -= 0.25*copm[k+m+1] *
(cphid[2]*uoptp[i][m][2]+ cphip[2]*uopt[i][m][2]+
cphid[3]*uoptp[i][m][1]+ cphip[3]*uopt[i][m][1]);
}
}
}
}
// assign permanent and induced multipoles to the PME grid
for (i = 0; i < nlocal; i++) {
for (j = 1; j < 4; j++)
cmp[i][j] += uinp[i][j-1];
}
// convert Cartesian multipoles to fractional multipoles
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
// zeroed by zero()
FFT_SCALAR ***gridpre = (FFT_SCALAR ***) p_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomp as 1d vector
gridfft = p_kspace->pre_convolution();
// gridfft1 = copy of first FFT
int nfft_owned = p_kspace->nfft_owned;
memcpy(gridfft1,gridfft,2*nfft_owned*sizeof(FFT_SCALAR));
// assign induced dipoles to the PME grid
for (i = 0; i < nlocal; i++) {
for (j = 1; j < 4; j++)
cmp[i][j] += uind[i][j-1] - uinp[i][j-1];
}
// convert Cartesian multipoles to fractional multipoles
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
// zeroed by zero()
gridpre = (FFT_SCALAR ***) p_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft1/2 = my portions of complex 3d grid in FFT decomp as 1d vectors
FFT_SCALAR *gridfft2 = p_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
m = n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
r1 = (i >= nhalf1) ? i-nfft1 : i;
r2 = (j >= nhalf2) ? j-nfft2 : j;
r3 = (k >= nhalf3) ? k-nfft3 : k;
h1 = recip[0][0]*r1 + recip[0][1]*r2 + recip[0][2]*r3; // matvec
h2 = recip[1][0]*r1 + recip[1][1]*r2 + recip[1][2]*r3;
h3 = recip[2][0]*r1 + recip[2][1]*r2 + recip[2][2]*r3;
hsq = h1*h1 + h2*h2 + h3*h3;
term = -pterm * hsq;
expterm = 0.0;
if (term > -50.0 && hsq != 0.0) {
denom = volterm*hsq*bsmod1[i]*bsmod2[j]*bsmod3[k];
expterm = exp(term) / denom;
struc2 = gridfft1[n]*gridfft2[n] + gridfft1[n+1]*gridfft2[n+1];
eterm = 0.5 * felec * expterm * struc2;
vterm = (2.0/hsq) * (1.0-term) * eterm;
vxx += h1*h1*vterm - eterm;
vyy += h2*h2*vterm - eterm;
vzz += h3*h3*vterm - eterm;
vxy += h1*h2*vterm;
vyz += h2*h3*vterm;
vxz += h1*h3*vterm;
}
n += 2;
}
}
}
// assign only the induced dipoles to the PME grid
// and perform the 3-D FFT forward transformation
// NOTE: why is there no inverse FFT in this section?
if (poltyp == DIRECT || poltyp == TCG) {
for (i = 0; i < nlocal; i++) {
for (j = 0; j < 10; j++)
cmp[i][j] = 0.0;
for (j = 1; j < 4; j++)
cmp[i][j] = uinp[i][j-1];
}
// convert Cartesian multipoles to fractional multipoles
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
// zeroed by zero()
FFT_SCALAR ***gridpre = (FFT_SCALAR ***) p_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomp as 1d vector
FFT_SCALAR *gridfft = p_kspace->pre_convolution();
// gridfft1 = copy of first FFT
int nfft_owned = p_kspace->nfft_owned;
memcpy(gridfft1,gridfft,2*nfft_owned*sizeof(FFT_SCALAR));
// assign ??? to the PME grid
for (i = 0; i < nlocal; i++) {
for (j = 1; j < 4; j++)
cmp[i][j] = uind[i][j-1];
}
// convert Cartesian multipoles to fractional multipoles
cmp_to_fmp(cmp,fmp);
// gridpre = my portion of 3d grid in brick decomp w/ ghost values
gridpre = (FFT_SCALAR ***) p_kspace->zero();
// map atoms to grid
grid_mpole(fmp,gridpre);
// pre-convolution operations including forward FFT
// gridfft = my portion of complex 3d grid in FFT decomp as 1d vector
FFT_SCALAR *gridfft2 = p_kspace->pre_convolution();
// ---------------------
// convolution operation
// ---------------------
m = n = 0;
for (k = nzlo; k <= nzhi; k++) {
for (j = nylo; j <= nyhi; j++) {
for (i = nxlo; i <= nxhi; i++) {
r1 = (i >= nhalf1) ? i-nfft1 : i;
r2 = (j >= nhalf2) ? j-nfft2 : j;
r3 = (k >= nhalf3) ? k-nfft3 : k;
h1 = recip[0][0]*r1 + recip[0][1]*r2 + recip[0][2]*r3; // matvec
h2 = recip[1][0]*r1 + recip[1][1]*r2 + recip[1][2]*r3;
h3 = recip[2][0]*r1 + recip[2][1]*r2 + recip[2][2]*r3;
hsq = h1*h1 + h2*h2 + h3*h3;
term = -pterm * hsq;
expterm = 0.0;
if (term > -50.0 && hsq != 0.0) {
denom = volterm*hsq*bsmod1[i]*bsmod2[j]*bsmod3[k];
expterm = exp(term) / denom;
struc2 = gridfft1[n]*gridfft2[n] + gridfft1[n+1]*gridfft2[n+1];
eterm = 0.5 * felec * expterm * struc2;
vterm = (2.0/hsq) * (1.0-term) * eterm;
vxx += h1*h1*vterm - eterm;
vyy += h2*h2*vterm - eterm;
vzz += h3*h3*vterm - eterm;
vxy += h1*h2*vterm;
vyz += h2*h3*vterm;
vxz += h1*h3*vterm;
}
n += 2;
}
}
}
}
// increment the total internal virial tensor components
if (vflag_global) {
virpolar[0] -= vxx;
virpolar[1] -= vyy;
virpolar[2] -= vzz;
virpolar[3] -= vxy;
virpolar[4] -= vxz;
virpolar[5] -= vyz;
}
}
/* ----------------------------------------------------------------------
compute atom forces from torques
------------------------------------------------------------------------- */
template <class numtyp>
void PairAmoebaGPU::compute_force_from_torque(const numtyp* tq_ptr,
double** force_comp,
double* virial_comp)
{
int i,ix,iy,iz;
double xix,yix,zix;
double xiy,yiy,ziy;
double xiz,yiz,ziz;
double vxx,vyy,vzz;
double vxy,vxz,vyz;
double fix[3],fiy[3],fiz[3],_tq[4];
double** x = atom->x;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
_tq[0] = tq_ptr[3*i];
_tq[1] = tq_ptr[3*i+1];
_tq[2] = tq_ptr[3*i+2];
torque2force(i,_tq,fix,fiy,fiz,force_comp);
iz = zaxis2local[i];
ix = xaxis2local[i];
iy = yaxis2local[i];
xiz = x[iz][0] - x[i][0];
yiz = x[iz][1] - x[i][1];
ziz = x[iz][2] - x[i][2];
xix = x[ix][0] - x[i][0];
yix = x[ix][1] - x[i][1];
zix = x[ix][2] - x[i][2];
xiy = x[iy][0] - x[i][0];
yiy = x[iy][1] - x[i][1];
ziy = x[iy][2] - x[i][2];
vxx = xix*fix[0] + xiy*fiy[0] + xiz*fiz[0];
vyy = yix*fix[1] + yiy*fiy[1] + yiz*fiz[1];
vzz = zix*fix[2] + ziy*fiy[2] + ziz*fiz[2];
vxy = 0.5 * (yix*fix[0] + yiy*fiy[0] + yiz*fiz[0] +
xix*fix[1] + xiy*fiy[1] + xiz*fiz[1]);
vxz = 0.5 * (zix*fix[0] + ziy*fiy[0] + ziz*fiz[0] +
xix*fix[2] + xiy*fiy[2] + xiz*fiz[2]);
vyz = 0.5 * (zix*fix[1] + ziy*fiy[1] + ziz*fiz[1] +
yix*fix[2] + yiy*fiy[2] + yiz*fiz[2]);
virial_comp[0] -= vxx;
virial_comp[1] -= vyy;
virial_comp[2] -= vzz;
virial_comp[3] -= vxy;
virial_comp[4] -= vxz;
virial_comp[5] -= vyz;
}
}
/* ---------------------------------------------------------------------- */
double PairAmoebaGPU::memory_usage()
{
double bytes = Pair::memory_usage();
return bytes + amoeba_gpu_bytes();
}