Files
lammps/src/GPU/pair_lj_cubic_gpu.cpp
W. Michael Brown 37f22c8627 Misc Improvements to GPU Package
- Optimizations for molecular systems
-   Improved kernel performance and greater CPU overlap
- Reduced GPU to CPU communications for discrete devices
- Switch classic Intel makefiles to use LLVM-based compilers
- Prefetch optimizations supported for OpenCL
- Optimized data repack for quaternions
2023-03-05 21:03:12 -08:00

234 lines
8.0 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Trung Dac Nguyen (ndactrung@gmail.com)
------------------------------------------------------------------------- */
#include "pair_lj_cubic_gpu.h"
#include "atom.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "gpu_extra.h"
#include "neigh_list.h"
#include "neighbor.h"
#include "suffix.h"
#include <cmath>
#include "pair_lj_cubic_const.h"
using namespace LAMMPS_NS;
using namespace PairLJCubicConstants;
// External functions from cuda library for atom decomposition
int ljcb_gpu_init(const int ntypes, double **cutsq, double **cut_inner_sq, double **cut_inner,
double **sigma, double **epsilon, double **host_lj1, double **host_lj2,
double **host_lj3, double **host_lj4, double *special_lj, const int nlocal,
const int nall, const int max_nbors, const int maxspecial, const double cell_size,
int &gpu_mode, FILE *screen);
void ljcb_gpu_clear();
int **ljcb_gpu_compute_n(const int ago, const int inum, const int nall, double **host_x,
int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial,
tagint **special, const bool eflag, const bool vflag, const bool eatom,
const bool vatom, int &host_start, int **ilist, int **jnum,
const double cpu_time, bool &success);
void ljcb_gpu_compute(const int ago, const int inum, const int nall, double **host_x,
int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag,
const bool vflag, const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success);
double ljcb_gpu_bytes();
/* ---------------------------------------------------------------------- */
PairLJCubicGPU::PairLJCubicGPU(LAMMPS *lmp) : PairLJCubic(lmp), gpu_mode(GPU_FORCE)
{
respa_enable = 0;
cpu_time = 0.0;
reinitflag = 0;
suffix_flag |= Suffix::GPU;
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairLJCubicGPU::~PairLJCubicGPU()
{
ljcb_gpu_clear();
}
/* ---------------------------------------------------------------------- */
void PairLJCubicGPU::compute(int eflag, int vflag)
{
ev_init(eflag, vflag);
int nall = atom->nlocal + atom->nghost;
int inum, host_start;
bool success = true;
int *ilist, *numneigh, **firstneigh;
if (gpu_mode != GPU_FORCE) {
double sublo[3], subhi[3];
if (domain->triclinic == 0) {
sublo[0] = domain->sublo[0];
sublo[1] = domain->sublo[1];
sublo[2] = domain->sublo[2];
subhi[0] = domain->subhi[0];
subhi[1] = domain->subhi[1];
subhi[2] = domain->subhi[2];
} else {
domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi);
}
inum = atom->nlocal;
firstneigh =
ljcb_gpu_compute_n(neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag,
atom->nspecial, atom->special, eflag, vflag, eflag_atom, vflag_atom,
host_start, &ilist, &numneigh, cpu_time, success);
} else {
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
ljcb_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh,
eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success);
}
if (!success) error->one(FLERR, "Insufficient memory on accelerator");
if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0)
neighbor->build_topology();
if (host_start < inum) {
cpu_time = platform::walltime();
cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh);
cpu_time = platform::walltime() - cpu_time;
}
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairLJCubicGPU::init_style()
{
// Repeat cutsq calculation because done after call to init_style
double maxcut = -1.0;
double mcut;
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
mcut = init_one(i, j);
mcut *= mcut;
if (mcut > maxcut) maxcut = mcut;
cutsq[i][j] = cutsq[j][i] = mcut;
} else
cutsq[i][j] = cutsq[j][i] = 0.0;
}
}
double cell_size = sqrt(maxcut) + neighbor->skin;
int maxspecial = 0;
if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial;
int mnf = 5e-2 * neighbor->oneatom;
int success =
ljcb_gpu_init(atom->ntypes + 1, cutsq, cut_inner_sq, cut_inner, sigma, epsilon, lj1, lj2, lj3,
lj4, force->special_lj, atom->nlocal, atom->nlocal + atom->nghost, mnf,
maxspecial, cell_size, gpu_mode, screen);
GPU_EXTRA::check_flag(success, error, world);
if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL);
}
/* ---------------------------------------------------------------------- */
double PairLJCubicGPU::memory_usage()
{
double bytes = Pair::memory_usage();
return bytes + ljcb_gpu_bytes();
}
/* ---------------------------------------------------------------------- */
void PairLJCubicGPU::cpu_compute(int start, int inum, int eflag, int /* vflag */, int *ilist,
int *numneigh, int **firstneigh)
{
int i, j, ii, jj, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double rsq, r2inv, r6inv, forcelj, factor_lj;
double r, t, rmin;
int *jlist;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
double *special_lj = force->special_lj;
// loop over neighbors of my atoms
for (ii = start; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r2inv = 1.0 / rsq;
if (rsq <= cut_inner_sq[itype][jtype]) {
r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]);
} else {
r = sqrt(rsq);
rmin = sigma[itype][jtype] * RT6TWO;
t = (r - cut_inner[itype][jtype]) / rmin;
forcelj = epsilon[itype][jtype] * (-DPHIDS + A3 * t * t / 2.0) * r / rmin;
}
fpair = factor_lj * forcelj * r2inv;
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (eflag) {
if (rsq <= cut_inner_sq[itype][jtype])
evdwl = r6inv * (lj3[itype][jtype] * r6inv - lj4[itype][jtype]);
else
evdwl = epsilon[itype][jtype] * (PHIS + DPHIDS * t - A3 * t * t * t / 6.0);
evdwl *= factor_lj;
}
if (evflag) ev_tally_full(i, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
}