Files
lammps/examples/PACKAGES/latboltz/microrheology/log.09Mar22.microrheology.g++.4
2022-03-09 18:13:45 -05:00

217 lines
10 KiB
Groff

LAMMPS (17 Feb 2022)
#===========================================================================#
# 2 particle microrheology test #
# #
# Run consists of 2 colloidal particles undergoing Brownian motion in a #
# thermal lattice-Boltzmann fluid. #
# #
# If you uncomment the "fix printCM..." line, sample output from this run #
# can be found in the file: #
# 'twocolloid.out' #
#===========================================================================#
units nano
dimension 3
boundary p p p
atom_style molecular
read_data data.two
Reading data file ...
orthogonal box = (-48 -48 -48) to (48 48 48)
1 by 2 by 2 MPI processor grid
reading atoms ...
482 atoms
Finding 1-2 1-3 1-4 neighbors ...
special bond factors lj: 0 0 0
special bond factors coul: 0 0 0
0 = max # of 1-2 neighbors
0 = max # of 1-3 neighbors
0 = max # of 1-4 neighbors
1 = max # of special neighbors
special bonds CPU = 0.000 seconds
read_data CPU = 0.033 seconds
#----------------------------------------------------------------------------
# Need a neighbor bin size smaller than the lattice-Boltzmann grid spacing
# to ensure that the particles belonging to a given processor remain inside
# that processors lattice-Boltzmann grid.
# The arguments for neigh_modify have been set to "delay 0 every 1", again
# to ensure that the particles belonging to a given processor remain inside
# that processors lattice-Boltzmann grid. However, these values can likely
# be somewhat increased without issue. If a problem does arise (a particle
# is outside of its processors LB grid) an error message is printed and
# the simulation is terminated.
#----------------------------------------------------------------------------
neighbor 0.3 bin
neigh_modify delay 0 every 1
neigh_modify exclude type 2 2
neigh_modify exclude type 2 1
comm_modify cutoff 2.5 # cutoff for communcation shoud be at least 2 dx
#----------------------------------------------------------------------------
# Implement a hard-sphere interaction between the particles at the center of
# each colloidal object (use a truncated and shifted Lennard-Jones
# potential).
#----------------------------------------------------------------------------
pair_style lj/cut 5.88
pair_coeff * * 0.0 0.0 5.88
pair_coeff 1 1 100.0 5.238484463 5.88
pair_modify shift yes
mass * 0.0002398
timestep 0.00025
#----------------------------------------------------------------------------
# ForceAtoms are the particles at the center of each colloidal object which
# do not interact with the fluid, but are used to implement the hard-sphere
# interactions.
# FluidAtoms are the particles representing the surface of the colloidal
# object which do interact with the fluid.
#----------------------------------------------------------------------------
group ForceAtoms type 1
2 atoms in group ForceAtoms
group FluidAtoms type 2
480 atoms in group FluidAtoms
#---------------------------------------------------------------------------
# Create a lattice-Boltzmann fluid covering the simulation domain.
# This fluid feels a force due to the particles specified through FluidAtoms
# (however, this fix does not explicitly apply a force back on to these
# particles...this is accomplished through the use of the lb/viscous fix).
# Use a fluid viscosity = 1.0, fluid density= 0.0009982071 (water), and a
# lattice spacing dx=1.2.
# Use the trilinear interpolation stencil to distribute the force from
# a given particle onto the fluid mesh.
# Use a thermal lattice-Boltzmann fluid (temperature 300K, random number
# seed=2762). This enables the particles to undergo Brownian motion in
# the fluid.
#----------------------------------------------------------------------------
fix 1 FluidAtoms lb/fluid 1 1.0 0.0009982071 dx 1.2 stencil 2 noise 300.0 2762
Using a lattice-Boltzmann grid of 80 by 80 by 80 total grid points. (../fix_lb_fluid.cpp:486)
Local Grid Geometry created. (../fix_lb_fluid.cpp:1018)
#----------------------------------------------------------------------------
# Apply the force due to the fluid onto the FluidAtoms particles (again,
# these atoms represent the surface of the colloidal object, which should
# interact with the fluid).
#----------------------------------------------------------------------------
fix 2 FluidAtoms lb/viscous
#----------------------------------------------------------------------------
# Each colloidal object (spherical shell of particles and central particle)
# is specified as a separate molecule in the confinedcolloids.dat data
# file. Integrate the motion of these sets of particles as rigid objects
# which each move and rotate together.
#----------------------------------------------------------------------------
fix 3 all rigid molecule
2 rigid bodies with 482 atoms
#----------------------------------------------------------------------------
# To ensure that numerical errors do not lead to a buildup of momentum in the
# system, the momentum_lb fix is used every 50000 timesteps to zero out the
# total (particle plus fluid) momentum in the system.
#----------------------------------------------------------------------------
fix 4 all lb/momentum 50000 linear 1 1 1
#----------------------------------------------------------------------------
# Create variables containing the positions of the central atoms (these
# values should correspond to the center of mass of each composite
# colloidal particle), and output these quantities to the screen.
#----------------------------------------------------------------------------
variable x1 equal x[1]
variable y1 equal y[1]
variable z1 equal z[1]
variable x2 equal x[242]
variable y2 equal y[242]
variable z2 equal z[242]
#fix printCM all print 100 "$(step) ${x1} ${y1} ${z1} ${x2} ${y2} ${z2}" file twocolloid.out screen no
thermo_style custom step v_x1 v_y1 v_z1 v_x2 v_y2 v_z2
thermo 100
run 2000
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
Your simulation uses code contributions which should be cited:
- fix lb/fluid command:
@Article{Denniston et al.,
author = {C. Denniston, N. Afrasiabian, M.G. Cole-Andre,F.E. Mackay, S.T.T. Ollila, T. Whitehead},
title = {LAMMPS lb/fluid fix version 2: Improved Hydrodynamic Forces Implemented into LAMMPS through a lattice-Boltzmann fluid}, journal = {Comp.~Phys.~Comm.},
year = 2022,
volume = 275,
pages = {108318}
}
CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE
generated 0 of 1 mixed pair_coeff terms from geometric mixing rule
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 6.18
ghost atom cutoff = 6.18
binsize = 3.09, bins = 32 32 32
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d
bin: standard
WARNING: Communication cutoff adjusted to 6.18 (../comm.cpp:732)
Per MPI rank memory allocation (min/avg/max) = 7.071 | 7.133 | 7.196 Mbytes
Step v_x1 v_y1 v_z1 v_x2 v_y2 v_z2
0 -6 -6 -6 6 6 6
100 -5.9728258 -6.0005827 -5.9442685 5.9742978 6.0301171 5.9331116
200 -5.9160265 -5.9832234 -5.9485519 6.0258914 6.0954103 5.8748455
300 -5.859605 -5.9503512 -5.9827305 6.0472442 6.0610438 5.8531801
400 -5.8495832 -5.923183 -6.0205706 6.1502952 5.9975714 5.8964144
500 -5.8229958 -5.9256007 -5.963852 6.1738854 5.8961268 5.8723276
600 -5.7813718 -5.9423848 -5.9309537 6.2083705 5.866578 5.9308017
700 -5.7652512 -5.8737534 -5.9083059 6.2502919 5.757157 5.9690204
800 -5.7586139 -5.8559089 -5.8863028 6.2708214 5.7307727 5.9443721
900 -5.7200104 -5.8603762 -5.8944329 6.28719 5.7723113 5.9660136
1000 -5.7224239 -5.8487095 -5.9013071 6.3156272 5.8026721 5.9558441
1100 -5.576187 -5.8604571 -5.9254376 6.3778561 5.7655467 5.9702619
1200 -5.5348377 -5.8086817 -5.9982829 6.3979309 5.8028207 5.930579
1300 -5.5937473 -5.7733457 -6.0596682 6.3630776 5.937045 5.9662317
1400 -5.6207137 -5.7027974 -6.0641922 6.3079248 5.9631009 5.9707377
1500 -5.6648138 -5.6229854 -6.0989624 6.2784552 5.9448163 5.9254903
1600 -5.6905161 -5.5479418 -6.0704567 6.3133179 5.941372 5.8933924
1700 -5.6878847 -5.5415566 -6.0222328 6.3633902 5.9957476 5.7994115
1800 -5.6500526 -5.5204331 -5.9767389 6.4081067 5.9651289 5.7297962
1900 -5.7221835 -5.4972898 -5.9670446 6.4470403 5.9161644 5.6902098
2000 -5.7427378 -5.4637388 -6.0196569 6.3668465 5.9127502 5.6931183
Loop time of 358.9 on 4 procs for 2000 steps with 482 atoms
Performance: 120.368 ns/day, 0.199 hours/ns, 5.573 timesteps/s
100.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.0026566 | 0.0054654 | 0.0084461 | 3.6 | 0.00
Bond | 0.0003946 | 0.000476 | 0.0005288 | 0.0 | 0.00
Neigh | 0.0011268 | 0.0045933 | 0.0080717 | 5.0 | 0.00
Comm | 0.053156 | 0.057764 | 0.062919 | 1.9 | 0.02
Output | 0.0009824 | 0.0018621 | 0.0043906 | 3.4 | 0.00
Modify | 358.62 | 358.63 | 358.64 | 0.0 | 99.93
Other | | 0.1963 | | | 0.05
Nlocal: 120.5 ave 241 max 0 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Nghost: 181 ave 297 max 80 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Neighs: 0 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Total # of neighbors = 0
Ave neighs/atom = 0
Ave special neighs/atom = 0
Neighbor list builds = 20
Dangerous builds = 0
#run 2000000000
Total wall time: 0:05:59