2272 lines
78 KiB
C++
2272 lines
78 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/ Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Ngoc Cuong Nguyen (MIT) and Andrew Rohskopf (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "fitpod_command.h"
|
|
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "math_special.h"
|
|
#include "memory.h"
|
|
#include "tokenizer.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <random>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "eapod.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using MathSpecial::powint;
|
|
|
|
static constexpr int MAXLINE = 1024;
|
|
static constexpr double SMALL = 1.0e-10;
|
|
|
|
FitPOD::datastruct::datastruct() :
|
|
file_format("extxyz"), file_extension("xyz"), filenametag("pod"), group_weight_type("global"),
|
|
lattice(nullptr), energy(nullptr), stress(nullptr), position(nullptr), force(nullptr),
|
|
atomtype(nullptr), we(nullptr), wf(nullptr),
|
|
fitting_weights{100.0, 1.0, 0.0, 1, 1, 0, 0, 1, 1, 1, 1, 1e-10}
|
|
{
|
|
training = 1;
|
|
normalizeenergy = 1;
|
|
training_analysis = 1;
|
|
test_analysis = 1;
|
|
training_calculation = 0;
|
|
test_calculation = 0;
|
|
randomize = 1;
|
|
precision = 8;
|
|
fraction = 1.0;
|
|
}
|
|
|
|
void FitPOD::datastruct::copydatainfo(datastruct &data) const
|
|
{
|
|
data.data_path = data_path;
|
|
data.file_format = file_format;
|
|
data.file_extension = file_extension;
|
|
data.data_files = data_files;
|
|
data.filenametag = filenametag;
|
|
data.filenames = filenames;
|
|
data.training_analysis = training_analysis;
|
|
data.test_analysis = test_analysis;
|
|
data.training_calculation = training_calculation;
|
|
data.test_calculation = test_calculation;
|
|
data.fraction = fraction;
|
|
data.randomize = randomize;
|
|
data.precision = precision;
|
|
data.training = training;
|
|
data.normalizeenergy = normalizeenergy;
|
|
for (int i = 0; i < 12; i++) data.fitting_weights[i] = fitting_weights[i];
|
|
data.we_map = we_map;
|
|
data.wf_map = wf_map;
|
|
}
|
|
|
|
FitPOD::neighborstruct::neighborstruct() :
|
|
alist(nullptr), pairnum(nullptr), pairnum_cumsum(nullptr), pairlist(nullptr), y(nullptr)
|
|
{
|
|
natom_max = 0;
|
|
sze = 0;
|
|
sza = 0;
|
|
szy = 0;
|
|
szp = 0;
|
|
}
|
|
|
|
FitPOD::descriptorstruct::descriptorstruct() :
|
|
bd(nullptr), pd(nullptr), gd(nullptr), gdd(nullptr), A(nullptr), b(nullptr), c(nullptr)
|
|
{
|
|
szd = 0;
|
|
nCoeffAll = 0;
|
|
nClusters = 0;
|
|
}
|
|
|
|
FitPOD::FitPOD(LAMMPS *_lmp) : Command(_lmp), fastpodptr(nullptr)
|
|
{
|
|
save_descriptors = 0;
|
|
compute_descriptors = 0;
|
|
}
|
|
|
|
void FitPOD::command(int narg, char **arg)
|
|
{
|
|
if (narg < 2) utils::missing_cmd_args(FLERR, "fitpod", error);
|
|
|
|
std::string pod_file = std::string(arg[0]); // pod input file
|
|
std::string data_file = std::string(arg[1]); // data input file
|
|
std::string coeff_file, proj_file, cent_file; // coefficient input files
|
|
|
|
if (narg > 2)
|
|
coeff_file = std::string(arg[2]); // coefficient input file
|
|
else
|
|
coeff_file = "";
|
|
|
|
fastpodptr = new EAPOD(lmp, pod_file, coeff_file);
|
|
|
|
desc.nCoeffAll = fastpodptr->nCoeffAll;
|
|
desc.nClusters = fastpodptr->nClusters;
|
|
read_data_files(data_file, fastpodptr->species);
|
|
|
|
estimate_memory_neighborstruct(traindata, fastpodptr->pbc, fastpodptr->rcut,
|
|
fastpodptr->nelements);
|
|
estimate_memory_neighborstruct(testdata, fastpodptr->pbc, fastpodptr->rcut,
|
|
fastpodptr->nelements);
|
|
if (desc.nClusters > 1)
|
|
estimate_memory_neighborstruct(envdata, fastpodptr->pbc, fastpodptr->rcut,
|
|
fastpodptr->nelements);
|
|
allocate_memory_neighborstruct();
|
|
estimate_memory_fastpod(traindata);
|
|
estimate_memory_fastpod(testdata);
|
|
allocate_memory_descriptorstruct(fastpodptr->nCoeffAll);
|
|
|
|
if (coeff_file != "") podArrayCopy(desc.c, fastpodptr->coeff, fastpodptr->nCoeffAll);
|
|
|
|
if (((int) envdata.data_path.size() > 1) && (desc.nClusters > 1)) {
|
|
environment_cluster_calculation(envdata);
|
|
memory->destroy(envdata.lattice);
|
|
memory->destroy(envdata.energy);
|
|
memory->destroy(envdata.stress);
|
|
memory->destroy(envdata.position);
|
|
memory->destroy(envdata.force);
|
|
memory->destroy(envdata.atomtype);
|
|
memory->destroy(envdata.we);
|
|
memory->destroy(envdata.wf);
|
|
}
|
|
|
|
if (compute_descriptors == 0) {
|
|
|
|
// compute POD coefficients using least-squares method
|
|
if (coeff_file == "") {
|
|
least_squares_fit(traindata);
|
|
|
|
if (comm->me == 0) { // save coefficients into a text file
|
|
std::string filename = traindata.filenametag + "_coefficients" + ".pod";
|
|
FILE *fp = fopen(filename.c_str(), "w");
|
|
|
|
int nCoeffAll = desc.nCoeffAll;
|
|
int n1 = 0, n2 = 0;
|
|
if (((int) envdata.data_path.size() > 1) && (desc.nClusters > 1)) {
|
|
n1 = fastpodptr->nComponents * fastpodptr->Mdesc * fastpodptr->nelements;
|
|
n2 = fastpodptr->nComponents * fastpodptr->nClusters * fastpodptr->nelements;
|
|
}
|
|
|
|
fmt::print(fp, "model_coefficients: {} {} {}\n", nCoeffAll, n1, n2);
|
|
for (int count = 0; count < nCoeffAll; count++) {
|
|
fmt::print(fp, "{:<10.{}f}\n", desc.c[count], traindata.precision);
|
|
}
|
|
for (int count = 0; count < n1; count++) {
|
|
fmt::print(fp, "{:<10.{}f}\n", fastpodptr->Proj[count], 14);
|
|
}
|
|
for (int count = 0; count < n2; count++) {
|
|
fmt::print(fp, "{:<10.{}f}\n", fastpodptr->Centroids[count], 14);
|
|
}
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
// calculate errors for the training data set
|
|
|
|
if ((traindata.training_analysis) && ((int) traindata.data_path.size() > 1))
|
|
error_analysis(traindata, desc.c);
|
|
|
|
//error->all(FLERR, "stop after error_analysis");
|
|
|
|
// calculate energy and force for the training data set
|
|
|
|
if ((traindata.training_calculation) && ((int) traindata.data_path.size() > 1))
|
|
energyforce_calculation(traindata);
|
|
|
|
if (!((testdata.data_path == traindata.data_path) && (testdata.fraction == 1.0) &&
|
|
(traindata.fraction == 1.0))) {
|
|
// calculate errors for the test data set
|
|
|
|
if ((testdata.test_analysis) && ((int) testdata.data_path.size() > 1) &&
|
|
(testdata.fraction > 0)) {
|
|
error_analysis(testdata, desc.c);
|
|
}
|
|
|
|
// calculate energy and force for the test data set
|
|
|
|
if ((testdata.test_analysis) && (testdata.test_calculation) &&
|
|
((int) testdata.data_path.size() > 1) && (testdata.fraction > 0))
|
|
energyforce_calculation(testdata);
|
|
|
|
// deallocate testing data
|
|
|
|
if ((int) testdata.data_path.size() > 1 && (testdata.test_analysis) &&
|
|
(testdata.fraction > 0)) {
|
|
memory->destroy(testdata.lattice);
|
|
memory->destroy(testdata.energy);
|
|
memory->destroy(testdata.stress);
|
|
memory->destroy(testdata.position);
|
|
memory->destroy(testdata.force);
|
|
memory->destroy(testdata.atomtype);
|
|
memory->destroy(testdata.we);
|
|
memory->destroy(testdata.wf);
|
|
}
|
|
}
|
|
} else if (compute_descriptors > 0) {
|
|
// compute and save POD descriptors
|
|
descriptors_calculation(traindata);
|
|
|
|
if (!((testdata.data_path == traindata.data_path) && (testdata.fraction == 1.0))) {
|
|
if ((int) testdata.data_path.size() > 1) {
|
|
descriptors_calculation(testdata);
|
|
memory->destroy(testdata.lattice);
|
|
memory->destroy(testdata.energy);
|
|
memory->destroy(testdata.stress);
|
|
memory->destroy(testdata.position);
|
|
memory->destroy(testdata.force);
|
|
memory->destroy(testdata.atomtype);
|
|
memory->destroy(testdata.we);
|
|
memory->destroy(testdata.wf);
|
|
}
|
|
}
|
|
}
|
|
|
|
// deallocate training data
|
|
|
|
if ((int) traindata.data_path.size() > 1) {
|
|
memory->destroy(traindata.lattice);
|
|
memory->destroy(traindata.energy);
|
|
memory->destroy(traindata.stress);
|
|
memory->destroy(traindata.position);
|
|
memory->destroy(traindata.force);
|
|
memory->destroy(traindata.atomtype);
|
|
memory->destroy(traindata.we);
|
|
memory->destroy(traindata.wf);
|
|
}
|
|
|
|
// deallocate descriptors
|
|
|
|
memory->destroy(desc.A);
|
|
memory->destroy(desc.b);
|
|
memory->destroy(desc.c);
|
|
memory->destroy(desc.bd);
|
|
memory->destroy(desc.pd);
|
|
memory->destroy(desc.gd);
|
|
memory->destroy(desc.gdd);
|
|
|
|
// // deallocate neighbor data
|
|
memory->destroy(nb.alist);
|
|
memory->destroy(nb.pairnum);
|
|
memory->destroy(nb.pairnum_cumsum);
|
|
memory->destroy(nb.pairlist);
|
|
memory->destroy(nb.y);
|
|
|
|
delete fastpodptr;
|
|
}
|
|
|
|
int FitPOD::read_data_file(double *fitting_weights, std::string &file_format,
|
|
std::string &file_extension, std::string &env_path,
|
|
std::string &test_path, std::string &training_path,
|
|
std::string &filenametag, const std::string &data_file,
|
|
std::string &group_weight_type,
|
|
std::unordered_map<std::string, double> &we_map,
|
|
std::unordered_map<std::string, double> &wf_map)
|
|
{
|
|
int precision = 8;
|
|
|
|
std::string datafilename = data_file;
|
|
FILE *fpdata;
|
|
if (comm->me == 0) {
|
|
|
|
fpdata = utils::open_potential(datafilename, lmp, nullptr);
|
|
if (fpdata == nullptr)
|
|
error->one(FLERR, "Cannot open training data file {}: ", datafilename, utils::getsyserror());
|
|
}
|
|
|
|
// loop through lines of training data file and parse keywords
|
|
|
|
char line[MAXLINE], *ptr;
|
|
int eof = 0;
|
|
while (true) {
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line, MAXLINE, fpdata);
|
|
if (ptr == nullptr) {
|
|
eof = 1;
|
|
fclose(fpdata);
|
|
}
|
|
}
|
|
MPI_Bcast(&eof, 1, MPI_INT, 0, world);
|
|
if (eof) break;
|
|
MPI_Bcast(line, MAXLINE, MPI_CHAR, 0, world);
|
|
|
|
// words = ptrs to all words in line
|
|
// strip single and double quotes from words
|
|
|
|
std::vector<std::string> words;
|
|
try {
|
|
words = Tokenizer(utils::trim_comment(line), "\"' \t\n\r\f").as_vector();
|
|
} catch (TokenizerException &) {
|
|
// ignore
|
|
}
|
|
|
|
if (words.size() == 0) continue;
|
|
|
|
auto keywd = words[0];
|
|
|
|
if (words.size() != 2) error->one(FLERR, "Improper POD data file.", utils::getsyserror());
|
|
|
|
// settings for fitting weights
|
|
|
|
if (keywd == "fitting_weight_energy")
|
|
fitting_weights[0] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "fitting_weight_force")
|
|
fitting_weights[1] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "fitting_weight_stress")
|
|
fitting_weights[2] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "error_analysis_for_training_data_set")
|
|
fitting_weights[3] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "error_analysis_for_test_data_set")
|
|
fitting_weights[4] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "energy_force_calculation_for_training_data_set")
|
|
fitting_weights[5] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "energy_force_calculation_for_test_data_set")
|
|
fitting_weights[6] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "fraction_training_data_set")
|
|
fitting_weights[7] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "fraction_test_data_set")
|
|
fitting_weights[8] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "randomize_training_data_set")
|
|
fitting_weights[9] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "randomize_test_data_set")
|
|
fitting_weights[10] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "fitting_regularization_parameter")
|
|
fitting_weights[11] = utils::numeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "precision_for_pod_coefficients")
|
|
precision = utils::inumeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "save_pod_descriptors")
|
|
save_descriptors = utils::inumeric(FLERR, words[1], false, lmp);
|
|
if (keywd == "compute_pod_descriptors")
|
|
compute_descriptors = utils::inumeric(FLERR, words[1], false, lmp);
|
|
|
|
// other settings
|
|
|
|
if (keywd == "file_format") file_format = words[1];
|
|
if (keywd == "file_extension") file_extension = words[1];
|
|
if (keywd == "path_to_training_data_set") training_path = words[1];
|
|
if (keywd == "path_to_test_data_set") test_path = words[1];
|
|
if (keywd == "path_to_environment_configuration_set") env_path = words[1];
|
|
if (keywd == "basename_for_output_files") filenametag = words[1];
|
|
|
|
// group weight table
|
|
if (keywd == "group_weights") group_weight_type = words[1];
|
|
if (std::strcmp(group_weight_type.c_str(), "table") == 0) {
|
|
// Read the table as a hash map.
|
|
// Get next line.
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line, MAXLINE, fpdata);
|
|
if (ptr == nullptr) {
|
|
eof = 1;
|
|
fclose(fpdata);
|
|
}
|
|
}
|
|
MPI_Bcast(&eof, 1, MPI_INT, 0, world);
|
|
if (eof) break;
|
|
MPI_Bcast(line, MAXLINE, MPI_CHAR, 0, world);
|
|
// Tokenize.
|
|
try {
|
|
words = Tokenizer(utils::trim_comment(line), "\"' \t\n\r\f").as_vector();
|
|
} catch (TokenizerException &) {
|
|
// ignore
|
|
}
|
|
int numwords = words.size();
|
|
|
|
// Loop over group table entries.
|
|
while (numwords == 3) {
|
|
|
|
// Insert in map.
|
|
we_map[words[0]] = utils::numeric(FLERR, words[1], false, lmp);
|
|
wf_map[words[0]] = utils::numeric(FLERR, words[2], false, lmp);
|
|
|
|
// Get next line.
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line, MAXLINE, fpdata);
|
|
if (ptr == nullptr) {
|
|
eof = 1;
|
|
fclose(fpdata);
|
|
}
|
|
}
|
|
MPI_Bcast(&eof, 1, MPI_INT, 0, world);
|
|
if (eof) break;
|
|
MPI_Bcast(line, MAXLINE, MPI_CHAR, 0, world);
|
|
// Tokenize.
|
|
try {
|
|
words = Tokenizer(utils::trim_comment(line), "\"' \t\n\r\f").as_vector();
|
|
} catch (TokenizerException &) {
|
|
// ignore
|
|
}
|
|
numwords = words.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "**************** Begin of Data File ****************\n");
|
|
utils::logmesg(lmp, "file format: {}\n", file_format);
|
|
utils::logmesg(lmp, "file extension: {}\n", file_extension);
|
|
utils::logmesg(lmp, "path to training data set: {}\n", training_path);
|
|
utils::logmesg(lmp, "path to test data set: {}\n", test_path);
|
|
utils::logmesg(lmp, "path to environment configuration set: {}\n", env_path);
|
|
utils::logmesg(lmp, "basename for output files: {}\n", filenametag);
|
|
utils::logmesg(lmp, "training fraction: {}\n", fitting_weights[7]);
|
|
utils::logmesg(lmp, "test fraction: {}\n", fitting_weights[8]);
|
|
utils::logmesg(lmp, "randomize training data set: {}\n", fitting_weights[9]);
|
|
utils::logmesg(lmp, "randomize test data set: {}\n", fitting_weights[10]);
|
|
utils::logmesg(lmp, "error analysis for training data set: {}\n", fitting_weights[3]);
|
|
utils::logmesg(lmp, "error analysis for test data set: {}\n", fitting_weights[4]);
|
|
utils::logmesg(lmp, "energy/force calculation for training data set: {}\n", fitting_weights[5]);
|
|
utils::logmesg(lmp, "energy/force calculation for test data set: {}\n", fitting_weights[6]);
|
|
utils::logmesg(lmp, "fitting weight for energy: {}\n", fitting_weights[0]);
|
|
utils::logmesg(lmp, "fitting weight for force: {}\n", fitting_weights[1]);
|
|
utils::logmesg(lmp, "fitting weight for stress: {}\n", fitting_weights[2]);
|
|
utils::logmesg(lmp, "save pod descriptors: {}\n", save_descriptors);
|
|
utils::logmesg(lmp, "compute pod descriptors: {}\n", compute_descriptors);
|
|
utils::logmesg(lmp, "**************** End of Data File ****************\n");
|
|
}
|
|
|
|
return precision;
|
|
}
|
|
|
|
void FitPOD::get_exyz_files(std::vector<std::string> &files, std::vector<std::string> &group_names,
|
|
const std::string &datapath, const std::string &extension)
|
|
{
|
|
auto allfiles = platform::list_directory(datapath);
|
|
std::sort(allfiles.begin(), allfiles.end());
|
|
for (const auto &fname : allfiles) {
|
|
if (utils::strmatch(fname, fmt::format(".*\\.{}$", extension))) {
|
|
files.push_back(datapath + platform::filepathsep + fname);
|
|
int start_pos_erase = fname.find(extension) - 1;
|
|
std::string substr = fname.substr(0, start_pos_erase);
|
|
group_names.push_back(substr);
|
|
}
|
|
}
|
|
}
|
|
|
|
int FitPOD::get_number_atom_exyz(std::vector<int> &num_atom, int &num_atom_sum, std::string file)
|
|
{
|
|
std::string filename = std::move(file);
|
|
FILE *fp;
|
|
if (comm->me == 0) {
|
|
fp = utils::open_potential(filename, lmp, nullptr);
|
|
if (fp == nullptr)
|
|
error->one(FLERR, "Cannot open POD coefficient file {}: ", filename, utils::getsyserror());
|
|
}
|
|
|
|
char line[MAXLINE], *ptr;
|
|
int eof = 0;
|
|
int num_configs = 0;
|
|
num_atom_sum = 0;
|
|
|
|
// loop over all lines of this xyz file and extract number of atoms and number of configs
|
|
|
|
while (true) {
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line, MAXLINE, fp);
|
|
if (ptr == nullptr) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
}
|
|
}
|
|
MPI_Bcast(&eof, 1, MPI_INT, 0, world);
|
|
if (eof) break;
|
|
MPI_Bcast(line, MAXLINE, MPI_CHAR, 0, world);
|
|
|
|
// words = ptrs to all words in line
|
|
// strip single and double quotes from words
|
|
|
|
std::vector<std::string> words;
|
|
try {
|
|
words = Tokenizer(utils::trim_comment(line), "\"' \t\n\r\f").as_vector();
|
|
} catch (TokenizerException &) {
|
|
// ignore
|
|
}
|
|
|
|
if (words.size() == 0) continue;
|
|
|
|
int natom;
|
|
if (words.size() == 1) {
|
|
natom = utils::inumeric(FLERR, words[0], false, lmp);
|
|
num_atom.push_back(natom);
|
|
num_configs += 1;
|
|
num_atom_sum += natom;
|
|
}
|
|
}
|
|
return num_configs;
|
|
}
|
|
|
|
int FitPOD::get_number_atoms(std::vector<int> &num_atom, std::vector<int> &num_atom_sum,
|
|
std::vector<int> &num_config, std::vector<std::string> training_files)
|
|
{
|
|
int nfiles = training_files.size(); // number of files
|
|
int d, n;
|
|
|
|
for (int i = 0; i < nfiles; i++) {
|
|
d = get_number_atom_exyz(num_atom, n, training_files[i]);
|
|
num_config.push_back(d);
|
|
num_atom_sum.push_back(n);
|
|
}
|
|
|
|
int num_atom_all = 0;
|
|
for (int i = 0; i < (int) num_atom.size(); i++) num_atom_all += num_atom[i];
|
|
|
|
return num_atom_all;
|
|
}
|
|
|
|
void FitPOD::read_exyz_file(double *lattice, double *stress, double *energy, double *we, double *wf,
|
|
double *pos, double *forces, int *atomtype, std::string file,
|
|
std::vector<std::string> species, double we_group, double wf_group)
|
|
{
|
|
|
|
std::string filename = std::move(file);
|
|
FILE *fp;
|
|
if (comm->me == 0) {
|
|
fp = utils::open_potential(filename, lmp, nullptr);
|
|
if (fp == nullptr)
|
|
error->one(FLERR, "Cannot open POD coefficient file {}: ", filename, utils::getsyserror());
|
|
}
|
|
|
|
char line[MAXLINE], *ptr;
|
|
int eof = 0;
|
|
int cfi = 0;
|
|
int nat = 0;
|
|
int ns = species.size();
|
|
|
|
// loop over all lines of this xyz file and extract training data
|
|
|
|
while (true) {
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line, MAXLINE, fp);
|
|
if (ptr == nullptr) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
}
|
|
}
|
|
MPI_Bcast(&eof, 1, MPI_INT, 0, world);
|
|
if (eof) break;
|
|
MPI_Bcast(line, MAXLINE, MPI_CHAR, 0, world);
|
|
|
|
// words = ptrs to all words in line
|
|
// strip single and double quotes from words
|
|
|
|
std::vector<std::string> words;
|
|
try {
|
|
words = Tokenizer(utils::trim_comment(line), "\"' \t\n\r\f").as_vector();
|
|
} catch (TokenizerException &) {
|
|
// ignore
|
|
}
|
|
|
|
if (words.size() == 0) continue;
|
|
|
|
ValueTokenizer text(utils::trim_comment(line), "\"' \t\n\r\f");
|
|
if (text.contains("attice")) {
|
|
|
|
// find the word containing "lattice"
|
|
|
|
auto it = std::find_if(words.begin(), words.end(), [](const std::string &str) {
|
|
return str.find("attice") != std::string::npos;
|
|
});
|
|
|
|
// get index of element from iterator
|
|
|
|
int index = std::distance(words.begin(), it);
|
|
|
|
if (words[index].find("=") != std::string::npos) {
|
|
|
|
// lattice numbers start at index + 1
|
|
|
|
for (int k = 0; k < 9; k++) {
|
|
lattice[k + 9 * cfi] = utils::numeric(FLERR, words[index + 1 + k], false, lmp);
|
|
}
|
|
} else {
|
|
|
|
// lattice numbers start at index + 2
|
|
|
|
for (int k = 0; k < 9; k++) {
|
|
lattice[k + 9 * cfi] = utils::numeric(FLERR, words[index + 2 + k], false, lmp);
|
|
}
|
|
}
|
|
|
|
if (compute_descriptors == 0) {
|
|
|
|
// find the word containing "energy"
|
|
|
|
it = std::find_if(words.begin(), words.end(), [](const std::string &str) {
|
|
return str.find("nergy") != std::string::npos;
|
|
});
|
|
|
|
// get index of element from iterator
|
|
|
|
index = std::distance(words.begin(), it);
|
|
|
|
if (words[index].find("=") != std::string::npos) {
|
|
|
|
// energy is after "=" inside this string
|
|
|
|
std::size_t found = words[index].find("=");
|
|
energy[cfi] = utils::numeric(FLERR, words[index].substr(found + 1), false, lmp);
|
|
} else {
|
|
|
|
// energy is at index + 2
|
|
|
|
energy[cfi] = utils::numeric(FLERR, words[index + 2], false, lmp);
|
|
}
|
|
|
|
// find the word containing "stress"
|
|
|
|
it = std::find_if(words.begin(), words.end(), [](const std::string &str) {
|
|
return str.find("tress") != std::string::npos;
|
|
});
|
|
|
|
// get index of element from iterator
|
|
|
|
index = std::distance(words.begin(), it);
|
|
|
|
if (index < std::distance(words.begin(), words.end())) {
|
|
if (words[index].find("=") != std::string::npos) {
|
|
|
|
// stress numbers start at index + 1
|
|
|
|
for (int k = 0; k < 9; k++) {
|
|
stress[k + 9 * cfi] = utils::numeric(FLERR, words[index + 1 + k], false, lmp);
|
|
}
|
|
} else {
|
|
|
|
// lattice numbers start at index + 2
|
|
|
|
for (int k = 0; k < 9; k++) {
|
|
stress[k + 9 * cfi] = utils::numeric(FLERR, words[index + 2 + k], false, lmp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// set fitting weights for this config
|
|
|
|
we[cfi] = we_group;
|
|
wf[cfi] = wf_group;
|
|
|
|
cfi += 1;
|
|
}
|
|
|
|
// loop over atoms
|
|
|
|
else if (words.size() > 1) {
|
|
|
|
for (int ii = 0; ii < ns; ii++)
|
|
if (species[ii] == words[0]) atomtype[nat] = ii + 1;
|
|
|
|
if (compute_descriptors > 0) {
|
|
for (int k = 0; k < 3; k++)
|
|
pos[k + 3 * nat] = utils::numeric(FLERR, words[1 + k], false, lmp);
|
|
} else {
|
|
for (int k = 0; k < 6; k++) {
|
|
if (k <= 2) pos[k + 3 * nat] = utils::numeric(FLERR, words[1 + k], false, lmp);
|
|
if (k > 2) forces[k - 3 + 3 * nat] = utils::numeric(FLERR, words[1 + k], false, lmp);
|
|
}
|
|
}
|
|
|
|
nat += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FitPOD::get_data(datastruct &data, const std::vector<std::string> &species)
|
|
{
|
|
get_exyz_files(data.data_files, data.group_names, data.data_path, data.file_extension);
|
|
data.num_atom_sum =
|
|
get_number_atoms(data.num_atom, data.num_atom_each_file, data.num_config, data.data_files);
|
|
data.num_config_sum = data.num_atom.size();
|
|
size_t maxname = 9;
|
|
for (const auto &fname : data.data_files) maxname = MAX(maxname, fname.size());
|
|
maxname -= data.data_path.size() + 1;
|
|
const std::string sepline(maxname + 46, '-');
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "{}\n {:^{}} | number of configurations | number of atoms\n{}\n", sepline,
|
|
"data file", maxname, sepline);
|
|
int i = 0;
|
|
for (const auto &fname : data.data_files) {
|
|
std::string filename = fname.substr(data.data_path.size() + 1);
|
|
data.filenames.push_back(filename);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, " {:<{}} | {:>10} | {:>8}\n", filename, maxname,
|
|
data.num_config[i], data.num_atom_each_file[i]);
|
|
++i;
|
|
}
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "{}\n", sepline);
|
|
utils::logmesg(lmp, "number of files: {}\n", data.data_files.size());
|
|
utils::logmesg(lmp, "number of configurations in all files: {}\n", data.num_config_sum);
|
|
utils::logmesg(lmp, "number of atoms in all files: {}\n", data.num_atom_sum);
|
|
}
|
|
|
|
if (data.data_files.size() < 1)
|
|
error->all(FLERR,
|
|
"Cannot fit potential without data files. The data paths may not be valid. Please "
|
|
"check the data paths in the POD data file.");
|
|
|
|
int n = data.num_config_sum;
|
|
memory->create(data.lattice, 9 * n, "fitpod:lattice");
|
|
memory->create(data.stress, 9 * n, "fitpod:stress");
|
|
memory->create(data.energy, n, "fitpod:energy");
|
|
// Group weights have same size as energy.
|
|
memory->create(data.we, n, "fitpod:we");
|
|
memory->create(data.wf, n, "fitpod:wf");
|
|
|
|
n = data.num_atom_sum;
|
|
memory->create(data.position, 3 * n, "fitpod:position");
|
|
memory->create(data.force, 3 * n, "fitpod:force");
|
|
memory->create(data.atomtype, n, "fitpod:atomtype");
|
|
|
|
double we_group, wf_group; // group weights
|
|
int nfiles = data.data_files.size(); // number of files
|
|
int nconfigs = 0;
|
|
int natoms = 0;
|
|
for (int i = 0; i < nfiles; i++) {
|
|
std::string group_name = data.group_names[i];
|
|
// If weight maps have this group, assign weight based on map.
|
|
// Else assign weight based on global value.
|
|
if (data.we_map.find(group_name) != data.we_map.end()) {
|
|
we_group = data.we_map[group_name];
|
|
wf_group = data.wf_map[group_name];
|
|
} else {
|
|
we_group = data.fitting_weights[0];
|
|
wf_group = data.fitting_weights[1];
|
|
}
|
|
//utils::logmesg(lmp, "Read xyz file: {}\n", group_name);
|
|
read_exyz_file(&data.lattice[9 * nconfigs], &data.stress[9 * nconfigs], &data.energy[nconfigs],
|
|
&data.we[nconfigs], &data.wf[nconfigs], &data.position[3 * natoms],
|
|
&data.force[3 * natoms], &data.atomtype[natoms], data.data_files[i], species,
|
|
we_group, wf_group);
|
|
nconfigs += data.num_config[i];
|
|
natoms += data.num_atom_each_file[i];
|
|
}
|
|
|
|
int len = data.num_atom.size();
|
|
data.num_atom_min = podArrayMin(&data.num_atom[0], len);
|
|
data.num_atom_max = podArrayMax(&data.num_atom[0], len);
|
|
data.num_atom_cumsum.resize(len + 1);
|
|
podCumsum(&data.num_atom_cumsum[0], &data.num_atom[0], len + 1);
|
|
|
|
data.num_config_cumsum.resize(nfiles + 1);
|
|
podCumsum(&data.num_config_cumsum[0], &data.num_config[0], nfiles + 1);
|
|
|
|
// convert all structures to triclinic system
|
|
|
|
constexpr int DIM = 3;
|
|
double Qmat[DIM * DIM];
|
|
for (int ci = 0; ci < len; ci++) {
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
double *x = &data.position[DIM * natom_cumsum];
|
|
double *f = &data.force[DIM * natom_cumsum];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
|
|
matrix33_inverse(Qmat, a1, a2, a3);
|
|
triclinic_lattice_conversion(a1, a2, a3, a1, a2, a3);
|
|
matrix33_multiplication(Qmat, lattice, Qmat, DIM);
|
|
matrix33_multiplication(x, Qmat, x, natom);
|
|
matrix33_multiplication(f, Qmat, f, natom);
|
|
}
|
|
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "minimum number of atoms: {}\n", data.num_atom_min);
|
|
utils::logmesg(lmp, "maximum number of atoms: {}\n", data.num_atom_max);
|
|
}
|
|
}
|
|
|
|
std::vector<int> FitPOD::linspace(int start_in, int end_in, int num_in)
|
|
{
|
|
|
|
std::vector<int> linspaced;
|
|
|
|
double start = static_cast<double>(start_in);
|
|
double end = static_cast<double>(end_in);
|
|
double num = static_cast<double>(num_in);
|
|
|
|
int elm;
|
|
|
|
if (num == 0) { return linspaced; }
|
|
if (num == 1) {
|
|
elm = (int) std::round(start);
|
|
linspaced.push_back(elm);
|
|
return linspaced;
|
|
}
|
|
|
|
double delta = (end - start) / (num - 1);
|
|
|
|
for (int i = 0; i < num - 1; ++i) {
|
|
elm = (int) std::round(start + delta * i);
|
|
linspaced.push_back(elm);
|
|
}
|
|
|
|
elm = (int) std::round(end);
|
|
linspaced.push_back(elm);
|
|
|
|
return linspaced;
|
|
}
|
|
|
|
std::vector<int> FitPOD::shuffle(int start_in, int end_in, int num_in)
|
|
{
|
|
int sz = end_in - start_in + 1;
|
|
std::vector<int> myvector(sz);
|
|
|
|
for (int i = 0; i < sz; i++) myvector[i] = start_in + i;
|
|
|
|
//unsigned seed = (unsigned) platform::walltime()*1.0e9;
|
|
//std::shuffle (myvector.begin(), myvector.end(), std::default_random_engine(seed));
|
|
std::shuffle(myvector.begin(), myvector.end(), std::random_device());
|
|
|
|
std::vector<int> shuffle_vec(num_in);
|
|
for (int i = 0; i < num_in; i++) shuffle_vec[i] = myvector[i];
|
|
|
|
return shuffle_vec;
|
|
}
|
|
|
|
std::vector<int> FitPOD::select(int n, double fraction, int randomize)
|
|
{
|
|
std::vector<int> selected;
|
|
|
|
int m = (int) std::round(n * fraction);
|
|
m = MAX(m, 1);
|
|
|
|
selected = (randomize == 1) ? shuffle(1, n, m) : linspace(1, n, m);
|
|
|
|
return selected;
|
|
}
|
|
|
|
void FitPOD::select_data(datastruct &newdata, const datastruct &data)
|
|
{
|
|
double fraction = data.fraction;
|
|
int randomize = data.randomize;
|
|
|
|
if (comm->me == 0) {
|
|
if (randomize == 1)
|
|
utils::logmesg(lmp, "Select {} fraction of the data set at random using shuffle\n",
|
|
data.fraction);
|
|
else
|
|
utils::logmesg(lmp, "Select {} fraction of the data set deterministically using linspace\n",
|
|
data.fraction);
|
|
}
|
|
|
|
int nfiles = data.data_files.size(); // number of files
|
|
std::vector<std::vector<int>> selected(nfiles);
|
|
|
|
newdata.num_config.resize(nfiles);
|
|
newdata.num_config_cumsum.resize(nfiles + 1);
|
|
newdata.num_atom_each_file.resize(nfiles);
|
|
|
|
for (int file = 0; file < nfiles; file++) {
|
|
int nconfigs = data.num_config[file];
|
|
selected[file] = select(nconfigs, fraction, randomize);
|
|
int ns = (int) selected[file].size(); // number of selected configurations
|
|
|
|
newdata.num_config[file] = ns;
|
|
int num_atom_sum = 0;
|
|
for (int ii = 0; ii < ns; ii++) { // loop over each selected configuration in a file
|
|
int ci = data.num_config_cumsum[file] + selected[file][ii] - 1;
|
|
int natom = data.num_atom[ci];
|
|
newdata.num_atom.push_back(natom);
|
|
num_atom_sum += natom;
|
|
}
|
|
newdata.num_atom_each_file[file] = num_atom_sum;
|
|
}
|
|
int len = newdata.num_atom.size();
|
|
newdata.num_atom_min = podArrayMin(&newdata.num_atom[0], len);
|
|
newdata.num_atom_max = podArrayMax(&newdata.num_atom[0], len);
|
|
newdata.num_atom_cumsum.resize(len + 1);
|
|
podCumsum(&newdata.num_atom_cumsum[0], &newdata.num_atom[0], len + 1);
|
|
newdata.num_atom_sum = newdata.num_atom_cumsum[len];
|
|
podCumsum(&newdata.num_config_cumsum[0], &newdata.num_config[0], nfiles + 1);
|
|
newdata.num_config_sum = newdata.num_atom.size();
|
|
|
|
int n = newdata.num_config_sum;
|
|
memory->create(newdata.lattice, 9 * n, "fitpod:newdata_lattice");
|
|
memory->create(newdata.stress, 9 * n, "fitpod:newdata_stress");
|
|
memory->create(newdata.energy, n, "fitpod:newdata_energy");
|
|
// Group weights have same size as energy.
|
|
memory->create(newdata.we, n, "fitpod:we");
|
|
memory->create(newdata.wf, n, "fitpod:wf");
|
|
|
|
n = newdata.num_atom_sum;
|
|
memory->create(newdata.position, 3 * n, "fitpod:newdata_position");
|
|
memory->create(newdata.force, 3 * n, "fitpod:newdata_force");
|
|
memory->create(newdata.atomtype, n, "fitpod:newdata_atomtype");
|
|
|
|
int cn = 0;
|
|
int dim = 3;
|
|
for (int file = 0; file < nfiles; file++) {
|
|
int ns = (int) selected[file].size(); // number of selected configurations
|
|
for (int ii = 0; ii < ns; ii++) { // loop over each selected configuration in a file
|
|
int ci = data.num_config_cumsum[file] + selected[file][ii] - 1;
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
|
|
int natomnew = newdata.num_atom[cn];
|
|
int natomnew_cumsum = newdata.num_atom_cumsum[cn];
|
|
|
|
if (natom != natomnew)
|
|
error->all(
|
|
FLERR,
|
|
"number of atoms in the new data set must be the same as that in the old data set.");
|
|
|
|
int *atomtype = &data.atomtype[natom_cumsum];
|
|
double *position = &data.position[dim * natom_cumsum];
|
|
double *force = &data.force[dim * natom_cumsum];
|
|
|
|
newdata.energy[cn] = data.energy[ci];
|
|
newdata.we[cn] = data.we[ci];
|
|
newdata.wf[cn] = data.wf[ci];
|
|
for (int j = 0; j < 9; j++) {
|
|
newdata.stress[j + 9 * cn] = data.stress[j + 9 * ci];
|
|
newdata.lattice[j + 9 * cn] = data.lattice[j + 9 * ci];
|
|
}
|
|
|
|
for (int na = 0; na < natom; na++) {
|
|
newdata.atomtype[na + natomnew_cumsum] = atomtype[na];
|
|
for (int j = 0; j < dim; j++) {
|
|
newdata.position[j + 3 * na + dim * natomnew_cumsum] = position[j + 3 * na];
|
|
newdata.force[j + 3 * na + dim * natomnew_cumsum] = force[j + 3 * na];
|
|
}
|
|
}
|
|
cn += 1;
|
|
}
|
|
}
|
|
|
|
data.copydatainfo(newdata);
|
|
size_t maxname = 9;
|
|
for (const auto &fname : data.data_files) maxname = MAX(maxname, fname.size());
|
|
maxname -= data.data_path.size() + 1;
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp,
|
|
"{:-<{}}\n {:^{}} | # configs (selected) | # atoms (selected) "
|
|
"| # configs (original) | # atoms (original)\n{:-<{}}\n",
|
|
"", maxname + 90, "data_file", maxname, "", maxname + 90);
|
|
for (int i = 0; i < (int) newdata.data_files.size(); i++) {
|
|
std::string filename =
|
|
newdata.data_files[i].substr(newdata.data_path.size() + 1, newdata.data_files[i].size());
|
|
newdata.filenames.emplace_back(filename.c_str());
|
|
if (comm->me == 0)
|
|
utils::logmesg(
|
|
lmp, " {:<{}} | {:>8} | {:>8} | {:>8} | {:>8}\n",
|
|
newdata.filenames[i], maxname, newdata.num_config[i], newdata.num_atom_each_file[i],
|
|
data.num_config[i], data.num_atom_each_file[i]);
|
|
}
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "{:-<{}}\nnumber of files: {}\n", "", maxname + 90,
|
|
newdata.data_files.size());
|
|
utils::logmesg(lmp,
|
|
"number of configurations in all files (selected and original): {} and {}\n",
|
|
newdata.num_config_sum, data.num_config_sum);
|
|
utils::logmesg(lmp, "number of atoms in all files (selected and original: {} and {}\n",
|
|
newdata.num_atom_sum, data.num_atom_sum);
|
|
}
|
|
}
|
|
|
|
void FitPOD::read_data_files(const std::string &data_file, const std::vector<std::string> &species)
|
|
{
|
|
datastruct data;
|
|
|
|
// read data input file to datastruct
|
|
|
|
data.precision =
|
|
read_data_file(data.fitting_weights, data.file_format, data.file_extension, envdata.data_path,
|
|
testdata.data_path, data.data_path, data.filenametag, data_file,
|
|
data.group_weight_type, data.we_map, data.wf_map);
|
|
|
|
data.training_analysis = (int) data.fitting_weights[3];
|
|
data.test_analysis = (int) data.fitting_weights[4];
|
|
data.training_calculation = (int) data.fitting_weights[5];
|
|
data.test_calculation = (int) data.fitting_weights[6];
|
|
data.fraction = data.fitting_weights[7];
|
|
data.randomize = (int) data.fitting_weights[9];
|
|
|
|
data.copydatainfo(traindata);
|
|
|
|
if (data.fraction >= 1.0) {
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Training Data Set ****************\n");
|
|
if (traindata.data_path.size() > 1)
|
|
get_data(traindata, species);
|
|
else
|
|
error->all(FLERR, "data set is not found");
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Training Data Set ****************\n");
|
|
} else {
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Training Data Set ****************\n");
|
|
if (data.data_path.size() > 1)
|
|
get_data(data, species);
|
|
else
|
|
error->all(FLERR, "data set is not found");
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Training Data Set ****************\n");
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Select Training Data Set ****************\n");
|
|
select_data(traindata, data);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Select Training Data Set ****************\n");
|
|
|
|
memory->destroy(data.lattice);
|
|
memory->destroy(data.energy);
|
|
memory->destroy(data.stress);
|
|
memory->destroy(data.position);
|
|
memory->destroy(data.force);
|
|
memory->destroy(data.atomtype);
|
|
}
|
|
|
|
testdata.fraction = traindata.fitting_weights[8];
|
|
testdata.test_analysis = traindata.test_analysis;
|
|
testdata.filenametag = traindata.filenametag;
|
|
|
|
if (((int) envdata.data_path.size() > 1) && (desc.nClusters > 1)) {
|
|
envdata.filenametag = traindata.filenametag;
|
|
envdata.file_format = traindata.file_format;
|
|
envdata.file_extension = traindata.file_extension;
|
|
int tmp = compute_descriptors;
|
|
compute_descriptors = 1;
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp,
|
|
"**************** Begin of Environment Configuration Set ****************\n");
|
|
get_data(envdata, species);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp,
|
|
"**************** End of Environment Configuration Set ****************\n");
|
|
compute_descriptors = tmp;
|
|
}
|
|
|
|
if ((testdata.data_path == traindata.data_path) && (testdata.fraction == 1.0) &&
|
|
(traindata.fraction == 1.0)) {
|
|
testdata.data_path = traindata.data_path;
|
|
} else if (((int) testdata.data_path.size() > 1) && (testdata.fraction > 0) &&
|
|
(testdata.test_analysis)) {
|
|
testdata.training = 0;
|
|
testdata.file_format = traindata.file_format;
|
|
testdata.file_extension = traindata.file_extension;
|
|
testdata.training_analysis = traindata.training_analysis;
|
|
testdata.training_calculation = traindata.training_calculation;
|
|
testdata.test_calculation = traindata.test_calculation;
|
|
testdata.randomize = (int) traindata.fitting_weights[10];
|
|
|
|
if (testdata.fraction >= 1.0) {
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Test Data Set ****************\n");
|
|
get_data(testdata, species);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Test Data Set ****************\n");
|
|
} else {
|
|
datastruct datatm;
|
|
testdata.copydatainfo(datatm);
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Test Data Set ****************\n");
|
|
get_data(datatm, species);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Test Data Set ****************\n");
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Select Test Data Set ****************\n");
|
|
select_data(testdata, datatm);
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Select Test Data Set ****************\n");
|
|
|
|
memory->destroy(datatm.lattice);
|
|
memory->destroy(datatm.energy);
|
|
memory->destroy(datatm.stress);
|
|
memory->destroy(datatm.position);
|
|
memory->destroy(datatm.force);
|
|
memory->destroy(datatm.atomtype);
|
|
}
|
|
} else {
|
|
testdata.data_path = traindata.data_path;
|
|
}
|
|
}
|
|
|
|
int FitPOD::latticecoords(double *y, int *alist, double *x, double *a1, double *a2, double *a3,
|
|
double rcut, int *pbc, int nx)
|
|
{
|
|
int m = 0, n = 0, p = 0;
|
|
if (pbc[0] == 1) m = (int) ceil(rcut / a1[0]);
|
|
if (pbc[1] == 1) n = (int) ceil(rcut / a2[1]);
|
|
if (pbc[2] == 1) p = (int) ceil(rcut / a3[2]);
|
|
|
|
// index for the center lattice
|
|
|
|
int ind = m + (2 * m + 1) * (n) + (2 * m + 1) * (2 * n + 1) * (p);
|
|
|
|
// number of lattices
|
|
|
|
int nl = (2 * m + 1) * (2 * n + 1) * (2 * p + 1);
|
|
|
|
for (int j = 0; j < 3 * nx; j++) y[j] = x[j];
|
|
int q = nx;
|
|
|
|
for (int i = 0; i < (2 * p + 1); i++)
|
|
for (int j = 0; j < (2 * n + 1); j++)
|
|
for (int k = 0; k < (2 * m + 1); k++) {
|
|
int ii = k + (2 * m + 1) * j + (2 * m + 1) * (2 * n + 1) * i;
|
|
if (ii != ind) {
|
|
double x0 = a1[0] * (k - m) + a2[0] * (j - n) + a3[0] * (i - p);
|
|
double x1 = a1[1] * (k - m) + a2[1] * (j - n) + a3[1] * (i - p);
|
|
double x2 = a1[2] * (k - m) + a2[2] * (j - n) + a3[2] * (i - p);
|
|
for (int jj = 0; jj < nx; jj++) {
|
|
y[0 + 3 * q] = x0 + x[0 + 3 * jj];
|
|
y[1 + 3 * q] = x1 + x[1 + 3 * jj];
|
|
y[2 + 3 * q] = x2 + x[2 + 3 * jj];
|
|
q = q + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nl; i++)
|
|
for (int j = 0; j < nx; j++) alist[j + nx * i] = j;
|
|
|
|
return nl;
|
|
}
|
|
|
|
int FitPOD::podneighborlist(int *neighlist, int *numneigh, double *r, double rcutsq, int nx, int N,
|
|
int dim)
|
|
{
|
|
int k = 0;
|
|
for (int i = 0; i < nx; i++) {
|
|
double *ri = &r[i * dim];
|
|
int inc = 0;
|
|
for (int j = 0; j < N; j++) {
|
|
double *rj = &r[dim * j];
|
|
double rijsq = (ri[0] - rj[0]) * (ri[0] - rj[0]) + (ri[1] - rj[1]) * (ri[1] - rj[1]) +
|
|
(ri[2] - rj[2]) * ((ri[2] - rj[2]));
|
|
if ((rijsq > SMALL) && (rijsq <= rcutsq)) {
|
|
inc += 1;
|
|
neighlist[k] = j;
|
|
k += 1;
|
|
}
|
|
}
|
|
numneigh[i] = inc;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
int FitPOD::podfullneighborlist(double *y, int *alist, int *neighlist, int *numneigh,
|
|
int *numneighsum, double *x, double *a1, double *a2, double *a3,
|
|
double rcut, int *pbc, int nx)
|
|
{
|
|
double rcutsq = rcut * rcut;
|
|
int dim = 3, nl = 0, nn = 0;
|
|
|
|
// number of lattices
|
|
|
|
nl = latticecoords(y, alist, x, a1, a2, a3, rcut, pbc, nx);
|
|
int N = nx * nl;
|
|
|
|
// total number of neighbors
|
|
|
|
nn = podneighborlist(neighlist, numneigh, y, rcutsq, nx, N, dim);
|
|
|
|
podCumsum(numneighsum, numneigh, nx + 1);
|
|
|
|
return nn;
|
|
}
|
|
|
|
void FitPOD::estimate_memory_neighborstruct(const datastruct &data, int *pbc, double rcut,
|
|
int nelements)
|
|
{
|
|
int dim = 3;
|
|
int natom_max = data.num_atom_max;
|
|
int m = 0, n = 0, p = 0, nl = 0, ny = 0, na = 0, np = 0;
|
|
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
int natom = data.num_atom[ci];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
if (pbc[0] == 1) m = (int) ceil(rcut / a1[0]);
|
|
if (pbc[1] == 1) n = (int) ceil(rcut / a2[1]);
|
|
if (pbc[2] == 1) p = (int) ceil(rcut / a3[2]);
|
|
|
|
// number of lattices
|
|
|
|
nl = (2 * m + 1) * (2 * n + 1) * (2 * p + 1);
|
|
ny = MAX(ny, dim * natom * nl);
|
|
na = MAX(na, natom * nl);
|
|
np = MAX(np, natom * natom * nl);
|
|
}
|
|
|
|
nb.natom_max = MAX(nb.natom_max, natom_max);
|
|
nb.sze = nelements * nelements;
|
|
nb.sza = MAX(nb.sza, na);
|
|
nb.szy = MAX(nb.szy, ny);
|
|
nb.szp = MAX(nb.szp, np);
|
|
}
|
|
|
|
void FitPOD::allocate_memory_neighborstruct()
|
|
{
|
|
memory->create(nb.y, nb.szy, "fitpod:nb_y");
|
|
memory->create(nb.alist, nb.sza, "fitpod:nb_alist");
|
|
memory->create(nb.pairnum, nb.natom_max, "fitpod:nb_pairnum");
|
|
memory->create(nb.pairnum_cumsum, nb.natom_max + 1, "fitpod:nb_pairnum_cumsum");
|
|
memory->create(nb.pairlist, nb.szp, "fitpod:nb_pairlist");
|
|
}
|
|
|
|
void FitPOD::allocate_memory_descriptorstruct(int nCoeffAll)
|
|
{
|
|
memory->create(desc.bd, nb.natom_max * fastpodptr->Mdesc, "fitpod:desc_ld");
|
|
memory->create(desc.pd, nb.natom_max * fastpodptr->nClusters, "fitpod:desc_ld");
|
|
memory->create(desc.gd, nCoeffAll, "fitpod:desc_gd");
|
|
memory->create(desc.A, nCoeffAll * nCoeffAll, "fitpod:desc_A");
|
|
memory->create(desc.b, nCoeffAll, "fitpod:desc_b");
|
|
memory->create(desc.c, nCoeffAll, "fitpod:desc_c");
|
|
memory->create(desc.gdd, desc.szd, "fitpod:desc_gdd");
|
|
podArraySetValue(desc.A, 0.0, nCoeffAll * nCoeffAll);
|
|
podArraySetValue(desc.b, 0.0, nCoeffAll);
|
|
podArraySetValue(desc.c, 0.0, nCoeffAll);
|
|
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "**************** Begin of Memory Allocation ****************\n");
|
|
utils::logmesg(lmp, "maximum number of atoms in periodic domain: {}\n", nb.natom_max);
|
|
utils::logmesg(lmp, "maximum number of atoms in extended domain: {}\n", nb.sza);
|
|
utils::logmesg(lmp, "maximum number of neighbors in extended domain: {}\n", nb.szp);
|
|
utils::logmesg(lmp, "size of double memory: {}\n", desc.szd);
|
|
utils::logmesg(lmp, "size of descriptor matrix: {} x {}\n", nCoeffAll, nCoeffAll);
|
|
utils::logmesg(lmp, "**************** End of Memory Allocation ****************\n");
|
|
}
|
|
}
|
|
|
|
void FitPOD::estimate_memory_fastpod(const datastruct &data)
|
|
{
|
|
int dim = 3;
|
|
int *pbc = fastpodptr->pbc;
|
|
double rcut = fastpodptr->rcut;
|
|
|
|
int Nij = 0, Nijmax = 0;
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
double *x = &data.position[dim * natom_cumsum];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
|
|
Nij = podfullneighborlist(nb.y, nb.alist, nb.pairlist, nb.pairnum, nb.pairnum_cumsum, x, a1, a2,
|
|
a3, rcut, pbc, natom);
|
|
Nijmax = MAX(Nijmax, Nij);
|
|
}
|
|
|
|
desc.szd = MAX(desc.szd, 3 * Nijmax * fastpodptr->nCoeffAll);
|
|
}
|
|
|
|
void FitPOD::local_descriptors_fastpod(const datastruct &data, int ci)
|
|
{
|
|
int dim = 3;
|
|
int *pbc = fastpodptr->pbc;
|
|
double rcut = fastpodptr->rcut;
|
|
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
int *atomtype = &data.atomtype[natom_cumsum];
|
|
double *position = &data.position[dim * natom_cumsum];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
|
|
// neighbor list
|
|
podfullneighborlist(nb.y, nb.alist, nb.pairlist, nb.pairnum, nb.pairnum_cumsum, position, a1, a2,
|
|
a3, rcut, pbc, natom);
|
|
|
|
if (desc.nClusters > 1) {
|
|
fastpodptr->descriptors(desc.gd, desc.gdd, desc.bd, desc.pd, nb.y, atomtype, nb.alist,
|
|
nb.pairlist, nb.pairnum_cumsum, natom);
|
|
} else {
|
|
fastpodptr->descriptors(desc.gd, desc.gdd, desc.bd, nb.y, atomtype, nb.alist, nb.pairlist,
|
|
nb.pairnum_cumsum, natom);
|
|
}
|
|
}
|
|
|
|
void FitPOD::base_descriptors_fastpod(const datastruct &data, int ci)
|
|
{
|
|
int dim = 3;
|
|
int *pbc = fastpodptr->pbc;
|
|
double rcut = fastpodptr->rcut;
|
|
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
int *atomtype = &data.atomtype[natom_cumsum];
|
|
double *position = &data.position[dim * natom_cumsum];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
|
|
// neighbor list
|
|
podfullneighborlist(nb.y, nb.alist, nb.pairlist, nb.pairnum, nb.pairnum_cumsum, position, a1, a2,
|
|
a3, rcut, pbc, natom);
|
|
|
|
fastpodptr->base_descriptors(desc.bd, nb.y, atomtype, nb.alist, nb.pairlist, nb.pairnum_cumsum,
|
|
natom);
|
|
}
|
|
|
|
void FitPOD::descriptors_calculation(const datastruct &data)
|
|
{
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin Calculating Descriptors ****************\n");
|
|
|
|
// loop over each configuration in the training data set
|
|
|
|
double sz[2];
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
|
|
if ((ci % 100) == 0) {
|
|
if (comm->me == 0) utils::logmesg(lmp, "Configuration: # {}\n", ci + 1);
|
|
}
|
|
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
|
|
// compute local POD descriptors
|
|
local_descriptors_fastpod(data, ci);
|
|
|
|
std::string filename0 =
|
|
data.data_path + "/basedescriptors_config" + std::to_string(ci + 1) + ".bin";
|
|
FILE *fp0 = fopen(filename0.c_str(), "wb");
|
|
sz[0] = (double) data.num_atom[ci];
|
|
sz[1] = (double) fastpodptr->Mdesc;
|
|
fwrite(reinterpret_cast<char *>(sz), sizeof(double) * (2), 1, fp0);
|
|
fwrite(reinterpret_cast<char *>(desc.bd),
|
|
sizeof(double) * (data.num_atom[ci] * fastpodptr->Mdesc), 1, fp0);
|
|
fclose(fp0);
|
|
|
|
if (desc.nClusters > 1) {
|
|
std::string filename1 =
|
|
data.data_path + "/environmentdescriptors_config" + std::to_string(ci + 1) + ".bin";
|
|
FILE *fp1 = fopen(filename1.c_str(), "wb");
|
|
sz[0] = (double) data.num_atom[ci];
|
|
sz[1] = (double) fastpodptr->nClusters;
|
|
fwrite(reinterpret_cast<char *>(sz), sizeof(double) * (2), 1, fp1);
|
|
fwrite(reinterpret_cast<char *>(desc.pd),
|
|
sizeof(double) * (data.num_atom[ci] * fastpodptr->nClusters), 1, fp1);
|
|
fclose(fp1);
|
|
}
|
|
|
|
std::string filename =
|
|
data.data_path + "/globaldescriptors_config" + std::to_string(ci + 1) + ".bin";
|
|
FILE *fp = fopen(filename.c_str(), "wb");
|
|
|
|
sz[0] = (double) data.num_atom[ci];
|
|
sz[1] = (double) desc.nCoeffAll;
|
|
fwrite(reinterpret_cast<char *>(sz), sizeof(double) * (2), 1, fp);
|
|
fwrite(reinterpret_cast<char *>(desc.gd), sizeof(double) * (desc.nCoeffAll), 1, fp);
|
|
if (compute_descriptors == 2) {
|
|
fwrite(reinterpret_cast<char *>(desc.gdd),
|
|
sizeof(double) * (3 * data.num_atom[ci] * desc.nCoeffAll), 1, fp);
|
|
}
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End Calculating Descriptors ****************\n");
|
|
}
|
|
|
|
void FitPOD::environment_cluster_calculation(const datastruct &data)
|
|
{
|
|
if (comm->me == 0)
|
|
utils::logmesg(
|
|
lmp, "**************** Begin Calculating Environment Descriptor Matrix ****************\n");
|
|
|
|
int nComponents = fastpodptr->nComponents;
|
|
int Mdesc = fastpodptr->Mdesc;
|
|
int nClusters = fastpodptr->nClusters;
|
|
int nelements = fastpodptr->nelements;
|
|
memory->create(fastpodptr->Centroids, nClusters * nComponents * nelements, "fitpod:centroids");
|
|
memory->create(fastpodptr->Proj, Mdesc * nComponents * nelements, "fitpod:P");
|
|
|
|
int nAtoms = 0;
|
|
int nTotalAtoms = 0;
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
if ((ci % comm->nprocs) == comm->me) nAtoms += data.num_atom[ci];
|
|
nTotalAtoms += data.num_atom[ci];
|
|
}
|
|
|
|
double *basedescmatrix;
|
|
double *pca;
|
|
double *A;
|
|
double *work;
|
|
double *b;
|
|
double *Lambda;
|
|
int *clusterSizes;
|
|
int *assignments;
|
|
int *nElemAtoms;
|
|
int *nElemAtomsCumSum;
|
|
int *nElemAtomsCount;
|
|
|
|
memory->create(basedescmatrix, nAtoms * Mdesc, "fitpod:basedescmatrix");
|
|
memory->create(pca, nAtoms * nComponents, "fitpod:pca");
|
|
memory->create(A, Mdesc * Mdesc, "fitpod:A");
|
|
memory->create(work, Mdesc * Mdesc, "fitpod:work");
|
|
memory->create(b, Mdesc, "fitpod:b");
|
|
memory->create(Lambda, Mdesc * nelements, "fitpod:Lambda");
|
|
memory->create(clusterSizes, nClusters * nelements, "fitpod:clusterSizes");
|
|
memory->create(assignments, nAtoms, "fitpod:assignments");
|
|
memory->create(nElemAtoms, nelements, "fitpod:nElemAtoms");
|
|
memory->create(nElemAtomsCumSum, 1 + nelements, "fitpod:nElemAtomsCumSum");
|
|
memory->create(nElemAtomsCount, nelements, "fitpod:nElemAtomsCount");
|
|
|
|
char chn = 'N';
|
|
char cht = 'T';
|
|
char chv = 'V';
|
|
char chu = 'U';
|
|
double alpha = 1.0, beta = 0.0;
|
|
|
|
for (int elem = 0; elem < nelements; elem++) {
|
|
nElemAtoms[elem] = 0; // number of atoms for this element
|
|
}
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
int *atomtype = &data.atomtype[natom_cumsum];
|
|
for (int n = 0; n < natom; n++) nElemAtoms[atomtype[n] - 1] += 1;
|
|
}
|
|
}
|
|
|
|
nElemAtomsCumSum[0] = 0;
|
|
for (int elem = 0; elem < nelements; elem++) {
|
|
nElemAtomsCumSum[elem + 1] = nElemAtomsCumSum[elem] + nElemAtoms[elem];
|
|
nElemAtomsCount[elem] = 0;
|
|
}
|
|
|
|
// loop over each configuration in the data set
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
if ((ci % 100) == 0) {
|
|
if (comm->me == 0) utils::logmesg(lmp, "Configuration: # {}\n", ci + 1);
|
|
}
|
|
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
base_descriptors_fastpod(data, ci);
|
|
|
|
// basedescmatrix is a Mdesc x nAtoms matrix
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
int *atomtype = &data.atomtype[natom_cumsum];
|
|
for (int n = 0; n < natom; n++) {
|
|
int elem = atomtype[n] - 1; // offset by 1 to match the element index in the C++ code
|
|
nElemAtomsCount[elem] += 1;
|
|
int k = nElemAtomsCumSum[elem] + nElemAtomsCount[elem] - 1;
|
|
for (int m = 0; m < Mdesc; m++) basedescmatrix[m + Mdesc * k] = desc.bd[n + natom * (m)];
|
|
}
|
|
}
|
|
}
|
|
|
|
int save = 0;
|
|
for (int elem = 0; elem < nelements; elem++) { // loop over each element
|
|
nAtoms = nElemAtoms[elem];
|
|
nTotalAtoms = nAtoms;
|
|
MPI_Allreduce(MPI_IN_PLACE, &nTotalAtoms, 1, MPI_INT, MPI_SUM, world);
|
|
|
|
double *descmatrix = &basedescmatrix[Mdesc * nElemAtomsCumSum[elem]];
|
|
double *Proj = &fastpodptr->Proj[nComponents * Mdesc * elem];
|
|
double *centroids = &fastpodptr->Centroids[nComponents * nClusters * elem];
|
|
|
|
// Calculate covariance matrix A = basedescmatrix*basedescmatrix'. A is a Mdesc x Mdesc matrix
|
|
DGEMM(&chn, &cht, &Mdesc, &Mdesc, &nAtoms, &alpha, descmatrix, &Mdesc, descmatrix, &Mdesc,
|
|
&beta, A, &Mdesc);
|
|
MPI_Allreduce(MPI_IN_PLACE, A, Mdesc * Mdesc, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
//if (comm->me == 0) print_matrix("A", Mdesc, Mdesc, A, Mdesc);
|
|
|
|
if ((comm->me == 0) && (save == 1))
|
|
savematrix2binfile(data.filenametag + "_covariance_matrix_elem" + std::to_string(elem + 1) +
|
|
".bin",
|
|
A, Mdesc, Mdesc);
|
|
|
|
// Calculate eigenvalues and eigenvectors of A
|
|
int lwork = Mdesc * Mdesc; // the length of the array work, lwork >= max(1,3*N-1)
|
|
int info = 1; // = 0: successful exit
|
|
|
|
DSYEV(&chv, &chu, &Mdesc, A, &Mdesc, b, work, &lwork, &info);
|
|
|
|
// order eigenvalues and eigenvectors from largest to smallest
|
|
for (int i = 0; i < Mdesc; i++) Lambda[(Mdesc - i - 1)] = b[i];
|
|
|
|
// P is a nComponents x Mdesc matrix
|
|
for (int j = 0; j < nComponents; j++)
|
|
for (int i = 0; i < Mdesc; i++)
|
|
Proj[j + nComponents * i] =
|
|
A[i + Mdesc * (Mdesc - j - 1)] * sqrt(fabs(b[(Mdesc - j - 1)] / Lambda[0]));
|
|
|
|
// Calculate principal compoment analysis matrix pca = P*descmatrix. pca is a nComponents x nAtoms matrix
|
|
DGEMM(&chn, &chn, &nComponents, &nAtoms, &Mdesc, &alpha, Proj, &nComponents, descmatrix, &Mdesc,
|
|
&beta, pca, &nComponents);
|
|
|
|
// initialize centroids
|
|
for (int i = 0; i < nClusters * nComponents; i++) centroids[i] = 0.0;
|
|
for (int i = 0; i < nAtoms; i++) {
|
|
int m = (i * nClusters) / nAtoms;
|
|
for (int j = 0; j < nComponents; j++)
|
|
centroids[j + nComponents * m] += pca[j + nComponents * i];
|
|
}
|
|
|
|
MPI_Allreduce(MPI_IN_PLACE, centroids, nClusters * nComponents, MPI_DOUBLE, MPI_SUM, world);
|
|
double fac = ((double) nClusters) / ((double) nTotalAtoms);
|
|
for (int i = 0; i < nClusters * nComponents; i++) centroids[i] = centroids[i] * fac;
|
|
|
|
// Calculate centroids using k-means clustering
|
|
int max_iter = 100;
|
|
KmeansClustering(pca, centroids, assignments, clusterSizes, nAtoms, nClusters, nComponents,
|
|
max_iter);
|
|
|
|
if (save == 1) {
|
|
if (comm->me == 0) {
|
|
savematrix2binfile(data.filenametag + "_eigenvector_matrix_elem" +
|
|
std::to_string(elem + 1) + ".bin",
|
|
A, Mdesc, Mdesc);
|
|
savematrix2binfile(data.filenametag + "_eigenvalues_elem" + std::to_string(elem + 1) +
|
|
".bin",
|
|
b, Mdesc, 1);
|
|
}
|
|
savematrix2binfile(data.filenametag + "_desc_matrix_elem" + std::to_string(elem + 1) +
|
|
"_proc" + std::to_string(comm->me + 1) + ".bin",
|
|
descmatrix, Mdesc, nAtoms);
|
|
savematrix2binfile(data.filenametag + "_pca_matrix_elem" + std::to_string(elem + 1) +
|
|
"_proc" + std::to_string(comm->me + 1) + ".bin",
|
|
pca, nComponents, nAtoms);
|
|
saveintmatrix2binfile(data.filenametag + "_cluster_assignments_elem" +
|
|
std::to_string(elem + 1) + "_proc" + std::to_string(comm->me + 1) +
|
|
".bin",
|
|
assignments, nAtoms, 1);
|
|
}
|
|
}
|
|
|
|
memory->destroy(basedescmatrix);
|
|
memory->destroy(pca);
|
|
memory->destroy(A);
|
|
memory->destroy(work);
|
|
memory->destroy(b);
|
|
memory->destroy(clusterSizes);
|
|
memory->destroy(Lambda);
|
|
memory->destroy(assignments);
|
|
memory->destroy(nElemAtoms);
|
|
memory->destroy(nElemAtomsCumSum);
|
|
memory->destroy(nElemAtomsCount);
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(
|
|
lmp, "**************** End Calculating Environment Descriptor Matrix ****************\n");
|
|
}
|
|
|
|
void FitPOD::least_squares_matrix(const datastruct &data, int ci)
|
|
{
|
|
int dim = 3;
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
int nCoeffAll = desc.nCoeffAll;
|
|
int nforce = dim * natom;
|
|
|
|
// compute energy weight and force weight
|
|
|
|
double normconst = 1.0;
|
|
if (data.normalizeenergy == 1) normconst = 1.0 / natom;
|
|
double we = data.we[ci];
|
|
double wf = data.wf[ci];
|
|
double we2 = (we * we) * (normconst * normconst);
|
|
double wf2 = (wf * wf);
|
|
|
|
// get energy and force from the training data set
|
|
|
|
double energy = data.energy[ci];
|
|
double *force = &data.force[dim * natom_cumsum];
|
|
|
|
// least-square matrix for all descriptors: A = A + (we*we)*(gd^T * gd)
|
|
|
|
podKron(desc.A, desc.gd, desc.gd, we2, nCoeffAll, nCoeffAll);
|
|
|
|
// least-square matrix for all descriptors derivatives: A = A + (wf*wf) * (gdd^T * gdd)
|
|
|
|
char cht = 'T';
|
|
char chn = 'N';
|
|
double one = 1.0;
|
|
int inc1 = 1;
|
|
DGEMM(&cht, &chn, &nCoeffAll, &nCoeffAll, &nforce, &wf2, desc.gdd, &nforce, desc.gdd, &nforce,
|
|
&one, desc.A, &nCoeffAll);
|
|
|
|
// least-square vector for all descriptors: b = b + (we*we*energy)*gd
|
|
|
|
double wee = we2 * energy;
|
|
for (int i = 0; i < nCoeffAll; i++) desc.b[i] += wee * desc.gd[i];
|
|
|
|
// least-square vector for all descriptors derivatives: b = b + (wf*wf) * (gdd^T * f)
|
|
|
|
DGEMV(&cht, &nforce, &nCoeffAll, &wf2, desc.gdd, &nforce, force, &inc1, &one, desc.b, &inc1);
|
|
}
|
|
|
|
void FitPOD::least_squares_fit(const datastruct &data)
|
|
{
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Least-Squares Fitting ****************\n");
|
|
|
|
// loop over each configuration in the training data set
|
|
|
|
for (int ci = 0; ci < (int) data.num_atom.size(); ci++) {
|
|
|
|
if ((ci % 100) == 0) {
|
|
if (comm->me == 0) utils::logmesg(lmp, "Configuration: # {}\n", ci + 1);
|
|
}
|
|
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
|
|
// compute linear POD descriptors
|
|
local_descriptors_fastpod(data, ci);
|
|
|
|
if (save_descriptors > 0) {
|
|
std::string filename =
|
|
data.data_path + "/descriptors_config" + std::to_string(ci + 1) + ".bin";
|
|
FILE *fp = fopen(filename.c_str(), "wb");
|
|
fwrite(reinterpret_cast<char *>(desc.gd), sizeof(double) * (desc.nCoeffAll), 1, fp);
|
|
if (save_descriptors == 2) {
|
|
fwrite(reinterpret_cast<char *>(desc.gdd),
|
|
sizeof(double) * (3 * data.num_atom[ci] * desc.nCoeffAll), 1, fp);
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
// assemble the least-squares linear system
|
|
|
|
least_squares_matrix(data, ci);
|
|
}
|
|
}
|
|
|
|
int nCoeffAll = desc.nCoeffAll;
|
|
|
|
MPI_Allreduce(MPI_IN_PLACE, desc.b, nCoeffAll, MPI_DOUBLE, MPI_SUM, world);
|
|
MPI_Allreduce(MPI_IN_PLACE, desc.A, nCoeffAll * nCoeffAll, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
if (comm->me == 0) {
|
|
|
|
// symmetrize A
|
|
|
|
for (int i = 0; i < nCoeffAll; i++)
|
|
for (int j = i; j < nCoeffAll; j++) {
|
|
double a1 = desc.A[i + nCoeffAll * j];
|
|
double a2 = desc.A[j + nCoeffAll * i];
|
|
desc.A[i + nCoeffAll * j] = 0.5 * (a1 + a2);
|
|
desc.A[j + nCoeffAll * i] = 0.5 * (a1 + a2);
|
|
}
|
|
|
|
double regularizing_parameter = data.fitting_weights[11];
|
|
|
|
for (int i = 0; i < nCoeffAll; i++) {
|
|
desc.c[i] = desc.b[i];
|
|
desc.A[i + nCoeffAll * i] = desc.A[i + nCoeffAll * i] * (1.0 + regularizing_parameter);
|
|
if (desc.A[i + nCoeffAll * i] < regularizing_parameter)
|
|
desc.A[i + nCoeffAll * i] = regularizing_parameter;
|
|
}
|
|
|
|
// solving the linear system A * c = b
|
|
|
|
int nrhs = 1, info;
|
|
char chu = 'U';
|
|
DPOSV(&chu, &nCoeffAll, &nrhs, desc.A, &nCoeffAll, desc.c, &nCoeffAll, &info);
|
|
}
|
|
|
|
MPI_Bcast(desc.c, nCoeffAll, MPI_DOUBLE, 0, world);
|
|
|
|
// update coefficients in POD class to compute energy and force
|
|
fastpodptr->mknewcoeff(desc.c, nCoeffAll);
|
|
}
|
|
|
|
double latticevolume(double *lattice)
|
|
{
|
|
double *v1 = &lattice[0];
|
|
double *v2 = &lattice[3];
|
|
double *v3 = &lattice[6];
|
|
|
|
double b0 = v1[1] * v2[2] - v1[2] * v2[1];
|
|
double b1 = v1[2] * v2[0] - v1[0] * v2[2];
|
|
double b2 = v1[0] * v2[1] - v1[1] * v2[0];
|
|
|
|
return (b0 * v3[0] + b1 * v3[1] + b2 * v3[2]);
|
|
}
|
|
|
|
double FitPOD::energyforce_calculation_fastpod(double *force, const datastruct &data, int ci)
|
|
{
|
|
int dim = 3;
|
|
int *pbc = fastpodptr->pbc;
|
|
double rcut = fastpodptr->rcut;
|
|
|
|
int natom = data.num_atom[ci];
|
|
int natom_cumsum2 = data.num_atom_cumsum[ci];
|
|
int *atomtype = &data.atomtype[natom_cumsum2];
|
|
double *position = &data.position[dim * natom_cumsum2];
|
|
double *lattice = &data.lattice[9 * ci];
|
|
double *a1 = &lattice[0];
|
|
double *a2 = &lattice[3];
|
|
double *a3 = &lattice[6];
|
|
|
|
podfullneighborlist(nb.y, nb.alist, nb.pairlist, nb.pairnum, nb.pairnum_cumsum, position, a1, a2,
|
|
a3, rcut, pbc, natom);
|
|
|
|
double energy = fastpodptr->energyforce(force, nb.y, atomtype, nb.alist, nb.pairlist,
|
|
nb.pairnum_cumsum, natom);
|
|
|
|
return energy;
|
|
}
|
|
|
|
void FitPOD::print_analysis(const datastruct &data, double *outarray, double *errors)
|
|
{
|
|
int nfiles = data.data_files.size(); // number of files
|
|
int lm = 10;
|
|
for (int i = 0; i < nfiles; i++) lm = MAX(lm, (int) data.filenames[i].size());
|
|
lm = lm + 2;
|
|
|
|
std::string filename_errors =
|
|
fmt::format("{}_{}_errors.pod", data.filenametag, data.training ? "training" : "test");
|
|
std::string filename_analysis =
|
|
fmt::format("{}_{}_analysis.pod", data.filenametag, data.training ? "training" : "test");
|
|
|
|
FILE *fp_errors = nullptr;
|
|
FILE *fp_analysis = nullptr;
|
|
fp_errors = fopen(filename_errors.c_str(), "w");
|
|
fp_analysis = fopen(filename_analysis.c_str(), "w");
|
|
|
|
std::string mystr =
|
|
fmt::format("**************** Begin of Error Analysis for the {} Data Set ****************\n",
|
|
data.training ? "Training" : "Test");
|
|
|
|
utils::logmesg(lmp, mystr);
|
|
fmt::print(fp_errors, mystr);
|
|
|
|
std::string sa(lm + 80, '-');
|
|
sa += '\n';
|
|
std::string sb = fmt::format(
|
|
" {:^{}} | # configs | # atoms | MAE energy | RMSE energy | MAE force | RMSE force\n",
|
|
"File", lm);
|
|
utils::logmesg(lmp, sa + sb + sa);
|
|
fmt::print(fp_errors, sa + sb + sa);
|
|
|
|
int ci = 0, m = 8, nc = 0, nf = 0;
|
|
for (int file = 0; file < nfiles; file++) {
|
|
fmt::print(fp_analysis, "# {}\n", data.filenames[file]);
|
|
fmt::print(fp_analysis,
|
|
" config # atoms volume energy DFT energy energy error "
|
|
" force DFT force force error\n");
|
|
|
|
int nforceall = 0;
|
|
int nconfigs = data.num_config[file];
|
|
nc += nconfigs;
|
|
for (int ii = 0; ii < nconfigs; ii++) { // loop over each configuration in a file
|
|
fmt::print(fp_analysis, "{:6} {:8} ", outarray[m * ci], outarray[1 + m * ci]);
|
|
|
|
double vol = latticevolume(&data.lattice[9 * ci]);
|
|
fmt::print(fp_analysis, "{:<15.10} ", vol);
|
|
|
|
for (int count = 2; count < m; count++)
|
|
fmt::print(fp_analysis, "{:<15.10} ", outarray[count + m * ci]);
|
|
fmt::print(fp_analysis, "\n");
|
|
|
|
nforceall += 3 * data.num_atom[ci];
|
|
ci += 1;
|
|
}
|
|
nf += nforceall;
|
|
|
|
int q = file + 1;
|
|
auto s =
|
|
fmt::format("{:<{}} {:>10} {:>11} {:<10.6f} {:<10.6f} {:<10.6f} {:<10.6f}\n",
|
|
data.filenames[file], lm, nconfigs, nforceall / 3, errors[0 + 4 * q],
|
|
errors[1 + 4 * q], errors[2 + 4 * q], errors[3 + 4 * q]);
|
|
utils::logmesg(lmp, s);
|
|
fmt::print(fp_errors, s);
|
|
}
|
|
utils::logmesg(lmp, sa);
|
|
fmt::print(fp_errors, sa);
|
|
|
|
auto s =
|
|
fmt::format("{:<{}} {:>10} {:>11} {:<10.6f} {:<10.6f} {:<10.6f} {:<10.6f}\n",
|
|
"All files", lm, nc, nf / 3, errors[0], errors[1], errors[2], errors[3]);
|
|
utils::logmesg(lmp, s + sa);
|
|
fmt::print(fp_errors, "{}", s + sa);
|
|
|
|
mystr =
|
|
fmt::format("**************** End of Error Analysis for the {} Data Set ****************\n",
|
|
data.training ? "Training" : "Test");
|
|
|
|
utils::logmesg(lmp, mystr);
|
|
fmt::print(fp_errors, mystr);
|
|
|
|
fclose(fp_errors);
|
|
fclose(fp_analysis);
|
|
}
|
|
|
|
void FitPOD::error_analysis(const datastruct &data, double *coeff)
|
|
{
|
|
int dim = 3;
|
|
int nCoeffAll = desc.nCoeffAll;
|
|
double energy;
|
|
std::vector<double> force(dim * data.num_atom_max);
|
|
|
|
int nfiles = data.data_files.size(); // number of files
|
|
int num_configs = data.num_atom.size(); // number of configurations in all files
|
|
|
|
int m = 8;
|
|
std::vector<double> outarray(m * num_configs);
|
|
for (int i = 0; i < m * num_configs; i++) outarray[i] = 0.0;
|
|
|
|
std::vector<double> ssrarray(num_configs);
|
|
for (int i = 0; i < num_configs; i++) ssrarray[i] = 0.0;
|
|
|
|
std::vector<double> errors(4 * (nfiles + 1));
|
|
for (int i = 0; i < 4 * (nfiles + 1); i++) errors[i] = 0.0;
|
|
|
|
std::vector<double> newcoeff(nCoeffAll);
|
|
for (int j = 0; j < nCoeffAll; j++) newcoeff[j] = coeff[j];
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Error Calculation ****************\n");
|
|
|
|
int ci = 0; // configuration counter
|
|
for (int file = 0; file < nfiles; file++) { // loop over each file in the training data set
|
|
|
|
int nconfigs = data.num_config[file];
|
|
for (int ii = 0; ii < nconfigs; ii++) { // loop over each configuration in a file
|
|
|
|
if ((ci % 100) == 0) {
|
|
if (comm->me == 0) utils::logmesg(lmp, "Configuration: # {}\n", ci + 1);
|
|
}
|
|
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
int natom = data.num_atom[ci];
|
|
int nforce = dim * natom;
|
|
|
|
energy = energyforce_calculation_fastpod(force.data(), data, ci);
|
|
|
|
double DFTenergy = data.energy[ci];
|
|
int natom_cumsum = data.num_atom_cumsum[ci];
|
|
double *DFTforce = &data.force[dim * natom_cumsum];
|
|
|
|
outarray[0 + m * ci] = ci + 1;
|
|
outarray[1 + m * ci] = natom;
|
|
outarray[2 + m * ci] = energy;
|
|
outarray[3 + m * ci] = DFTenergy;
|
|
outarray[4 + m * ci] = fabs(DFTenergy - energy) / natom;
|
|
outarray[5 + m * ci] = podArrayNorm(force.data(), nforce);
|
|
outarray[6 + m * ci] = podArrayNorm(DFTforce, nforce);
|
|
|
|
double diff, sum = 0.0, ssr = 0.0;
|
|
for (int j = 0; j < dim * natom; j++) {
|
|
diff = DFTforce[j] - force[j];
|
|
sum += fabs(diff);
|
|
ssr += diff * diff;
|
|
}
|
|
outarray[7 + m * ci] = sum / nforce;
|
|
ssrarray[ci] = ssr;
|
|
}
|
|
|
|
ci += 1;
|
|
}
|
|
}
|
|
|
|
MPI_Allreduce(MPI_IN_PLACE, &outarray[0], m * num_configs, MPI_DOUBLE, MPI_SUM, world);
|
|
MPI_Allreduce(MPI_IN_PLACE, &ssrarray[0], num_configs, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
ci = 0; // configuration counter
|
|
int nc = 0, nf = 0;
|
|
for (int file = 0; file < nfiles; file++) { // loop over each file in the training data set
|
|
|
|
double emae = 0.0, essr = 0.0, fmae = 0.0, fssr = 0.0;
|
|
int nforceall = 0;
|
|
|
|
int nconfigs = data.num_config[file];
|
|
nc += nconfigs;
|
|
for (int ii = 0; ii < nconfigs; ii++) { // loop over each configuration in a file
|
|
|
|
int natom = data.num_atom[ci];
|
|
int nforce = dim * natom;
|
|
|
|
emae += outarray[4 + m * ci]; // sum_c |ePOD_c - eDFT_c|/natom_c
|
|
essr +=
|
|
outarray[4 + m * ci] * outarray[4 + m * ci]; // sum_c |ePOD_c - eDFT_c|^2/(natom_c)^2
|
|
fmae += outarray[7 + m * ci] * nforce; // sum_c |fPOD_c - fDFT_c|
|
|
fssr += ssrarray[ci];
|
|
nforceall += nforce;
|
|
ci += 1;
|
|
}
|
|
|
|
int q = file + 1;
|
|
if (nconfigs == 0) nconfigs = 1;
|
|
if (nforceall == 0) nforceall = 1;
|
|
errors[0 + 4 * q] = emae / nconfigs;
|
|
errors[1 + 4 * q] = sqrt(essr / nconfigs);
|
|
errors[2 + 4 * q] = fmae / nforceall;
|
|
errors[3 + 4 * q] = sqrt(fssr / nforceall);
|
|
|
|
nf += nforceall;
|
|
errors[0] += emae; // sum_c |ePOD_c - eDFT_c|/natom_c
|
|
errors[1] += essr; // sum_c |ePOD_c - eDFT_c|^2/(natom_c)^2
|
|
errors[2] += fmae;
|
|
errors[3] += fssr;
|
|
}
|
|
|
|
if (nc == 0) nc = 1;
|
|
if (nf == 0) nf = 1;
|
|
errors[0] = errors[0] / nc; // (1/Nc) * sum_c |ePOD_c - eDFT_c|/natom_c
|
|
errors[1] = sqrt(errors[1] / nc); // sqrt { (1/Nc) * sum_c |ePOD_c - eDFT_c|^2/(natom_c)^2 }
|
|
errors[2] = errors[2] / nf;
|
|
errors[3] = sqrt(errors[3] / nf);
|
|
|
|
if (comm->me == 0) {
|
|
utils::logmesg(lmp, "**************** End of Error Calculation ****************\n");
|
|
print_analysis(data, outarray.data(), errors.data());
|
|
}
|
|
}
|
|
|
|
void FitPOD::energyforce_calculation(const datastruct &data)
|
|
{
|
|
int dim = 3;
|
|
double energy;
|
|
std::vector<double> force(1 + dim * data.num_atom_max);
|
|
|
|
int nfiles = data.data_files.size(); // number of files
|
|
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** Begin of Energy/Force Calculation ****************\n");
|
|
|
|
int ci = 0; // configuration counter
|
|
for (int file = 0; file < nfiles; file++) { // loop over each file in the data set
|
|
|
|
int nconfigs = data.num_config[file];
|
|
for (int ii = 0; ii < nconfigs; ii++) { // loop over each configuration in a file
|
|
if ((ci % 100) == 0) {
|
|
if (comm->me == 0) utils::logmesg(lmp, "Configuration: # {}\n", ci + 1);
|
|
}
|
|
|
|
int natom = data.num_atom[ci];
|
|
int nforce = dim * natom;
|
|
|
|
if ((ci % comm->nprocs) == comm->me) {
|
|
energy = energyforce_calculation_fastpod(force.data() + 1, data, ci);
|
|
|
|
// save energy and force into a binary file
|
|
force[0] = energy;
|
|
std::string filename = "energyforce_config" + std::to_string(ci + 1) + ".bin";
|
|
|
|
FILE *fp = fopen(filename.c_str(), "wb");
|
|
|
|
fwrite(reinterpret_cast<char *>(force.data()), sizeof(double) * (1 + nforce), 1, fp);
|
|
|
|
fclose(fp);
|
|
}
|
|
ci += 1;
|
|
}
|
|
}
|
|
if (comm->me == 0)
|
|
utils::logmesg(lmp, "**************** End of Energy/Force Calculation ****************\n");
|
|
}
|
|
|
|
void FitPOD::podArrayFill(int *output, int start, int length)
|
|
{
|
|
for (int j = 0; j < length; ++j) output[j] = start + j;
|
|
}
|
|
|
|
double FitPOD::podArraySum(double *a, int n)
|
|
{
|
|
double e = a[0];
|
|
for (int i = 1; i < n; i++) e += a[i];
|
|
return e;
|
|
}
|
|
|
|
double FitPOD::podArrayMin(double *a, int n)
|
|
{
|
|
double b = a[0];
|
|
for (int i = 1; i < n; i++)
|
|
if (a[i] < b) b = a[i];
|
|
return b;
|
|
}
|
|
|
|
double FitPOD::podArrayMax(double *a, int n)
|
|
{
|
|
double b = a[0];
|
|
for (int i = 1; i < n; i++)
|
|
if (a[i] > b) b = a[i];
|
|
return b;
|
|
}
|
|
|
|
int FitPOD::podArrayMin(int *a, int n)
|
|
{
|
|
int b = a[0];
|
|
for (int i = 1; i < n; i++)
|
|
if (a[i] < b) b = a[i];
|
|
return b;
|
|
}
|
|
|
|
int FitPOD::podArrayMax(int *a, int n)
|
|
{
|
|
int b = a[0];
|
|
for (int i = 1; i < n; i++)
|
|
if (a[i] > b) b = a[i];
|
|
return b;
|
|
}
|
|
|
|
void FitPOD::podKron(double *C, double *A, double *B, double alpha, int M1, int M2)
|
|
{
|
|
int M = M1 * M2;
|
|
for (int idx = 0; idx < M; idx++) {
|
|
int ib = idx % M2;
|
|
int ia = (idx - ib) / M2;
|
|
C[idx] += alpha * A[ia] * B[ib];
|
|
}
|
|
}
|
|
|
|
void FitPOD::podCumsum(int *output, int *input, int length)
|
|
{
|
|
output[0] = 0;
|
|
for (int j = 1; j < length; ++j) output[j] = input[j - 1] + output[j - 1];
|
|
}
|
|
|
|
double FitPOD::podArrayNorm(double *a, int n)
|
|
{
|
|
double e = a[0] * a[0];
|
|
for (int i = 1; i < n; i++) e += a[i] * a[i];
|
|
return sqrt(e);
|
|
}
|
|
|
|
double FitPOD::podArrayErrorNorm(double *a, double *b, int n)
|
|
{
|
|
double e = (a[0] - b[0]) * (a[0] - b[0]);
|
|
for (int i = 1; i < n; i++) e += (a[i] - b[i]) * (a[i] - b[i]);
|
|
return sqrt(e);
|
|
}
|
|
|
|
void FitPOD::podArraySetValue(double *y, double a, int n)
|
|
{
|
|
for (int i = 0; i < n; i++) y[i] = a;
|
|
}
|
|
|
|
void FitPOD::podArrayCopy(double *y, double *x, int n)
|
|
{
|
|
for (int i = 0; i < n; i++) y[i] = x[i];
|
|
}
|
|
|
|
void FitPOD::rotation_matrix(double *Rmat, double alpha, double beta, double gamma)
|
|
{
|
|
double ca = cos(alpha);
|
|
double cb = cos(beta);
|
|
double cg = cos(gamma);
|
|
double sa = sin(alpha);
|
|
double sb = sin(beta);
|
|
double sg = sin(gamma);
|
|
|
|
Rmat[0] = ca * cg * cb - sa * sg;
|
|
Rmat[3] = -ca * cb * sg - sa * cg;
|
|
Rmat[6] = ca * sb;
|
|
|
|
Rmat[1] = sa * cg * cb + ca * sg;
|
|
Rmat[4] = -sa * cb * sg + ca * cg;
|
|
Rmat[7] = sa * sb;
|
|
|
|
Rmat[2] = -sb * cg;
|
|
Rmat[5] = sb * sg;
|
|
Rmat[8] = cb;
|
|
}
|
|
|
|
void FitPOD::matrix33_multiplication(double *xrot, double *Rmat, double *x, int natom)
|
|
{
|
|
double x1, x2, x3;
|
|
for (int i = 0; i < natom; i++) {
|
|
x1 = x[0 + 3 * i];
|
|
x2 = x[1 + 3 * i];
|
|
x3 = x[2 + 3 * i];
|
|
xrot[0 + 3 * i] = Rmat[0] * x1 + Rmat[3] * x2 + Rmat[6] * x3;
|
|
xrot[1 + 3 * i] = Rmat[1] * x1 + Rmat[4] * x2 + Rmat[7] * x3;
|
|
xrot[2 + 3 * i] = Rmat[2] * x1 + Rmat[5] * x2 + Rmat[8] * x3;
|
|
}
|
|
}
|
|
|
|
void FitPOD::matrix33_inverse(double *invA, double *A1, double *A2, double *A3)
|
|
{
|
|
double a11 = A1[0];
|
|
double a21 = A1[1];
|
|
double a31 = A1[2];
|
|
double a12 = A2[0];
|
|
double a22 = A2[1];
|
|
double a32 = A2[2];
|
|
double a13 = A3[0];
|
|
double a23 = A3[1];
|
|
double a33 = A3[2];
|
|
double detA = (a11 * a22 * a33 - a11 * a23 * a32 - a12 * a21 * a33 + a12 * a23 * a31 +
|
|
a13 * a21 * a32 - a13 * a22 * a31);
|
|
|
|
invA[0] = (a22 * a33 - a23 * a32) / detA;
|
|
invA[1] = (a23 * a31 - a21 * a33) / detA;
|
|
invA[2] = (a21 * a32 - a22 * a31) / detA;
|
|
invA[3] = (a13 * a32 - a12 * a33) / detA;
|
|
invA[4] = (a11 * a33 - a13 * a31) / detA;
|
|
invA[5] = (a12 * a31 - a11 * a32) / detA;
|
|
invA[6] = (a12 * a23 - a13 * a22) / detA;
|
|
invA[7] = (a13 * a21 - a11 * a23) / detA;
|
|
invA[8] = (a11 * a22 - a12 * a21) / detA;
|
|
}
|
|
|
|
void FitPOD::triclinic_lattice_conversion(double *a, double *b, double *c, double *A, double *B,
|
|
double *C)
|
|
{
|
|
double Anorm = sqrt(A[0] * A[0] + A[1] * A[1] + A[2] * A[2]);
|
|
double Bnorm = sqrt(B[0] * B[0] + B[1] * B[1] + B[2] * B[2]);
|
|
double Cnorm = sqrt(C[0] * C[0] + C[1] * C[1] + C[2] * C[2]);
|
|
|
|
double Ahat[3];
|
|
Ahat[0] = A[0] / Anorm;
|
|
Ahat[1] = A[1] / Anorm;
|
|
Ahat[2] = A[2] / Anorm;
|
|
|
|
double ax = Anorm;
|
|
double bx = B[0] * Ahat[0] + B[1] * Ahat[1] + B[2] * Ahat[2]; //dot(B,Ahat);
|
|
double by = sqrt(Bnorm * Bnorm - bx * bx); //sqrt(Bnorm^2 - bx^2);// #norm(cross(Ahat,B));
|
|
double cx = C[0] * Ahat[0] + C[1] * Ahat[1] + C[2] * Ahat[2]; // dot(C,Ahat);
|
|
double cy =
|
|
(B[0] * C[0] + B[1] * C[1] + B[2] * C[2] - bx * cx) / by; // (dot(B, C) - bx*cx)/by;
|
|
double cz = sqrt(Cnorm * Cnorm - cx * cx - cy * cy); // sqrt(Cnorm^2 - cx^2 - cy^2);
|
|
|
|
a[0] = ax;
|
|
a[1] = 0.0;
|
|
a[2] = 0.0;
|
|
b[0] = bx;
|
|
b[1] = by;
|
|
b[2] = 0.0;
|
|
c[0] = cx;
|
|
c[1] = cy;
|
|
c[2] = cz;
|
|
}
|
|
|
|
// Function to calculate Euclidean distance between two points in N-dimensional space
|
|
double FitPOD::squareDistance(const double *a, const double *b, int DIMENSIONS)
|
|
{
|
|
double sum = 0.0;
|
|
for (int i = 0; i < DIMENSIONS; i++) { sum += (a[i] - b[i]) * (a[i] - b[i]); }
|
|
return sum;
|
|
}
|
|
|
|
// Function to assign points to the nearest cluster
|
|
void FitPOD::assignPointsToClusters(double *points, double *centroids, int *assignments,
|
|
int *clusterSizes, int NUM_POINTS, int NUM_CLUSTERS,
|
|
int DIMENSIONS)
|
|
{
|
|
// Initialize clusterSizes to zero
|
|
for (int i = 0; i < NUM_CLUSTERS; i++) { clusterSizes[i] = 0; }
|
|
|
|
for (int i = 0; i < NUM_POINTS; i++) {
|
|
double minDist = squareDistance(&points[i * DIMENSIONS], ¢roids[0], DIMENSIONS);
|
|
int closestCluster = 0;
|
|
for (int j = 1; j < NUM_CLUSTERS; j++) {
|
|
double dist = squareDistance(&points[i * DIMENSIONS], ¢roids[j * DIMENSIONS], DIMENSIONS);
|
|
if (dist < minDist) {
|
|
minDist = dist;
|
|
closestCluster = j;
|
|
}
|
|
}
|
|
assignments[i] = closestCluster;
|
|
clusterSizes[closestCluster]++;
|
|
}
|
|
}
|
|
|
|
// Function to update centroids based on point assignments
|
|
void FitPOD::updateCentroids(double *points, double *centroids, int *assignments, int *clusterSizes,
|
|
int NUM_POINTS, int NUM_CLUSTERS, int DIMENSIONS)
|
|
{
|
|
// Reset centroids for recalculation
|
|
for (int i = 0; i < NUM_CLUSTERS * DIMENSIONS; i++) { centroids[i] = 0.0; }
|
|
|
|
// Accumulate sum of points in each cluster
|
|
for (int i = 0; i < NUM_POINTS; i++) {
|
|
int cluster = assignments[i];
|
|
for (int j = 0; j < DIMENSIONS; j++) {
|
|
centroids[cluster * DIMENSIONS + j] += points[i * DIMENSIONS + j];
|
|
}
|
|
}
|
|
|
|
// Use MPI_Allreduce to sum up the local sums and cluster sizes across all processes
|
|
MPI_Allreduce(MPI_IN_PLACE, centroids, NUM_CLUSTERS * DIMENSIONS, MPI_DOUBLE, MPI_SUM, world);
|
|
MPI_Allreduce(MPI_IN_PLACE, clusterSizes, NUM_CLUSTERS, MPI_INT, MPI_SUM, world);
|
|
|
|
// Divide by number of points to get the mean (centroid)
|
|
for (int i = 0; i < NUM_CLUSTERS; i++) {
|
|
if (clusterSizes[i] != 0) {
|
|
for (int j = 0; j < DIMENSIONS; j++) { centroids[i * DIMENSIONS + j] /= clusterSizes[i]; }
|
|
}
|
|
}
|
|
}
|
|
|
|
// Function for K-means clustering
|
|
void FitPOD::KmeansClustering(double *points, double *centroids, int *assignments,
|
|
int *clusterSizes, int NUM_POINTS, int NUM_CLUSTERS, int DIMENSIONS,
|
|
int MAX_ITER)
|
|
{
|
|
for (int iter = 0; iter < MAX_ITER; iter++) {
|
|
assignPointsToClusters(points, centroids, assignments, clusterSizes, NUM_POINTS, NUM_CLUSTERS,
|
|
DIMENSIONS);
|
|
updateCentroids(points, centroids, assignments, clusterSizes, NUM_POINTS, NUM_CLUSTERS,
|
|
DIMENSIONS);
|
|
}
|
|
}
|
|
|
|
void FitPOD::savematrix2binfile(std::string filename, double *A, int nrows, int ncols)
|
|
{
|
|
FILE *fp = fopen(filename.c_str(), "wb");
|
|
double sz[2];
|
|
sz[0] = (double) nrows;
|
|
sz[1] = (double) ncols;
|
|
fwrite(reinterpret_cast<char *>(sz), sizeof(double) * (2), 1, fp);
|
|
fwrite(reinterpret_cast<char *>(A), sizeof(double) * (nrows * ncols), 1, fp);
|
|
fclose(fp);
|
|
}
|
|
|
|
void FitPOD::saveintmatrix2binfile(std::string filename, int *A, int nrows, int ncols)
|
|
{
|
|
FILE *fp = fopen(filename.c_str(), "wb");
|
|
int sz[2];
|
|
sz[0] = nrows;
|
|
sz[1] = ncols;
|
|
fwrite(reinterpret_cast<char *>(sz), sizeof(int) * (2), 1, fp);
|
|
fwrite(reinterpret_cast<char *>(A), sizeof(int) * (nrows * ncols), 1, fp);
|
|
fclose(fp);
|
|
}
|
|
|
|
void FitPOD::savedata2textfile(std::string filename, std::string text, double *A, int n, int m,
|
|
int dim)
|
|
{
|
|
if (comm->me == 0) {
|
|
int precision = 15;
|
|
FILE *fp = fopen(filename.c_str(), "w");
|
|
if (dim == 1) {
|
|
fmt::print(fp, text, n);
|
|
for (int i = 0; i < n; i++) fmt::print(fp, "{:<10.{}f} \n", A[i], precision);
|
|
} else if (dim == 2) {
|
|
fmt::print(fp, text, n);
|
|
fmt::print(fp, "{} \n", m);
|
|
for (int j = 0; j < n; j++) {
|
|
for (int i = 0; i < m; i++) fmt::print(fp, "{:<10.{}f} ", A[j + i * n], precision);
|
|
fmt::print(fp, " \n");
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
}
|