190 lines
6.4 KiB
C++
190 lines
6.4 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: German Samolyuk (ORNL) and
|
|
Mario Pinto (Computational Research Lab, Pune, India)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "compute_heat_flux.h"
|
|
|
|
#include "atom.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "modify.h"
|
|
#include "update.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeHeatFlux::ComputeHeatFlux(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg),
|
|
id_ke(nullptr), id_pe(nullptr), id_stress(nullptr),
|
|
c_ke(nullptr), c_pe(nullptr), c_stress(nullptr)
|
|
{
|
|
if (narg != 6) error->all(FLERR,"Illegal compute heat/flux command");
|
|
|
|
vector_flag = 1;
|
|
size_vector = 6;
|
|
extvector = 1;
|
|
|
|
// store ke/atom, pe/atom, stress/atom IDs used by heat flux computation
|
|
// ensure they are valid for these computations
|
|
|
|
id_ke = utils::strdup(arg[3]);
|
|
auto ike = modify->get_compute_by_id(id_ke);
|
|
if (!ike) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_ke);
|
|
if (!utils::strmatch(ike->style,"^ke/atom"))
|
|
error->all(FLERR,"Compute heat/flux compute ID {} does not compute ke/atom", id_ke);
|
|
|
|
id_pe = utils::strdup(arg[4]);
|
|
auto ipe = modify->get_compute_by_id(id_pe);
|
|
if (!ipe) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_pe);
|
|
if (ipe->peatomflag == 0)
|
|
error->all(FLERR,"Compute heat/flux compute ID {} does not compute pe/atom", id_pe);
|
|
|
|
id_stress = utils::strdup(arg[5]);
|
|
auto istress = modify->get_compute_by_id(id_stress);
|
|
if (!istress) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_stress);
|
|
if ((istress->pressatomflag != 1) && (istress->pressatomflag != 2))
|
|
error->all(FLERR,
|
|
"Compute heat/flux compute ID {} does not compute stress/atom or "
|
|
"centroid/stress/atom", id_stress);
|
|
|
|
vector = new double[size_vector];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeHeatFlux::~ComputeHeatFlux()
|
|
{
|
|
delete[] id_ke;
|
|
delete[] id_pe;
|
|
delete[] id_stress;
|
|
delete[] vector;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeHeatFlux::init()
|
|
{
|
|
// error checks
|
|
|
|
c_ke = modify->get_compute_by_id(id_ke);
|
|
if (!c_ke) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_ke);
|
|
c_pe = modify->get_compute_by_id(id_pe);
|
|
if (!c_pe) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_pe);
|
|
c_stress = modify->get_compute_by_id(id_stress);
|
|
if (!c_stress) error->all(FLERR,"Could not find compute heat/flux compute ID {}", id_stress);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeHeatFlux::compute_vector()
|
|
{
|
|
invoked_vector = update->ntimestep;
|
|
|
|
// invoke 3 computes if they haven't been already
|
|
|
|
if (!(c_ke->invoked_flag & Compute::INVOKED_PERATOM)) {
|
|
c_ke->compute_peratom();
|
|
c_ke->invoked_flag |= Compute::INVOKED_PERATOM;
|
|
}
|
|
if (!(c_pe->invoked_flag & Compute::INVOKED_PERATOM)) {
|
|
c_pe->compute_peratom();
|
|
c_pe->invoked_flag |= Compute::INVOKED_PERATOM;
|
|
}
|
|
if (!(c_stress->invoked_flag & Compute::INVOKED_PERATOM)) {
|
|
c_stress->compute_peratom();
|
|
c_stress->invoked_flag |= Compute::INVOKED_PERATOM;
|
|
}
|
|
|
|
// heat flux vector = jc[3] + jv[3]
|
|
// jc[3] = convective portion of heat flux = sum_i (ke_i + pe_i) v_i[3]
|
|
// jv[3] = virial portion of heat flux = sum_i (stress_tensor_i . v_i[3])
|
|
// normalization by volume is not included
|
|
|
|
double *ke = c_ke->vector_atom;
|
|
double *pe = c_pe->vector_atom;
|
|
double **stress = c_stress->array_atom;
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double jc[3] = {0.0,0.0,0.0};
|
|
double jv[3] = {0.0,0.0,0.0};
|
|
double eng;
|
|
|
|
// heat flux via centroid atomic stress
|
|
if (c_stress->pressatomflag == 2) {
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
eng = pe[i] + ke[i];
|
|
jc[0] += eng*v[i][0];
|
|
jc[1] += eng*v[i][1];
|
|
jc[2] += eng*v[i][2];
|
|
// stress[0]: rijx*fijx
|
|
// stress[1]: rijy*fijy
|
|
// stress[2]: rijz*fijz
|
|
// stress[3]: rijx*fijy
|
|
// stress[4]: rijx*fijz
|
|
// stress[5]: rijy*fijz
|
|
// stress[6]: rijy*fijx
|
|
// stress[7]: rijz*fijx
|
|
// stress[8]: rijz*fijy
|
|
// jv[0] = rijx fijx vjx + rijx fijy vjy + rijx fijz vjz
|
|
jv[0] -= stress[i][0]*v[i][0] + stress[i][3]*v[i][1] +
|
|
stress[i][4]*v[i][2];
|
|
// jv[1] = rijy fijx vjx + rijy fijy vjy + rijy fijz vjz
|
|
jv[1] -= stress[i][6]*v[i][0] + stress[i][1]*v[i][1] +
|
|
stress[i][5]*v[i][2];
|
|
// jv[2] = rijz fijx vjx + rijz fijy vjy + rijz fijz vjz
|
|
jv[2] -= stress[i][7]*v[i][0] + stress[i][8]*v[i][1] +
|
|
stress[i][2]*v[i][2];
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
eng = pe[i] + ke[i];
|
|
jc[0] += eng*v[i][0];
|
|
jc[1] += eng*v[i][1];
|
|
jc[2] += eng*v[i][2];
|
|
jv[0] -= stress[i][0]*v[i][0] + stress[i][3]*v[i][1] +
|
|
stress[i][4]*v[i][2];
|
|
jv[1] -= stress[i][3]*v[i][0] + stress[i][1]*v[i][1] +
|
|
stress[i][5]*v[i][2];
|
|
jv[2] -= stress[i][4]*v[i][0] + stress[i][5]*v[i][1] +
|
|
stress[i][2]*v[i][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert jv from stress*volume to energy units via nktv2p factor
|
|
|
|
double nktv2p = force->nktv2p;
|
|
jv[0] /= nktv2p;
|
|
jv[1] /= nktv2p;
|
|
jv[2] /= nktv2p;
|
|
|
|
// sum across all procs
|
|
// 1st 3 terms are total heat flux
|
|
// 2nd 3 terms are just conductive portion
|
|
|
|
double data[6] = {jc[0]+jv[0],jc[1]+jv[1],jc[2]+jv[2],jc[0],jc[1],jc[2]};
|
|
MPI_Allreduce(data,vector,6,MPI_DOUBLE,MPI_SUM,world);
|
|
}
|