763 lines
21 KiB
C++
763 lines
21 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "compute_temp_chunk.h"
|
|
|
|
#include "atom.h"
|
|
#include "compute_chunk_atom.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "update.h"
|
|
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
enum { TEMP, KECOM, INTERNAL };
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeTempChunk::ComputeTempChunk(LAMMPS *lmp, int narg, char **arg) :
|
|
ComputeChunk(lmp, narg, arg), which(nullptr), id_bias(nullptr), sum(nullptr), sumall(nullptr),
|
|
count(nullptr), countall(nullptr), massproc(nullptr), masstotal(nullptr), vcm(nullptr),
|
|
vcmall(nullptr)
|
|
{
|
|
scalar_flag = vector_flag = 1;
|
|
size_vector = 6;
|
|
extscalar = 0;
|
|
extvector = 1;
|
|
tempflag = 1;
|
|
|
|
biasflag = 0;
|
|
ComputeTempChunk::init();
|
|
|
|
// optional per-chunk values
|
|
|
|
nvalues = narg - 4;
|
|
which = new int[nvalues];
|
|
nvalues = 0;
|
|
|
|
int iarg = 4;
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg], "temp") == 0)
|
|
which[nvalues] = TEMP;
|
|
else if (strcmp(arg[iarg], "kecom") == 0)
|
|
which[nvalues] = KECOM;
|
|
else if (strcmp(arg[iarg], "internal") == 0)
|
|
which[nvalues] = INTERNAL;
|
|
else
|
|
break;
|
|
iarg++;
|
|
nvalues++;
|
|
}
|
|
|
|
// optional args
|
|
|
|
comflag = 0;
|
|
biasflag = 0;
|
|
id_bias = nullptr;
|
|
adof = domain->dimension;
|
|
cdof = 0.0;
|
|
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg], "com") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
|
|
comflag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "bias") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
|
|
biasflag = 1;
|
|
id_bias = utils::strdup(arg[iarg + 1]);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "adof") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
|
|
adof = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg], "cdof") == 0) {
|
|
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
|
|
cdof = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
|
|
iarg += 2;
|
|
} else
|
|
error->all(FLERR, "Illegal compute temp/chunk command");
|
|
}
|
|
|
|
// error check on bias compute
|
|
|
|
if (biasflag) {
|
|
tbias = modify->get_compute_by_id(id_bias);
|
|
if (!tbias) error->all(FLERR, "Could not find compute {} for temperature bias", id_bias);
|
|
|
|
if (tbias->tempflag == 0) error->all(FLERR, "Bias compute does not calculate temperature");
|
|
if (tbias->tempbias == 0) error->all(FLERR, "Bias compute does not calculate a velocity bias");
|
|
}
|
|
|
|
// this compute only calculates a bias, if comflag is set
|
|
// won't be two biases since comflag and biasflag cannot both be set
|
|
|
|
if (comflag && biasflag)
|
|
error->all(FLERR, "Cannot use both com and bias with compute temp/chunk");
|
|
if (comflag) tempbias = 1;
|
|
|
|
// vector data
|
|
|
|
vector = new double[size_vector];
|
|
|
|
if (nvalues) {
|
|
array_flag = 1;
|
|
size_array_cols = nvalues;
|
|
size_array_rows = 0;
|
|
size_array_rows_variable = 1;
|
|
extarray = 0;
|
|
}
|
|
|
|
ComputeTempChunk::allocate();
|
|
comstep = -1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeTempChunk::~ComputeTempChunk()
|
|
{
|
|
delete[] which;
|
|
delete[] id_bias;
|
|
delete[] vector;
|
|
memory->destroy(sum);
|
|
memory->destroy(sumall);
|
|
memory->destroy(count);
|
|
memory->destroy(countall);
|
|
memory->destroy(array);
|
|
memory->destroy(massproc);
|
|
memory->destroy(masstotal);
|
|
memory->destroy(vcm);
|
|
memory->destroy(vcmall);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::init()
|
|
{
|
|
ComputeChunk::init();
|
|
|
|
if (biasflag) {
|
|
tbias = modify->get_compute_by_id(id_bias);
|
|
if (!tbias) error->all(FLERR, "Could not find compute ID {} for temperature bias", id_bias);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double ComputeTempChunk::compute_scalar()
|
|
{
|
|
int i, index;
|
|
|
|
invoked_scalar = update->ntimestep;
|
|
|
|
// calculate chunk assignments,
|
|
// since only atoms in chunks contribute to global temperature
|
|
// compute chunk/atom assigns atoms to chunk IDs
|
|
// extract ichunk index vector from compute
|
|
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
|
|
|
|
nchunk = cchunk->setup_chunks();
|
|
cchunk->compute_ichunk();
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
if (nchunk > maxchunk) allocate();
|
|
|
|
// remove velocity bias
|
|
|
|
if (biasflag) {
|
|
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
|
|
tbias->remove_bias_all();
|
|
}
|
|
|
|
// calculate COM velocity for each chunk
|
|
// won't be invoked with bias also removed = 2 biases
|
|
|
|
if (comflag && comstep != update->ntimestep) vcm_compute();
|
|
|
|
// calculate global temperature, optionally removing COM velocity
|
|
|
|
double **v = atom->v;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double t = 0.0;
|
|
int mycount = 0;
|
|
|
|
if (!comflag) {
|
|
if (rmass) {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
t += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * rmass[i];
|
|
mycount++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
t += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * mass[type[i]];
|
|
mycount++;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
double vx, vy, vz;
|
|
if (rmass) {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
t += (vx * vx + vy * vy + vz * vz) * rmass[i];
|
|
mycount++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
t += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
|
|
mycount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// restore velocity bias
|
|
|
|
if (biasflag) tbias->restore_bias_all();
|
|
|
|
// final temperature
|
|
|
|
MPI_Allreduce(&t, &scalar, 1, MPI_DOUBLE, MPI_SUM, world);
|
|
double rcount = mycount;
|
|
double allcount;
|
|
MPI_Allreduce(&rcount, &allcount, 1, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
double dof = nchunk * cdof + adof * allcount;
|
|
double tfactor = 0.0;
|
|
if (dof > 0.0) tfactor = force->mvv2e / (dof * force->boltz);
|
|
if (dof < 0.0 && allcount > 0.0) error->all(FLERR, "Temperature compute degrees of freedom < 0");
|
|
scalar *= tfactor;
|
|
return scalar;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::compute_vector()
|
|
{
|
|
int i, index;
|
|
|
|
ComputeChunk::compute_vector();
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
// remove velocity bias
|
|
|
|
if (biasflag) {
|
|
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
|
|
tbias->remove_bias_all();
|
|
}
|
|
|
|
// calculate COM velocity for each chunk
|
|
// won't be invoked with bias also removed = 2 biases
|
|
|
|
if (comflag && comstep != update->ntimestep) vcm_compute();
|
|
|
|
// calculate KE tensor, optionally removing COM velocity
|
|
|
|
double **v = atom->v;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double massone, t[6];
|
|
for (i = 0; i < 6; i++) t[i] = 0.0;
|
|
|
|
if (!comflag) {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
if (rmass)
|
|
massone = rmass[i];
|
|
else
|
|
massone = mass[type[i]];
|
|
t[0] += massone * v[i][0] * v[i][0];
|
|
t[1] += massone * v[i][1] * v[i][1];
|
|
t[2] += massone * v[i][2] * v[i][2];
|
|
t[3] += massone * v[i][0] * v[i][1];
|
|
t[4] += massone * v[i][0] * v[i][2];
|
|
t[5] += massone * v[i][1] * v[i][2];
|
|
}
|
|
} else {
|
|
double vx, vy, vz;
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
if (rmass)
|
|
massone = rmass[i];
|
|
else
|
|
massone = mass[type[i]];
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
t[0] += massone * vx * vx;
|
|
t[1] += massone * vy * vy;
|
|
t[2] += massone * vz * vz;
|
|
t[3] += massone * vx * vy;
|
|
t[4] += massone * vx * vz;
|
|
t[5] += massone * vy * vz;
|
|
}
|
|
}
|
|
|
|
// restore velocity bias
|
|
|
|
if (biasflag) tbias->restore_bias_all();
|
|
|
|
// final KE
|
|
|
|
MPI_Allreduce(t, vector, 6, MPI_DOUBLE, MPI_SUM, world);
|
|
for (i = 0; i < 6; i++) vector[i] *= force->mvv2e;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::compute_array()
|
|
{
|
|
ComputeChunk::compute_array();
|
|
|
|
// remove velocity bias
|
|
|
|
if (biasflag) {
|
|
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
|
|
tbias->remove_bias_all();
|
|
}
|
|
|
|
// calculate COM velocity for each chunk whether comflag set or not
|
|
// needed by some values even if comflag not set
|
|
// important to do this after velocity bias is removed
|
|
// otherwise per-chunk values that use both v and vcm will be inconsistent
|
|
|
|
if (comstep != update->ntimestep) vcm_compute();
|
|
|
|
// compute each value
|
|
|
|
for (int i = 0; i < nvalues; i++) {
|
|
if (which[i] == TEMP)
|
|
temperature(i);
|
|
else if (which[i] == KECOM)
|
|
kecom(i);
|
|
else if (which[i] == INTERNAL)
|
|
internal(i);
|
|
}
|
|
|
|
// restore velocity bias
|
|
|
|
if (biasflag) tbias->restore_bias_all();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
calculate velocity of COM for each chunk
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::vcm_compute()
|
|
{
|
|
int i, index;
|
|
double massone;
|
|
|
|
// avoid re-computing VCM more than once per step
|
|
|
|
comstep = update->ntimestep;
|
|
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
for (i = 0; i < nchunk; i++) {
|
|
vcm[i][0] = vcm[i][1] = vcm[i][2] = 0.0;
|
|
massproc[i] = 0.0;
|
|
}
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int *type = atom->type;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
if (rmass)
|
|
massone = rmass[i];
|
|
else
|
|
massone = mass[type[i]];
|
|
vcm[index][0] += v[i][0] * massone;
|
|
vcm[index][1] += v[i][1] * massone;
|
|
vcm[index][2] += v[i][2] * massone;
|
|
massproc[index] += massone;
|
|
}
|
|
|
|
MPI_Allreduce(&vcm[0][0], &vcmall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world);
|
|
MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
for (i = 0; i < nchunk; i++) {
|
|
if (masstotal[i] > 0.0) {
|
|
vcmall[i][0] /= masstotal[i];
|
|
vcmall[i][1] /= masstotal[i];
|
|
vcmall[i][2] /= masstotal[i];
|
|
} else {
|
|
vcmall[i][0] = vcmall[i][1] = vcmall[i][2] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
temperature of each chunk
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::temperature(int icol)
|
|
{
|
|
int i, index;
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
// zero local per-chunk values
|
|
|
|
for (i = 0; i < nchunk; i++) {
|
|
count[i] = 0;
|
|
sum[i] = 0.0;
|
|
}
|
|
|
|
// per-chunk temperature, option for removing COM velocity
|
|
|
|
double **v = atom->v;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int *mask = atom->mask;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
if (!comflag) {
|
|
if (rmass) {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
sum[index] += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * rmass[i];
|
|
count[index]++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
sum[index] += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * mass[type[i]];
|
|
count[index]++;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
double vx, vy, vz;
|
|
if (rmass) {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
|
|
count[index]++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
|
|
count[index]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// sum across procs
|
|
|
|
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
|
|
MPI_Allreduce(count, countall, nchunk, MPI_INT, MPI_SUM, world);
|
|
|
|
// normalize temperatures by per-chunk DOF
|
|
|
|
double dof, tfactor;
|
|
double mvv2e = force->mvv2e;
|
|
double boltz = force->boltz;
|
|
|
|
for (i = 0; i < nchunk; i++) {
|
|
dof = cdof + adof * countall[i];
|
|
if (dof > 0.0)
|
|
tfactor = mvv2e / (dof * boltz);
|
|
else
|
|
tfactor = 0.0;
|
|
array[i][icol] = tfactor * sumall[i];
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
KE of entire chunk moving at VCM
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::kecom(int icol)
|
|
{
|
|
int index;
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
// zero local per-chunk values
|
|
|
|
for (int i = 0; i < nchunk; i++) sum[i] = 0.0;
|
|
|
|
// per-chunk COM KE
|
|
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int *mask = atom->mask;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double vx, vy, vz;
|
|
if (rmass) {
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = vcmall[index][0];
|
|
vy = vcmall[index][1];
|
|
vz = vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = vcmall[index][0];
|
|
vy = vcmall[index][1];
|
|
vz = vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
|
|
}
|
|
}
|
|
|
|
// sum across procs
|
|
|
|
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
double mvv2e = force->mvv2e;
|
|
for (int i = 0; i < nchunk; i++) array[i][icol] = 0.5 * mvv2e * sumall[i];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
internal KE of each chunk around its VCM
|
|
computed using per-atom velocities with chunk VCM subtracted off
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::internal(int icol)
|
|
{
|
|
int index;
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
// zero local per-chunk values
|
|
|
|
for (int i = 0; i < nchunk; i++) sum[i] = 0.0;
|
|
|
|
// per-chunk internal KE
|
|
|
|
double **v = atom->v;
|
|
double *mass = atom->mass;
|
|
double *rmass = atom->rmass;
|
|
int *mask = atom->mask;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double vx, vy, vz;
|
|
if (rmass) {
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
vx = v[i][0] - vcmall[index][0];
|
|
vy = v[i][1] - vcmall[index][1];
|
|
vz = v[i][2] - vcmall[index][2];
|
|
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
|
|
}
|
|
}
|
|
|
|
// sum across procs
|
|
|
|
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
|
|
|
|
double mvv2e = force->mvv2e;
|
|
for (int i = 0; i < nchunk; i++) array[i][icol] = 0.5 * mvv2e * sumall[i];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
bias methods: called by thermostats
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
remove velocity bias from atom I to leave thermal velocity
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::remove_bias(int i, double *v)
|
|
{
|
|
int index = cchunk->ichunk[i] - 1;
|
|
if (index < 0) return;
|
|
v[0] -= vcmall[index][0];
|
|
v[1] -= vcmall[index][1];
|
|
v[2] -= vcmall[index][2];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
remove velocity bias from all atoms to leave thermal velocity
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::remove_bias_all()
|
|
{
|
|
int index;
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
v[i][0] -= vcmall[index][0];
|
|
v[i][1] -= vcmall[index][1];
|
|
v[i][2] -= vcmall[index][2];
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
add back in velocity bias to atom I removed by remove_bias()
|
|
assume remove_bias() was previously called
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::restore_bias(int i, double *v)
|
|
{
|
|
int index = cchunk->ichunk[i] - 1;
|
|
if (index < 0) return;
|
|
v[0] += vcmall[index][0];
|
|
v[1] += vcmall[index][1];
|
|
v[2] += vcmall[index][2];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
add back in velocity bias to all atoms removed by remove_bias_all()
|
|
assume remove_bias_all() was previously called
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::restore_bias_all()
|
|
{
|
|
int index;
|
|
int *ichunk = cchunk->ichunk;
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
index = ichunk[i] - 1;
|
|
if (index < 0) continue;
|
|
v[i][0] += vcmall[index][0];
|
|
v[i][1] += vcmall[index][1];
|
|
v[i][2] += vcmall[index][2];
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
free and reallocate per-chunk arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void ComputeTempChunk::allocate()
|
|
{
|
|
ComputeChunk::allocate();
|
|
memory->destroy(sum);
|
|
memory->destroy(sumall);
|
|
memory->destroy(count);
|
|
memory->destroy(countall);
|
|
memory->destroy(array);
|
|
maxchunk = nchunk;
|
|
memory->create(sum, maxchunk, "temp/chunk:sum");
|
|
memory->create(sumall, maxchunk, "temp/chunk:sumall");
|
|
memory->create(count, maxchunk, "temp/chunk:count");
|
|
memory->create(countall, maxchunk, "temp/chunk:countall");
|
|
memory->create(array, maxchunk, nvalues, "temp/chunk:array");
|
|
|
|
if (comflag || nvalues) {
|
|
memory->destroy(massproc);
|
|
memory->destroy(masstotal);
|
|
memory->destroy(vcm);
|
|
memory->destroy(vcmall);
|
|
memory->create(massproc, maxchunk, "vcm/chunk:massproc");
|
|
memory->create(masstotal, maxchunk, "vcm/chunk:masstotal");
|
|
memory->create(vcm, maxchunk, 3, "vcm/chunk:vcm");
|
|
memory->create(vcmall, maxchunk, 3, "vcm/chunk:vcmall");
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local data
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeTempChunk::memory_usage()
|
|
{
|
|
double bytes = (double) maxchunk * 2 * sizeof(double) + ComputeChunk::memory_usage();
|
|
bytes += (double) maxchunk * 2 * sizeof(int);
|
|
bytes += (double) maxchunk * nvalues * sizeof(double);
|
|
if (comflag || nvalues) {
|
|
bytes += (double) maxchunk * 2 * sizeof(double);
|
|
bytes += (double) maxchunk * 2 * 3 * sizeof(double);
|
|
}
|
|
return bytes;
|
|
}
|