Files
lammps/src/MANYBODY/pair_polymorphic.cpp
2021-10-06 16:49:48 -04:00

964 lines
28 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Reese Jones, Xiaowang Zhou (SNL)
This modifies from pair_tersoff.cpp by Aidan Thompson (SNL)
------------------------------------------------------------------------- */
// uncomment define to enable writing table files for debugging
// #define LMP_POLYMORPHIC_WRITE_TABLES 1
#include "pair_polymorphic.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_extra.h"
#include "memory.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "potential_file_reader.h"
#include "tabular_function.h"
#include "tokenizer.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace MathExtra;
#define MAXLINE 1024
#define DELTA 4
/* ---------------------------------------------------------------------- */
PairPolymorphic::PairParameters::PairParameters()
{
cut = 0.0;
cutsq = 0.0;
xi = 0.0;
U = nullptr;
V = nullptr;
W = nullptr;
F = nullptr;
}
PairPolymorphic::PairParameters::~PairParameters()
{
delete U;
delete V;
delete W;
delete F;
}
/* ---------------------------------------------------------------------- */
PairPolymorphic::TripletParameters::TripletParameters()
{
P = nullptr;
G = nullptr;
}
PairPolymorphic::TripletParameters::~TripletParameters()
{
delete P;
delete G;
}
/* ---------------------------------------------------------------------- */
PairPolymorphic::PairPolymorphic(LAMMPS *lmp) : Pair(lmp)
{
single_enable = 0;
restartinfo = 0;
one_coeff = 1;
manybody_flag = 1;
centroidstressflag = CENTROID_NOTAVAIL;
match = nullptr;
pairParameters = nullptr;
tripletParameters = nullptr;
elem2param = nullptr;
elem3param = nullptr;
epsilon = 0.0;
neighsize = 0;
firstneighV = nullptr;
firstneighW = nullptr;
firstneighW1 = nullptr;
delxV = nullptr;
delyV = nullptr;
delzV = nullptr;
drV = nullptr;
delxW = nullptr;
delyW = nullptr;
delzW = nullptr;
drW = nullptr;
}
/* ----------------------------------------------------------------------
check if allocated, since class can be destructed when incomplete
------------------------------------------------------------------------- */
PairPolymorphic::~PairPolymorphic()
{
delete [] match;
delete [] pairParameters;
delete [] tripletParameters;
memory->destroy(elem2param);
memory->destroy(elem3param);
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
delete [] firstneighV;
delete [] firstneighW;
delete [] firstneighW1;
delete [] delxV;
delete [] delyV;
delete [] delzV;
delete [] drV;
delete [] delxW;
delete [] delyW;
delete [] delzW;
delete [] drW;
}
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::compute(int eflag, int vflag)
{
tagint itag,jtag;
int i,j,k,ii,jj,kk,kk1,inum,jnum;
int itype,jtype,ktype;
int iparam_ii,iparam_jj,iparam_kk,iparam_ij,iparam_ik,iparam_ijk;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double rsq,r0,r1,r2;
double delr1[3],delr2[3],fi[3],fj[3],fk[3];
double zeta_ij,prefactor,wfac,pfac,gfac,fa,fa_d,bij,bij_d;
double costheta;
int *ilist,*jlist,*numneigh,**firstneigh;
double emb;
evdwl = 0.0;
ev_init(eflag,vflag);
double **x = atom->x;
double **f = atom->f;
tagint *tag = atom->tag;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over full neighbor list of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itag = tag[i];
itype = map[type[i]];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
if (neighsize < jnum) {
delete [] firstneighV;
delete [] delxV;
delete [] delyV;
delete [] delzV;
delete [] drV;
delete [] firstneighW;
delete [] delxW;
delete [] delyW;
delete [] delzW;
delete [] drW;
delete [] firstneighW1;
neighsize = jnum + 20;
firstneighV = new int[neighsize];
delxV = new double[neighsize];
delyV = new double[neighsize];
delzV = new double[neighsize];
drV = new double[neighsize];
firstneighW = new int[neighsize];
delxW = new double[neighsize];
delyW = new double[neighsize];
delzW = new double[neighsize];
drW = new double[neighsize];
firstneighW1 = new int[neighsize];
}
if (eta == 1) {
iparam_ii = elem2param[itype][itype];
PairParameters &p = pairParameters[iparam_ii];
emb = (p.F)->get_vmax();
}
numneighV = -1;
numneighW = -1;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = map[type[j]];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq >= cutmaxsq) continue;
r0 = sqrt(rsq);
iparam_ij = elem2param[itype][jtype];
PairParameters &p = pairParameters[iparam_ij];
// do not include the neighbor if get_vmax() <= epsilon because the function is near zero
if (eta == 1) {
if (emb > epsilon) {
iparam_jj = elem2param[jtype][jtype];
PairParameters &q = pairParameters[iparam_jj];
if (rsq < (q.W)->get_xmaxsq() && (q.W)->get_vmax() > epsilon) {
numneighW = numneighW + 1;
firstneighW[numneighW] = j;
delxW[numneighW] = delx;
delyW[numneighW] = dely;
delzW[numneighW] = delz;
drW[numneighW] = r0;
}
}
} else {
if ((p.F)->get_vmax() > epsilon) {
if (rsq < (p.V)->get_xmaxsq() && (p.V)->get_vmax() > epsilon) {
numneighV = numneighV + 1;
firstneighV[numneighV] = j;
delxV[numneighV] = delx;
delyV[numneighV] = dely;
delzV[numneighV] = delz;
drV[numneighV] = r0;
}
if (rsq < (p.W)->get_xmaxsq() && (p.W)->get_vmax() > epsilon) {
numneighW = numneighW + 1;
firstneighW[numneighW] = j;
delxW[numneighW] = delx;
delyW[numneighW] = dely;
delzW[numneighW] = delz;
drW[numneighW] = r0;
}
}
}
// two-body interactions, skip half of them
jtag = tag[j];
if (itag > jtag) {
if ((itag+jtag) % 2 == 0) continue;
} else if (itag < jtag) {
if ((itag+jtag) % 2 == 1) continue;
} else {
if (x[j][2] < x[i][2]) continue;
if (x[j][2] == ztmp && x[j][1] < ytmp) continue;
if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp) continue;
}
if (rsq >= (p.U)->get_xmaxsq() || (p.U)->get_vmax() <= epsilon) continue;
(p.U)->value(r0,evdwl,eflag,fpair,1);
fpair = -fpair/r0;
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
}
if (eta == 1) {
if (emb > epsilon) {
iparam_ii = elem2param[itype][itype];
PairParameters &p = pairParameters[iparam_ii];
// accumulate bondorder zeta for each i-j interaction via loop over k
zeta_ij = 0.0;
for (kk = 0; kk <= numneighW; kk++) {
k = firstneighW[kk];
ktype = map[type[k]];
iparam_kk = elem2param[ktype][ktype];
PairParameters &q = pairParameters[iparam_kk];
(q.W)->value(drW[kk],wfac,1,fpair,0);
zeta_ij += wfac;
}
// pairwise force due to zeta
(p.F)->value(zeta_ij,bij,1,bij_d,1);
prefactor = 0.5* bij_d;
if (eflag) evdwl = -0.5*bij;
if (evflag) ev_tally(i,i,nlocal,newton_pair,evdwl,0.0,0.0,delx,dely,delz);
// attractive term via loop over k
for (kk = 0; kk <= numneighW; kk++) {
k = firstneighW[kk];
ktype = map[type[k]];
delr2[0] = -delxW[kk];
delr2[1] = -delyW[kk];
delr2[2] = -delzW[kk];
iparam_kk = elem2param[ktype][ktype];
PairParameters &q = pairParameters[iparam_kk];
(q.W)->value(drW[kk],wfac,0,fpair,1);
fpair = -prefactor*fpair/drW[kk];
f[i][0] += delr2[0]*fpair;
f[i][1] += delr2[1]*fpair;
f[i][2] += delr2[2]*fpair;
f[k][0] -= delr2[0]*fpair;
f[k][1] -= delr2[1]*fpair;
f[k][2] -= delr2[2]*fpair;
if (vflag_either) v_tally2(i, k, -fpair, delr2);
}
}
} else {
for (jj = 0; jj <= numneighV; jj++) {
j = firstneighV[jj];
jtype = map[type[j]];
iparam_ij = elem2param[itype][jtype];
PairParameters &p = pairParameters[iparam_ij];
delr1[0] = -delxV[jj];
delr1[1] = -delyV[jj];
delr1[2] = -delzV[jj];
r1 = drV[jj];
// accumulate bondorder zeta for each i-j interaction via loop over k
zeta_ij = 0.0;
numneighW1 = -1;
for (kk = 0; kk <= numneighW; kk++) {
k = firstneighW[kk];
if (j == k) continue;
ktype = map[type[k]];
iparam_ijk = elem3param[jtype][itype][ktype];
TripletParameters &trip = tripletParameters[iparam_ijk];
if ((trip.G)->get_vmax() <= epsilon) continue;
numneighW1 = numneighW1 + 1;
firstneighW1[numneighW1] = kk;
delr2[0] = -delxW[kk];
delr2[1] = -delyW[kk];
delr2[2] = -delzW[kk];
r2 = drW[kk];
costheta = (delr1[0]*delr2[0] + delr1[1]*delr2[1] +
delr1[2]*delr2[2]) / (r1*r2);
iparam_ik = elem2param[itype][ktype];
PairParameters &q = pairParameters[iparam_ik];
(q.W)->value(r2,wfac,1,fpair,0);
(trip.P)->value(r1-(p.xi)*r2,pfac,1,fpair,0);
(trip.G)->value(costheta,gfac,1,fpair,0);
zeta_ij += wfac*pfac*gfac;
}
// pairwise force due to zeta
(p.V)->value(r1,fa,1,fa_d,1);
(p.F)->value(zeta_ij,bij,1,bij_d,1);
fpair = -0.5*bij*fa_d / r1;
prefactor = 0.5* fa * bij_d;
if (eflag) evdwl = -0.5*bij*fa;
f[i][0] += delr1[0]*fpair;
f[i][1] += delr1[1]*fpair;
f[i][2] += delr1[2]*fpair;
f[j][0] -= delr1[0]*fpair;
f[j][1] -= delr1[1]*fpair;
f[j][2] -= delr1[2]*fpair;
if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,
-fpair,-delr1[0],-delr1[1],-delr1[2]);
// attractive term via loop over k
for (kk1 = 0; kk1 <= numneighW1; kk1++) {
kk = firstneighW1[kk1];
k = firstneighW[kk];
ktype = map[type[k]];
iparam_ijk = elem3param[jtype][itype][ktype];
TripletParameters &trip = tripletParameters[iparam_ijk];
delr2[0] = -delxW[kk];
delr2[1] = -delyW[kk];
delr2[2] = -delzW[kk];
r2 = drW[kk];
iparam_ik = elem2param[itype][ktype];
PairParameters &q = pairParameters[iparam_ik];
attractive(&p,&q,&trip,prefactor,r1,r2,delr1,delr2,fi,fj,fk);
f[i][0] += fi[0];
f[i][1] += fi[1];
f[i][2] += fi[2];
f[j][0] += fj[0];
f[j][1] += fj[1];
f[j][2] += fj[2];
f[k][0] += fk[0];
f[k][1] += fk[1];
f[k][2] += fk[2];
if (vflag_either) v_tally3(i,j,k,fj,fk,delr1,delr2);
}
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
memory->create(cutsq,n+1,n+1,"pair:cutsq");
map = new int[n+1];
neighsize = 40;
firstneighV = new int[neighsize];
delxV = new double[neighsize];
delyV = new double[neighsize];
delzV = new double[neighsize];
drV = new double[neighsize];
firstneighW = new int[neighsize];
delxW = new double[neighsize];
delyW = new double[neighsize];
delzW = new double[neighsize];
drW = new double[neighsize];
firstneighW1 = new int[neighsize];
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairPolymorphic::settings(int narg, char **/*arg*/)
{
if (narg != 0) error->all(FLERR,"Illegal pair_style command");
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairPolymorphic::coeff(int narg, char **arg)
{
if (!allocated) allocate();
// parse and remove optional last parameter
if (narg == 4 + atom->ntypes)
epsilon = utils::numeric(FLERR,arg[--narg],false,lmp);
map_element2type(narg-3,arg+3);
// read potential file and initialize potential parameters
read_file(arg[2]);
setup_params();
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairPolymorphic::init_style()
{
if (atom->tag_enable == 0)
error->all(FLERR,"Pair style polymorphic requires atom IDs");
if (force->newton_pair == 0)
error->all(FLERR,"Pair style polymorphic requires newton pair on");
// need a full neighbor list
int irequest = neighbor->request(this);
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairPolymorphic::init_one(int i, int j)
{
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
return cutmax;
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::read_file(char *file)
{
PotentialFileReader * reader = nullptr;
// read potential
if (comm->me == 0) {
try {
reader = new PotentialFileReader(lmp, file, "polymorphic");
ValueTokenizer values = reader->next_values(2);
int ntypes = values.next_int();
if (ntypes != nelements)
error->one(FLERR,"Incorrect number of elements in potential file");
eta = values.next_int();
// map the elements in the potential file to LAMMPS atom types
delete [] match;
match = new int[nelements];
for (int i = 0; i < nelements; i++) {
values = reader->next_values(3);
values.next_double(); // atomic number
values.next_double(); // atomic mass
std::string name = values.next_string();
int j;
for (j = 0; j < nelements; j++) {
if (name == elements[j]) break;
}
if (j == nelements) error->one(FLERR,"Element not defined in potential file");
match[i] = j;
}
// sizes
// Note: the format of this line has changed between the
// 2015-06-06 and 2015-12-09 versions of the pair style.
try {
values = reader->next_values(4);
nr = ng = nx = 0;
nr = values.next_int();
ng = values.next_int();
nx = values.next_int();
maxX = values.next_double();
if ((ng == 0) || (nr == 0) || (nx == 0))
error->one(FLERR,"Error reading potential file header");
} catch (TokenizerException &) {
error->one(FLERR,"Potential file incompatible with this pair style version");
}
// cutoffs
npair = nelements*(nelements+1)/2;
ntriple = nelements*nelements*nelements;
delete [] pairParameters;
delete [] tripletParameters;
pairParameters = new PairParameters[npair];
tripletParameters = new TripletParameters[ntriple];
for (int i = 0; i < npair; i++) {
PairParameters &p = pairParameters[i];
values = reader->next_values(2);
p.cut = values.next_double();
p.cutsq = p.cut*p.cut;
p.xi = values.next_double();
}
} catch (TokenizerException &e) {
error->one(FLERR, e.what());
}
}
MPI_Bcast(&nr, 1, MPI_INT, 0, world);
MPI_Bcast(&ng, 1, MPI_INT, 0, world);
MPI_Bcast(&nx, 1, MPI_INT, 0, world);
MPI_Bcast(&eta, 1, MPI_INT, 0, world);
MPI_Bcast(&maxX, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&npair, 1, MPI_INT, 0, world);
MPI_Bcast(&ntriple, 1, MPI_INT, 0, world);
if (comm->me != 0) {
delete [] match;
match = new int[nelements];
delete [] pairParameters;
delete [] tripletParameters;
pairParameters = new PairParameters[npair];
tripletParameters = new TripletParameters[ntriple];
}
MPI_Bcast(match, nelements, MPI_INT, 0, world);
MPI_Bcast(pairParameters, npair*sizeof(PairParameters), MPI_BYTE, 0, world);
// start reading tabular functions
double * singletable = new double[nr];
for (int i = 0; i < npair; i++) { // U
PairParameters &p = pairParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
p.U = new TabularFunction;
(p.U)->set_values(nr,0.0,p.cut,singletable);
}
for (int i = 0; i < npair; i++) { // V
PairParameters &p = pairParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
p.V = new TabularFunction;
(p.V)->set_values(nr,0.0,p.cut,singletable);
}
for (int i = 0; i < npair; i++) { // W
PairParameters &p = pairParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
p.W = new TabularFunction;
(p.W)->set_values(nr,0.0,p.cut,singletable);
}
cutmax = 0.0;
for (int i = 0; i < npair; i++) {
PairParameters &p = pairParameters[i];
if (p.cut > cutmax) cutmax = p.cut;
}
cutmaxsq = cutmax*cutmax;
if (eta != 3) {
for (int j = 0; j < nelements; j++) { // P
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
for (int i = 0; i < nelements; i++) {
TripletParameters &p = tripletParameters[i*nelements*nelements+j*nelements+j];
p.P = new TabularFunction;
(p.P)->set_values(nr,-cutmax,cutmax,singletable);
}
}
for (int j = 0; j < nelements-1; j++) { // P
for (int k = j+1; k < nelements; k++) {
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
for (int i = 0; i < nelements; i++) {
TripletParameters &p = tripletParameters[i*nelements*nelements+j*nelements+k];
p.P = new TabularFunction;
(p.P)->set_values(nr,-cutmax,cutmax,singletable);
TripletParameters &q = tripletParameters[i*nelements*nelements+k*nelements+j];
q.P = new TabularFunction;
(q.P)->set_values(nr,-cutmax,cutmax,singletable);
}
}
}
}
if (eta == 3) {
for (int i = 0; i < ntriple; i++) { // P
TripletParameters &p = tripletParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, nr);
MPI_Bcast(singletable,nr,MPI_DOUBLE,0,world);
p.P = new TabularFunction;
(p.P)->set_values(nr,-cutmax,cutmax,singletable);
}
}
delete[] singletable;
singletable = new double[ng];
for (int i = 0; i < ntriple; i++) { // G
TripletParameters &p = tripletParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, ng);
MPI_Bcast(singletable,ng,MPI_DOUBLE,0,world);
p.G = new TabularFunction;
(p.G)->set_values(ng,-1.0,1.0,singletable);
}
delete[] singletable;
singletable = new double[nx];
for (int i = 0; i < npair; i++) { // F
PairParameters &p = pairParameters[i];
if (comm->me == 0) reader->next_dvector(singletable, nx);
MPI_Bcast(singletable,nx,MPI_DOUBLE,0,world);
p.F = new TabularFunction;
(p.F)->set_values(nx,0.0,maxX,singletable);
}
delete[] singletable;
if (comm->me == 0) delete reader;
// recalculate cutoffs of all params
for (int i = 0; i < npair; i++) {
PairParameters &p = pairParameters[i];
p.cut = (p.U)->get_xmax();
if (p.cut < (p.V)->get_xmax()) p.cut = (p.V)->get_xmax();
if (p.cut < (p.W)->get_xmax()) p.cut = (p.W)->get_xmax();
p.cutsq = p.cut*p.cut;
}
// set cutmax to max of all params
cutmax = 0.0;
for (int i = 0; i < npair; i++) {
PairParameters &p = pairParameters[i];
if (cutmax < p.cut) cutmax = p.cut;
}
cutmaxsq = cutmax*cutmax;
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::setup_params()
{
int i,j,k,n;
memory->destroy(elem2param);
memory->create(elem2param,nelements,nelements,"pair:elem2param");
memory->destroy(elem3param);
memory->create(elem3param,nelements,nelements,nelements,"pair:elem3param");
// map atom pair to parameter index
n = 0;
for (i = 0; i < nelements; i++) {
elem2param[match[i]][match[i]] = n;
n++;
}
for (i = 0; i < nelements-1; i++) {
for (j = i+1; j < nelements; j++) {
elem2param[match[i]][match[j]] = n;
elem2param[match[j]][match[i]] = n;
n++;
}
}
// map atom triplet to parameter index
n = 0;
for (i = 0; i < nelements; i++)
for (j = 0; j < nelements; j++)
for (k = 0; k < nelements; k++) {
elem3param[match[i]][match[j]][match[k]] = n;
n++;
}
// for debugging, call write_tables() to check the tabular functions
#if defined(LMP_POLYMORPHIC_WRITE_TABLES)
if (comm->me == 0) write_tables(51);
error->all(FLERR,"Test potential tables");
#endif
}
/* ----------------------------------------------------------------------
attractive term
------------------------------------------------------------------------- */
void PairPolymorphic::attractive(PairParameters *p, PairParameters *q,
TripletParameters *trip,
double prefactor, double rij, double rik,
double *delrij, double *delrik,
double *fi, double *fj, double *fk)
{
double rij_hat[3],rik_hat[3];
double rijinv,rikinv;
rijinv = 1.0/rij;
scale3(rijinv,delrij,rij_hat);
rikinv = 1.0/rik;
scale3(rikinv,delrik,rik_hat);
ters_zetaterm_d(prefactor,rij_hat,rij,rik_hat,rik,fi,fj,fk,p,q,trip);
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::ters_zetaterm_d(double prefactor,
double *rij_hat, double rij,
double *rik_hat, double rik,
double *dri, double *drj, double *drk,
PairParameters *p, PairParameters *q,
TripletParameters *trip)
{
double gijk,gijk_d,ex_delr,ex_delr_d,fc,dfc,cos_theta;
double dcosdri[3],dcosdrj[3],dcosdrk[3];
cos_theta = dot3(rij_hat,rik_hat);
(q->W)->value(rik,fc,1,dfc,1);
(trip->P)->value(rij-(p->xi)*rik,ex_delr,1,ex_delr_d,1);
(trip->G)->value(cos_theta,gijk,1,gijk_d,1);
costheta_d(rij_hat,rij,rik_hat,rik,dcosdri,dcosdrj,dcosdrk);
// compute the derivative wrt Ri
scale3(-dfc*gijk*ex_delr,rik_hat,dri);
scaleadd3(fc*gijk_d*ex_delr,dcosdri,dri,dri);
scaleadd3(fc*gijk*ex_delr_d*(p->xi),rik_hat,dri,dri);
scaleadd3(-fc*gijk*ex_delr_d,rij_hat,dri,dri);
scale3(prefactor,dri);
// compute the derivative wrt Rj
scale3(fc*gijk_d*ex_delr,dcosdrj,drj);
scaleadd3(fc*gijk*ex_delr_d,rij_hat,drj,drj);
scale3(prefactor,drj);
// compute the derivative wrt Rk
scale3(dfc*gijk*ex_delr,rik_hat,drk);
scaleadd3(fc*gijk_d*ex_delr,dcosdrk,drk,drk);
scaleadd3(-fc*gijk*ex_delr_d*(p->xi),rik_hat,drk,drk);
scale3(prefactor,drk);
}
/* ---------------------------------------------------------------------- */
void PairPolymorphic::costheta_d(double *rij_hat, double rij,
double *rik_hat, double rik,
double *dri, double *drj, double *drk)
{
// first element is devative wrt Ri, second wrt Rj, third wrt Rk
double cos_theta = dot3(rij_hat,rik_hat);
scaleadd3(-cos_theta,rij_hat,rik_hat,drj);
scale3(1.0/rij,drj);
scaleadd3(-cos_theta,rik_hat,rij_hat,drk);
scale3(1.0/rik,drk);
add3(drj,drk,dri);
scale3(-1.0,dri);
}
/* ---------------------------------------------------------------------- */
#if defined(LMP_POLYMORPHIC_WRITE_TABLES)
void PairPolymorphic::write_tables(int npts)
{
FILE* fp = nullptr;
double xmin,xmax,x,uf,vf,wf,pf,gf,ff,ufp,vfp,wfp,pfp,gfp,ffp;
std::string filename;
for (int i = 0; i < nelements; i++) {
for (int j = 0; j < nelements; j++) {
filename = fmt::format("{}{}_UVW{}",elements[i],
elements[j],comm->me);
fp = fopen(filename.c_str(), "w");
int iparam_ij = elem2param[i][j];
PairParameters &pair = pairParameters[iparam_ij];
xmin = (pair.U)->get_xmin();
xmax = (pair.U)->get_xmax();
double xl = xmax - xmin;
xmin = xmin - 0.5*xl;
xmax = xmax + 0.5*xl;
for (int k = 0; k < npts; k++) {
x = xmin + (xmax-xmin) * k / (npts-1);
(pair.U)->value(x, uf, 1, ufp, 1);
(pair.V)->value(x, vf, 1, vfp, 1);
(pair.W)->value(x, wf, 1, wfp, 1);
fprintf(fp,"%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f \n",
x,uf,vf,wf,ufp,vfp,wfp);
}
fclose(fp);
}
}
for (int i = 0; i < nelements; i++) {
for (int j = 0; j < nelements; j++) {
for (int k = 0; k < nelements; k++) {
filename = fmt::format("{}{}{}_P{}",elements[i],elements[j],
elements[k],comm->me);
fp = fopen(filename.c_str(), "w");
int iparam_ij = elem3param[i][j][k];
TripletParameters &pair = tripletParameters[iparam_ij];
xmin = (pair.P)->get_xmin();
xmax = (pair.P)->get_xmax();
double xl = xmax - xmin;
xmin = xmin - 0.5*xl;
xmax = xmax + 0.5*xl;
for (int n = 0; n < npts; n++) {
x = xmin + (xmax-xmin) * n / (npts-1);
(pair.P)->value(x, pf, 1, pfp, 1);
fprintf(fp,"%12.4f %12.4f %12.4f \n",x,pf,pfp);
}
fclose(fp);
}
}
}
for (int i = 0; i < nelements; i++) {
for (int j = 0; j < nelements; j++) {
for (int k = 0; k < nelements; k++) {
filename = fmt::format("{}{}{}_G{}",elements[i],elements[j],
elements[k],comm->me);
fp = fopen(filename.c_str(), "w");
int iparam_ij = elem3param[i][j][k];
TripletParameters &pair = tripletParameters[iparam_ij];
xmin = (pair.G)->get_xmin();
xmax = (pair.G)->get_xmax();
for (int n = 0; n < npts; n++) {
x = xmin + (xmax-xmin) * n / (npts-1);
(pair.G)->value(x, gf, 1, gfp, 1);
fprintf(fp,"%12.4f %12.4f %12.4f \n",x,gf,gfp);
}
fclose(fp);
}
}
}
for (int i = 0; i < nelements; i++) {
for (int j = 0; j < nelements; j++) {
filename = fmt::format("{}{}_F{}",elements[i],
elements[j],comm->me);
fp = fopen(filename.c_str(), "w");
int iparam_ij = elem2param[i][j];
PairParameters &pair = pairParameters[iparam_ij];
xmin = (pair.F)->get_xmin();
xmax = (pair.F)->get_xmax();
double xl = xmax - xmin;
xmin = xmin - 0.5*xl;
xmax = xmax + 0.5*xl;
for (int k = 0; k < npts; k++) {
x = xmin + (xmax-xmin) * k / (npts-1);
(pair.F)->value(x, ff, 1, ffp, 1);
fprintf(fp,"%12.4f %12.4f %12.4f \n",x,ff,ffp);
}
fclose(fp);
}
}
}
#endif