586 lines
22 KiB
Plaintext
586 lines
22 KiB
Plaintext
polystyrene trimer
|
|
|
|
48 atoms
|
|
50 bonds
|
|
84 angles
|
|
127 dihedrals
|
|
20 impropers
|
|
|
|
4 atom types
|
|
6 bond types
|
|
10 angle types
|
|
13 dihedral types
|
|
4 improper types
|
|
|
|
-200 200 xlo xhi
|
|
-200 200 ylo yhi
|
|
-200 200 zlo zhi
|
|
|
|
Atom Type Labels
|
|
|
|
1 hc
|
|
2 cp
|
|
3 c1
|
|
4 c2
|
|
|
|
Bond Type Labels
|
|
|
|
1 hc-cp
|
|
2 cp-cp
|
|
3 hc-c2
|
|
4 c1-c2
|
|
5 cp-c1
|
|
6 hc-c1
|
|
|
|
Angle Type Labels
|
|
|
|
1 hc-cp-cp
|
|
2 cp-cp-cp
|
|
3 cp-c1-c2
|
|
4 hc-c1-c2
|
|
5 hc-c1-cp
|
|
6 hc-c2-c1
|
|
7 hc-c2-hc
|
|
8 c1-c2-c1
|
|
9 cp-cp-c1
|
|
10 c2-c1-c2
|
|
|
|
Dihedral Type Labels
|
|
|
|
1 hc-cp-cp-hc
|
|
2 hc-cp-cp-cp
|
|
3 cp-cp-cp-cp
|
|
4 cp-cp-cp-c1
|
|
5 hc-cp-cp-c1
|
|
6 cp-c1-c2-hc
|
|
7 cp-c1-c2-c1
|
|
8 hc-c1-c2-hc
|
|
9 hc-c1-c2-c1
|
|
10 cp-cp-c1-c2
|
|
11 cp-cp-c1-hc
|
|
12 c2-c1-c2-hc
|
|
13 c2-c1-c2-c1
|
|
|
|
Improper Type Labels
|
|
|
|
1 hc-cp-cp-cp
|
|
2 hc-c1-cp-c2
|
|
3 cp-cp-cp-c1
|
|
4 hc-c2-hc-c1
|
|
|
|
Masses
|
|
|
|
1 1.007970 # hc
|
|
2 12.011150 # cp
|
|
3 12.011150 # c1
|
|
4 12.011150 # c2
|
|
|
|
Pair Coeffs # lj/class2/coul/long
|
|
|
|
1 0.0200000000 2.7000000000
|
|
2 0.0640000000 4.0100000000
|
|
3 0.0540000000 4.0100000000
|
|
4 0.0540000000 4.0100000000
|
|
|
|
Bond Coeffs # class2
|
|
|
|
1 1.0982 372.8251 -803.4526 894.3173
|
|
2 1.4170 470.8361 -627.6179 1327.6345
|
|
3 1.1010 345.0000 -691.8900 844.6000
|
|
4 1.5300 299.6700 -501.7700 679.8100
|
|
5 1.5010 321.9021 -521.8208 572.1628
|
|
6 1.1010 345.0000 -691.8900 844.6000
|
|
|
|
Angle Coeffs # class2
|
|
|
|
1 117.9400 35.1558 -12.4682 0.0000
|
|
2 118.9000 61.0226 -34.9931 0.0000
|
|
3 108.4000 43.9594 -8.3924 -9.3379
|
|
4 110.7700 41.4530 -10.6040 5.1290
|
|
5 111.0000 44.3234 -9.4454 0.0000
|
|
6 110.7700 41.4530 -10.6040 5.1290
|
|
7 107.6600 39.6410 -12.9210 -2.4318
|
|
8 112.6700 39.5160 -7.4430 -9.5583
|
|
9 120.0500 44.7148 -22.7352 0.0000
|
|
10 112.6700 39.5160 -7.4430 -9.5583
|
|
|
|
Dihedral Coeffs # class2
|
|
|
|
1 0.0000 0.0000 1.8769 0.0000 0.0000 0.0000
|
|
2 0.0000 0.0000 3.9661 0.0000 0.0000 0.0000
|
|
3 8.3667 0.0000 1.1932 0.0000 0.0000 0.0000
|
|
4 0.0000 0.0000 4.4072 0.0000 0.0000 0.0000
|
|
5 0.0000 0.0000 1.5590 0.0000 0.0000 0.0000
|
|
6 -0.0228 0.0000 0.0280 0.0000 -0.1863 0.0000
|
|
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
|
|
8 -0.1432 0.0000 0.0617 0.0000 -0.1083 0.0000
|
|
9 0.0000 0.0000 0.0316 0.0000 -0.1681 0.0000
|
|
10 -0.2802 0.0000 -0.0678 0.0000 -0.0122 0.0000
|
|
11 -0.2801 0.0000 -0.0678 0.0000 -0.0122 0.0000
|
|
12 0.0000 0.0000 0.0316 0.0000 -0.1681 0.0000
|
|
13 0.0000 0.0000 0.0514 0.0000 -0.1430 0.0000
|
|
|
|
Improper Coeffs # class2
|
|
|
|
1 4.8912 0.0000
|
|
2 0.0000 0.0000
|
|
3 7.8153 0.0000
|
|
4 0.0000 0.0000
|
|
|
|
BondBond Coeffs
|
|
|
|
1 1.0795 1.0982 1.4170
|
|
2 68.2856 1.4170 1.4170
|
|
3 0.0000 1.5010 1.5300
|
|
4 3.3872 1.1010 1.5300
|
|
5 2.9168 1.1010 1.5010
|
|
6 3.3872 1.1010 1.5300
|
|
7 5.3316 1.1010 1.1010
|
|
8 0.0000 1.5300 1.5300
|
|
9 12.0676 1.4170 1.5010
|
|
10 0.0000 1.5300 1.5300
|
|
|
|
BondAngle Coeffs
|
|
|
|
1 24.2183 20.0033 1.0982 1.4170
|
|
2 28.8708 28.8708 1.4170 1.4170
|
|
3 0.0000 0.0000 1.5010 1.5300
|
|
4 11.4210 20.7540 1.1010 1.5300
|
|
5 11.7717 26.4608 1.1010 1.5010
|
|
6 11.4210 20.7540 1.1010 1.5300
|
|
7 18.1030 18.1030 1.1010 1.1010
|
|
8 8.0160 8.0160 1.5300 1.5300
|
|
9 31.0771 47.0579 1.4170 1.5010
|
|
10 8.0160 8.0160 1.5300 1.5300
|
|
|
|
AngleAngle Coeffs
|
|
|
|
1 0.0000 0.0000 0.0000 117.9400 118.9000 117.9400
|
|
2 0.0000 0.0000 0.0000 111.0000 108.4000 110.7700
|
|
3 0.0000 0.0000 0.0000 118.9000 120.0500 120.0500
|
|
4 0.0000 0.0000 0.0000 107.6600 110.7700 110.7700
|
|
|
|
AngleAngleTorsion Coeffs
|
|
|
|
1 0.3598 117.9400 117.9400
|
|
2 -4.8141 117.9400 118.9000
|
|
3 0.0000 118.9000 118.9000
|
|
4 -14.4097 118.9000 120.0500
|
|
5 4.4444 117.9400 120.0500
|
|
6 0.0000 108.4000 110.7700
|
|
7 0.0000 108.4000 112.6700
|
|
8 -12.5640 110.7700 110.7700
|
|
9 -16.1640 110.7700 112.6700
|
|
10 0.0000 120.0500 108.4000
|
|
11 -5.8888 120.0500 111.0000
|
|
12 -16.1640 112.6700 110.7700
|
|
13 -22.0450 112.6700 112.6700
|
|
|
|
EndBondTorsion Coeffs
|
|
|
|
1 0.0000 -0.6890 0.0000 0.0000 -0.6890 0.0000 1.0982 1.0982
|
|
2 0.0000 -0.4669 0.0000 0.0000 -6.8958 0.0000 1.0982 1.4170
|
|
3 -0.1185 6.3204 0.0000 -0.1185 6.3204 0.0000 1.4170 1.4170
|
|
4 0.0000 -0.6918 0.0000 0.0000 0.2421 0.0000 1.4170 1.5010
|
|
5 0.0000 -0.4879 0.0000 0.0000 -1.7970 0.0000 1.0982 1.5010
|
|
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5010 1.1010
|
|
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.5010 1.5300
|
|
8 0.2130 0.3120 0.0777 0.2130 0.3120 0.0777 1.1010 1.1010
|
|
9 0.0814 0.0591 0.2219 0.2486 0.2422 -0.0925 1.1010 1.5300
|
|
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.4170 1.5300
|
|
11 -0.5835 1.1220 0.3978 1.3997 0.7756 0.0000 1.4170 1.1010
|
|
12 0.2486 0.2422 -0.0925 0.0814 0.0591 0.2219 1.5300 1.1010
|
|
13 -0.0732 0.0000 0.0000 -0.0732 0.0000 0.0000 1.5300 1.5300
|
|
|
|
MiddleBondTorsion Coeffs
|
|
|
|
1 0.0000 4.8228 0.0000 1.4170
|
|
2 0.0000 -1.1521 0.0000 1.4170
|
|
3 27.5989 -2.3120 0.0000 1.4170
|
|
4 0.0000 9.1792 0.0000 1.4170
|
|
5 0.0000 3.9421 0.0000 1.4170
|
|
6 0.0000 0.0000 0.0000 1.5300
|
|
7 0.0000 0.0000 0.0000 1.5300
|
|
8 -14.2610 -0.5322 -0.4864 1.5300
|
|
9 -14.8790 -3.6581 -0.3138 1.5300
|
|
10 0.0000 0.0000 0.0000 1.5010
|
|
11 -5.5679 1.4083 0.3010 1.5010
|
|
12 -14.8790 -3.6581 -0.3138 1.5300
|
|
13 -17.7870 -7.1877 0.0000 1.5300
|
|
|
|
BondBond13 Coeffs
|
|
|
|
1 -1.7077 1.0982 1.0982
|
|
2 -6.2741 1.0982 1.4170
|
|
3 53.0000 1.4170 1.4170
|
|
4 2.5085 1.4170 1.5010
|
|
5 0.8743 1.0982 1.5010
|
|
6 0.0000 1.5010 1.1010
|
|
7 0.0000 1.5010 1.5300
|
|
8 0.0000 1.1010 1.1010
|
|
9 0.0000 1.1010 1.5300
|
|
10 0.0000 1.4170 1.5300
|
|
11 -3.4826 1.4170 1.1010
|
|
12 0.0000 1.5300 1.1010
|
|
13 0.0000 1.5300 1.5300
|
|
|
|
AngleTorsion Coeffs
|
|
|
|
1 0.0000 2.4501 0.0000 0.0000 2.4501 0.0000 117.9400 117.9400
|
|
2 0.0000 2.7147 0.0000 0.0000 2.5014 0.0000 117.9400 118.9000
|
|
3 1.9767 1.0239 0.0000 1.9767 1.0239 0.0000 118.9000 118.9000
|
|
4 0.0000 3.8987 0.0000 0.0000 -4.4683 0.0000 118.9000 120.0500
|
|
5 0.0000 3.4601 0.0000 0.0000 -0.1242 0.0000 117.9400 120.0500
|
|
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 108.4000 110.7700
|
|
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 108.4000 112.6700
|
|
8 -0.8085 0.5569 -0.2466 -0.8085 0.5569 -0.2466 110.7700 110.7700
|
|
9 0.3113 0.4516 -0.1988 -0.2454 0.0000 -0.1136 110.7700 112.6700
|
|
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 120.0500 108.4000
|
|
11 0.2251 0.6548 0.1237 4.6266 0.1632 0.0461 120.0500 111.0000
|
|
12 -0.2454 0.0000 -0.1136 0.3113 0.4516 -0.1988 112.6700 110.7700
|
|
13 0.3886 -0.3139 0.1389 0.3886 -0.3139 0.1389 112.6700 112.6700
|
|
|
|
Atoms # full
|
|
|
|
1 3 1 0.128800 64.863555908 89.096031189 65.342926025 0 0 0 # hc
|
|
2 3 2 -0.113400 64.627441406 88.047378540 65.138076782 0 0 0 # cp
|
|
3 3 1 0.140300 66.470252991 86.991889954 65.857475281 0 0 0 # hc
|
|
4 3 2 -0.173400 65.416488647 86.963897705 65.357643127 0 0 0 # cp
|
|
5 3 1 0.140300 62.626159668 88.416564941 64.093917847 0 0 0 # hc
|
|
6 3 2 -0.173400 63.308101654 87.713508606 64.643081665 0 0 0 # cp
|
|
7 3 2 -0.129000 63.010292053 86.423652649 64.252845764 0 0 0 # cp
|
|
8 3 1 0.123700 62.089199066 86.309196472 63.711261749 0 0 0 # hc
|
|
9 2 1 0.128800 55.651794434 85.074470520 61.094478607 0 0 0 # hc
|
|
10 2 1 0.140300 57.266132355 84.599327087 59.281513214 0 0 0 # hc
|
|
11 3 1 0.035400 61.694305420 83.823471069 63.778953552 0 0 0 # hc
|
|
12 3 3 -0.018200 63.814926147 83.900077820 64.108993530 0 0 0 # c1
|
|
13 3 4 -0.069600 62.604541779 83.491996765 63.249610901 0 0 0 # c2
|
|
14 3 1 0.123700 65.739250183 84.813735962 65.351692200 0 0 0 # hc
|
|
15 3 2 -0.129000 65.071144104 85.646781921 65.086814880 0 0 0 # cp
|
|
16 3 2 0.026600 63.957099915 85.375816345 64.385070801 0 0 0 # cp
|
|
17 1 1 0.051600 62.256484985 81.576965332 63.963985443 0 0 0 # hc
|
|
18 1 3 -0.018200 62.426250458 82.055473328 62.971660614 0 0 0 # c1
|
|
19 1 4 -0.069600 61.399257660 81.794662476 61.821819305 0 0 0 # c2
|
|
20 1 1 0.123700 64.070159912 82.950073242 61.042633057 0 0 0 # hc
|
|
21 1 2 -0.129000 64.032920837 80.190177917 63.021564484 0 0 0 # cp
|
|
22 1 2 0.026600 63.672973633 81.418556213 62.448013306 0 0 0 # cp
|
|
23 1 1 0.035400 61.545196533 80.836311340 61.349822998 0 0 0 # hc
|
|
24 1 2 -0.129000 64.337974548 81.916618347 61.387866974 0 0 0 # cp
|
|
25 3 1 0.035400 62.750675201 83.891632080 62.249427795 0 0 0 # hc
|
|
26 3 1 0.051600 64.196823120 83.291442871 64.907096863 0 0 0 # hc
|
|
27 2 1 0.051600 59.809505463 81.831268311 63.253746033 0 0 0 # hc
|
|
28 2 3 -0.018200 59.900306702 81.677452087 62.190757751 0 0 0 # c1
|
|
29 2 2 0.026600 58.784740448 82.766052246 61.667240143 0 0 0 # cp
|
|
30 2 1 0.140300 56.082981110 83.912864685 63.351890564 0 0 0 # hc
|
|
31 2 1 0.123700 58.050045013 82.698310852 63.667110443 0 0 0 # hc
|
|
32 2 2 -0.129000 57.836200714 83.005058289 62.669788361 0 0 0 # cp
|
|
33 2 2 -0.173400 56.718132019 83.758476257 62.493293762 0 0 0 # cp
|
|
34 2 2 -0.113400 56.498352051 84.426574707 61.290145874 0 0 0 # cp
|
|
35 2 2 -0.129000 58.572662354 83.404075623 60.443286896 0 0 0 # cp
|
|
36 2 2 -0.173400 57.380615234 84.134681702 60.248710632 0 0 0 # cp
|
|
37 1 1 0.140300 65.360115051 78.586112976 63.004997253 0 0 0 # hc
|
|
38 1 1 0.123700 63.754127502 79.931144714 64.022262573 0 0 0 # hc
|
|
39 1 2 -0.173400 65.018341064 79.478263855 62.440746307 0 0 0 # cp
|
|
40 1 2 -0.113400 65.628761292 79.941154480 61.248477936 0 0 0 # cp
|
|
41 1 2 -0.173400 65.247993469 81.172439575 60.753044128 0 0 0 # cp
|
|
42 1 1 0.128800 66.569602966 79.514747620 60.810611725 0 0 0 # hc
|
|
43 1 1 0.140300 65.780166626 81.570976257 59.850914001 0 0 0 # hc
|
|
44 1 1 0.035400 61.476398468 82.376487732 60.906940460 0 0 0 # hc
|
|
45 2 1 0.035400 58.398689270 80.172950745 62.115535736 0 0 0 # hc
|
|
46 2 4 -0.069600 59.489074707 80.264060974 61.984001160 0 0 0 # c2
|
|
47 2 1 0.123700 59.297454834 83.187774658 59.645156860 0 0 0 # hc
|
|
48 2 1 0.035400 59.675170898 80.048049927 60.920158386 0 0 0 # hc
|
|
|
|
Bonds
|
|
|
|
1 1 1 2
|
|
2 2 2 6
|
|
3 2 2 4
|
|
4 1 3 4
|
|
5 2 4 15
|
|
6 1 5 6
|
|
7 2 6 7
|
|
8 1 8 7
|
|
9 2 7 16
|
|
10 1 9 34
|
|
11 1 10 36
|
|
12 3 11 13
|
|
13 4 12 13
|
|
14 5 16 12
|
|
15 6 26 12
|
|
16 4 18 13
|
|
17 3 25 13
|
|
18 1 14 15
|
|
19 2 15 16
|
|
20 6 17 18
|
|
21 4 18 19
|
|
22 5 22 18
|
|
23 3 44 19
|
|
24 3 23 19
|
|
25 4 28 19
|
|
26 1 20 24
|
|
27 1 38 21
|
|
28 2 21 22
|
|
29 2 21 39
|
|
30 2 22 24
|
|
31 2 24 41
|
|
32 6 27 28
|
|
33 4 28 46
|
|
34 5 29 28
|
|
35 2 29 35
|
|
36 2 29 32
|
|
37 1 30 33
|
|
38 1 31 32
|
|
39 2 32 33
|
|
40 2 33 34
|
|
41 2 34 36
|
|
42 1 47 35
|
|
43 2 35 36
|
|
44 1 37 39
|
|
45 2 39 40
|
|
46 1 42 40
|
|
47 2 40 41
|
|
48 1 43 41
|
|
49 3 45 46
|
|
50 3 48 46
|
|
|
|
Angles
|
|
|
|
1 1 1 2 6
|
|
2 1 1 2 4
|
|
3 2 6 2 4
|
|
4 1 3 4 2
|
|
5 2 2 4 15
|
|
6 1 3 4 15
|
|
7 1 5 6 2
|
|
8 2 2 6 7
|
|
9 1 5 6 7
|
|
10 1 8 7 6
|
|
11 2 6 7 16
|
|
12 1 8 7 16
|
|
13 3 16 12 13
|
|
14 4 26 12 13
|
|
15 5 26 12 16
|
|
16 6 11 13 12
|
|
17 6 11 13 18
|
|
18 7 11 13 25
|
|
19 8 12 13 18
|
|
20 6 25 13 12
|
|
21 6 25 13 18
|
|
22 1 14 15 4
|
|
23 2 4 15 16
|
|
24 1 14 15 16
|
|
25 9 7 16 12
|
|
26 2 7 16 15
|
|
27 9 15 16 12
|
|
28 4 17 18 13
|
|
29 10 13 18 19
|
|
30 3 22 18 13
|
|
31 4 17 18 19
|
|
32 5 17 18 22
|
|
33 3 22 18 19
|
|
34 6 44 19 18
|
|
35 6 23 19 18
|
|
36 8 18 19 28
|
|
37 7 44 19 23
|
|
38 6 44 19 28
|
|
39 6 23 19 28
|
|
40 1 38 21 22
|
|
41 1 38 21 39
|
|
42 2 22 21 39
|
|
43 9 21 22 18
|
|
44 9 24 22 18
|
|
45 2 21 22 24
|
|
46 1 20 24 22
|
|
47 1 20 24 41
|
|
48 2 22 24 41
|
|
49 4 27 28 19
|
|
50 10 19 28 46
|
|
51 3 29 28 19
|
|
52 4 27 28 46
|
|
53 5 27 28 29
|
|
54 3 29 28 46
|
|
55 9 35 29 28
|
|
56 9 32 29 28
|
|
57 2 35 29 32
|
|
58 1 31 32 29
|
|
59 2 29 32 33
|
|
60 1 31 32 33
|
|
61 1 30 33 32
|
|
62 1 30 33 34
|
|
63 2 32 33 34
|
|
64 1 9 34 33
|
|
65 1 9 34 36
|
|
66 2 33 34 36
|
|
67 1 47 35 29
|
|
68 2 29 35 36
|
|
69 1 47 35 36
|
|
70 1 10 36 34
|
|
71 1 10 36 35
|
|
72 2 34 36 35
|
|
73 1 37 39 21
|
|
74 2 21 39 40
|
|
75 1 37 39 40
|
|
76 1 42 40 39
|
|
77 2 39 40 41
|
|
78 1 42 40 41
|
|
79 2 24 41 40
|
|
80 1 43 41 24
|
|
81 1 43 41 40
|
|
82 6 45 46 28
|
|
83 6 48 46 28
|
|
84 7 45 46 48
|
|
|
|
Dihedrals
|
|
|
|
1 1 1 2 6 5
|
|
2 2 1 2 6 7
|
|
3 2 5 6 2 4
|
|
4 3 4 2 6 7
|
|
5 1 1 2 4 3
|
|
6 2 1 2 4 15
|
|
7 2 3 4 2 6
|
|
8 3 6 2 4 15
|
|
9 2 14 15 4 2
|
|
10 3 2 4 15 16
|
|
11 1 3 4 15 14
|
|
12 2 3 4 15 16
|
|
13 2 8 7 6 2
|
|
14 3 2 6 7 16
|
|
15 1 5 6 7 8
|
|
16 2 5 6 7 16
|
|
17 4 6 7 16 12
|
|
18 3 6 7 16 15
|
|
19 5 8 7 16 12
|
|
20 2 8 7 16 15
|
|
21 6 16 12 13 11
|
|
22 7 16 12 13 18
|
|
23 6 16 12 13 25
|
|
24 8 26 12 13 11
|
|
25 9 26 12 13 18
|
|
26 8 26 12 13 25
|
|
27 10 7 16 12 13
|
|
28 10 15 16 12 13
|
|
29 11 7 16 12 26
|
|
30 11 15 16 12 26
|
|
31 8 17 18 13 11
|
|
32 12 19 18 13 11
|
|
33 6 22 18 13 11
|
|
34 9 17 18 13 12
|
|
35 13 19 18 13 12
|
|
36 7 22 18 13 12
|
|
37 8 17 18 13 25
|
|
38 12 19 18 13 25
|
|
39 6 22 18 13 25
|
|
40 3 4 15 16 7
|
|
41 4 4 15 16 12
|
|
42 2 14 15 16 7
|
|
43 5 14 15 16 12
|
|
44 12 13 18 19 44
|
|
45 12 13 18 19 23
|
|
46 13 13 18 19 28
|
|
47 8 17 18 19 44
|
|
48 8 17 18 19 23
|
|
49 9 17 18 19 28
|
|
50 6 22 18 19 44
|
|
51 6 22 18 19 23
|
|
52 7 22 18 19 28
|
|
53 10 21 22 18 13
|
|
54 10 24 22 18 13
|
|
55 11 21 22 18 17
|
|
56 11 24 22 18 17
|
|
57 10 21 22 18 19
|
|
58 10 24 22 18 19
|
|
59 9 27 28 19 18
|
|
60 13 46 28 19 18
|
|
61 7 29 28 19 18
|
|
62 8 27 28 19 44
|
|
63 12 46 28 19 44
|
|
64 6 29 28 19 44
|
|
65 8 27 28 19 23
|
|
66 12 46 28 19 23
|
|
67 6 29 28 19 23
|
|
68 5 38 21 22 18
|
|
69 2 38 21 22 24
|
|
70 4 39 21 22 18
|
|
71 3 39 21 22 24
|
|
72 1 38 21 39 37
|
|
73 2 38 21 39 40
|
|
74 2 37 39 21 22
|
|
75 3 22 21 39 40
|
|
76 5 20 24 22 18
|
|
77 4 41 24 22 18
|
|
78 2 20 24 22 21
|
|
79 3 21 22 24 41
|
|
80 2 20 24 41 40
|
|
81 1 20 24 41 43
|
|
82 3 22 24 41 40
|
|
83 2 43 41 24 22
|
|
84 12 19 28 46 45
|
|
85 12 19 28 46 48
|
|
86 8 27 28 46 45
|
|
87 8 27 28 46 48
|
|
88 6 29 28 46 45
|
|
89 6 29 28 46 48
|
|
90 10 35 29 28 19
|
|
91 10 32 29 28 19
|
|
92 11 35 29 28 27
|
|
93 11 32 29 28 27
|
|
94 10 35 29 28 46
|
|
95 10 32 29 28 46
|
|
96 5 47 35 29 28
|
|
97 4 36 35 29 28
|
|
98 2 47 35 29 32
|
|
99 3 32 29 35 36
|
|
100 5 31 32 29 28
|
|
101 4 33 32 29 28
|
|
102 2 31 32 29 35
|
|
103 3 35 29 32 33
|
|
104 2 30 33 32 29
|
|
105 3 29 32 33 34
|
|
106 1 31 32 33 30
|
|
107 2 31 32 33 34
|
|
108 1 30 33 34 9
|
|
109 2 30 33 34 36
|
|
110 2 9 34 33 32
|
|
111 3 32 33 34 36
|
|
112 1 9 34 36 10
|
|
113 2 9 34 36 35
|
|
114 2 10 36 34 33
|
|
115 3 33 34 36 35
|
|
116 2 10 36 35 29
|
|
117 3 29 35 36 34
|
|
118 1 47 35 36 10
|
|
119 2 47 35 36 34
|
|
120 2 42 40 39 21
|
|
121 3 21 39 40 41
|
|
122 1 37 39 40 42
|
|
123 2 37 39 40 41
|
|
124 3 39 40 41 24
|
|
125 2 43 41 40 39
|
|
126 2 42 40 41 24
|
|
127 1 42 40 41 43
|
|
|
|
Impropers
|
|
|
|
1 1 1 2 6 4
|
|
2 1 3 4 2 15
|
|
3 1 5 6 2 7
|
|
4 1 8 7 6 16
|
|
5 2 26 12 16 13
|
|
6 1 14 15 4 16
|
|
7 3 7 16 15 12
|
|
8 1 38 21 22 39
|
|
9 3 21 22 24 18
|
|
10 1 20 24 22 41
|
|
11 3 35 29 32 28
|
|
12 1 31 32 29 33
|
|
13 1 30 33 32 34
|
|
14 1 9 34 33 36
|
|
15 1 47 35 29 36
|
|
16 1 10 36 34 35
|
|
17 1 37 39 21 40
|
|
18 1 42 40 39 41
|
|
19 1 43 41 40 24
|
|
20 4 45 46 48 28
|