1986 lines
59 KiB
C++
1986 lines
59 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "math.h"
|
|
#include "stdio.h"
|
|
#include "stdlib.h"
|
|
#include "string.h"
|
|
#include "fix_rigid.h"
|
|
#include "math_extra.h"
|
|
#include "atom.h"
|
|
#include "atom_vec_ellipsoid.h"
|
|
#include "domain.h"
|
|
#include "update.h"
|
|
#include "respa.h"
|
|
#include "modify.h"
|
|
#include "group.h"
|
|
#include "comm.h"
|
|
#include "random_mars.h"
|
|
#include "force.h"
|
|
#include "output.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define TOLERANCE 1.0e-6
|
|
#define EPSILON 1.0e-7
|
|
|
|
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
|
|
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixRigid::FixRigid(LAMMPS *lmp, int narg, char **arg) :
|
|
Fix(lmp, narg, arg)
|
|
{
|
|
int i,ibody;
|
|
|
|
scalar_flag = 1;
|
|
extscalar = 0;
|
|
time_integrate = 1;
|
|
rigid_flag = 1;
|
|
virial_flag = 1;
|
|
create_attribute = 1;
|
|
|
|
MPI_Comm_rank(world,&me);
|
|
MPI_Comm_size(world,&nprocs);
|
|
|
|
// perform initial allocation of atom-based arrays
|
|
// register with Atom class
|
|
|
|
extended = dorientflag = qorientflag = 0;
|
|
body = NULL;
|
|
displace = NULL;
|
|
eflags = NULL;
|
|
dorient = NULL;
|
|
qorient = NULL;
|
|
grow_arrays(atom->nmax);
|
|
atom->add_callback(0);
|
|
|
|
// parse args for rigid body specification
|
|
// set nbody and body[i] for each atom
|
|
|
|
if (narg < 4) error->all("Illegal fix rigid command");
|
|
int iarg;
|
|
|
|
// single rigid body
|
|
// nbody = 1
|
|
// all atoms in fix group are part of body
|
|
|
|
if (strcmp(arg[3],"single") == 0) {
|
|
iarg = 4;
|
|
nbody = 1;
|
|
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
body[i] = -1;
|
|
if (mask[i] & groupbit) body[i] = 0;
|
|
}
|
|
|
|
// each molecule in fix group is a rigid body
|
|
// maxmol = largest molecule #
|
|
// ncount = # of atoms in each molecule (have to sum across procs)
|
|
// nbody = # of non-zero ncount values
|
|
// use nall as incremented ptr to set body[] values for each atom
|
|
|
|
} else if (strcmp(arg[3],"molecule") == 0) {
|
|
iarg = 4;
|
|
if (atom->molecule_flag == 0)
|
|
error->all("Fix rigid molecule requires atom attribute molecule");
|
|
|
|
int *mask = atom->mask;
|
|
int *molecule = atom->molecule;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int maxmol = -1;
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) maxmol = MAX(maxmol,molecule[i]);
|
|
|
|
int itmp;
|
|
MPI_Allreduce(&maxmol,&itmp,1,MPI_INT,MPI_MAX,world);
|
|
maxmol = itmp + 1;
|
|
|
|
int *ncount = new int[maxmol];
|
|
for (i = 0; i < maxmol; i++) ncount[i] = 0;
|
|
|
|
for (i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) ncount[molecule[i]]++;
|
|
|
|
int *nall = new int[maxmol];
|
|
MPI_Allreduce(ncount,nall,maxmol,MPI_INT,MPI_SUM,world);
|
|
|
|
nbody = 0;
|
|
for (i = 0; i < maxmol; i++)
|
|
if (nall[i]) nall[i] = nbody++;
|
|
else nall[i] = -1;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
body[i] = -1;
|
|
if (mask[i] & groupbit) body[i] = nall[molecule[i]];
|
|
}
|
|
|
|
delete [] ncount;
|
|
delete [] nall;
|
|
|
|
// each listed group is a rigid body
|
|
// check if all listed groups exist
|
|
// an atom must belong to fix group and listed group to be in rigid body
|
|
// error if atom belongs to more than 1 rigid body
|
|
|
|
} else if (strcmp(arg[3],"group") == 0) {
|
|
if (narg < 5) error->all("Illegal fix rigid command");
|
|
nbody = atoi(arg[4]);
|
|
if (nbody <= 0) error->all("Illegal fix rigid command");
|
|
if (narg < 5+nbody) error->all("Illegal fix rigid command");
|
|
iarg = 5+nbody;
|
|
|
|
int *igroups = new int[nbody];
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
igroups[ibody] = group->find(arg[5+ibody]);
|
|
if (igroups[ibody] == -1)
|
|
error->all("Could not find fix rigid group ID");
|
|
}
|
|
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int flag = 0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
body[i] = -1;
|
|
if (mask[i] & groupbit)
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
if (mask[i] & group->bitmask[igroups[ibody]]) {
|
|
if (body[i] >= 0) flag = 1;
|
|
body[i] = ibody;
|
|
}
|
|
}
|
|
|
|
int flagall;
|
|
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,world);
|
|
if (flagall)
|
|
error->all("One or more atoms belong to multiple rigid bodies");
|
|
|
|
delete [] igroups;
|
|
|
|
} else error->all("Illegal fix rigid command");
|
|
|
|
// error check on nbody
|
|
|
|
if (nbody == 0) error->all("No rigid bodies defined");
|
|
|
|
// create all nbody-length arrays
|
|
|
|
memory->create(nrigid,nbody,"rigid:nrigid");
|
|
memory->create(masstotal,nbody,"rigid:masstotal");
|
|
memory->create(xcm,nbody,3,"rigid:xcm");
|
|
memory->create(vcm,nbody,3,"rigid:vcm");
|
|
memory->create(fcm,nbody,3,"rigid:fcm");
|
|
memory->create(inertia,nbody,3,"rigid:inertia");
|
|
memory->create(ex_space,nbody,3,"rigid:ex_space");
|
|
memory->create(ey_space,nbody,3,"rigid:ey_space");
|
|
memory->create(ez_space,nbody,3,"rigid:ez_space");
|
|
memory->create(angmom,nbody,3,"rigid:angmom");
|
|
memory->create(omega,nbody,3,"rigid:omega");
|
|
memory->create(torque,nbody,3,"rigid:torque");
|
|
memory->create(quat,nbody,4,"rigid:quat");
|
|
memory->create(imagebody,nbody,"rigid:imagebody");
|
|
memory->create(fflag,nbody,3,"rigid:fflag");
|
|
memory->create(tflag,nbody,3,"rigid:tflag");
|
|
memory->create(langextra,nbody,6,"rigid:langextra");
|
|
|
|
memory->create(sum,nbody,6,"rigid:sum");
|
|
memory->create(all,nbody,6,"rigid:all");
|
|
memory->create(remapflag,nbody,4,"rigid:remapflag");
|
|
|
|
// initialize force/torque flags to default = 1.0
|
|
// for 2d: fz, tx, ty = 0.0
|
|
|
|
array_flag = 1;
|
|
size_array_rows = nbody;
|
|
size_array_cols = 15;
|
|
global_freq = 1;
|
|
extarray = 0;
|
|
|
|
for (i = 0; i < nbody; i++) {
|
|
fflag[i][0] = fflag[i][1] = fflag[i][2] = 1.0;
|
|
tflag[i][0] = tflag[i][1] = tflag[i][2] = 1.0;
|
|
if (domain->dimension == 2) fflag[i][2] = tflag[i][0] = tflag[i][1] = 0.0;
|
|
}
|
|
|
|
// parse optional args
|
|
|
|
int seed;
|
|
langflag = 0;
|
|
tempflag = 0;
|
|
pressflag = 0;
|
|
t_chain = 10;
|
|
t_iter = 1;
|
|
t_order = 3;
|
|
p_chain = 10;
|
|
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg],"force") == 0) {
|
|
if (iarg+5 > narg) error->all("Illegal fix rigid command");
|
|
|
|
int mlo,mhi;
|
|
force->bounds(arg[iarg+1],nbody,mlo,mhi);
|
|
|
|
double xflag,yflag,zflag;
|
|
if (strcmp(arg[iarg+2],"off") == 0) xflag = 0.0;
|
|
else if (strcmp(arg[iarg+2],"on") == 0) xflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
if (strcmp(arg[iarg+3],"off") == 0) yflag = 0.0;
|
|
else if (strcmp(arg[iarg+3],"on") == 0) yflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
if (strcmp(arg[iarg+4],"off") == 0) zflag = 0.0;
|
|
else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
|
|
if (domain->dimension == 2 && zflag == 1.0)
|
|
error->all("Fix rigid z force cannot be on for 2d simulation");
|
|
|
|
int count = 0;
|
|
for (int m = mlo; m <= mhi; m++) {
|
|
fflag[m-1][0] = xflag;
|
|
fflag[m-1][1] = yflag;
|
|
fflag[m-1][2] = zflag;
|
|
count++;
|
|
}
|
|
if (count == 0) error->all("Illegal fix rigid command");
|
|
|
|
iarg += 5;
|
|
|
|
} else if (strcmp(arg[iarg],"torque") == 0) {
|
|
if (iarg+5 > narg) error->all("Illegal fix rigid command");
|
|
|
|
int mlo,mhi;
|
|
force->bounds(arg[iarg+1],nbody,mlo,mhi);
|
|
|
|
double xflag,yflag,zflag;
|
|
if (strcmp(arg[iarg+2],"off") == 0) xflag = 0.0;
|
|
else if (strcmp(arg[iarg+2],"on") == 0) xflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
if (strcmp(arg[iarg+3],"off") == 0) yflag = 0.0;
|
|
else if (strcmp(arg[iarg+3],"on") == 0) yflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
if (strcmp(arg[iarg+4],"off") == 0) zflag = 0.0;
|
|
else if (strcmp(arg[iarg+4],"on") == 0) zflag = 1.0;
|
|
else error->all("Illegal fix rigid command");
|
|
|
|
if (domain->dimension == 2 && (xflag == 1.0 || yflag == 1.0))
|
|
error->all("Fix rigid xy torque cannot be on for 2d simulation");
|
|
|
|
int count = 0;
|
|
for (int m = mlo; m <= mhi; m++) {
|
|
tflag[m-1][0] = xflag;
|
|
tflag[m-1][1] = yflag;
|
|
tflag[m-1][2] = zflag;
|
|
count++;
|
|
}
|
|
if (count == 0) error->all("Illegal fix rigid command");
|
|
|
|
iarg += 5;
|
|
|
|
} else if (strcmp(arg[iarg],"langevin") == 0) {
|
|
if (iarg+5 > narg) error->all("Illegal fix rigid command");
|
|
if (strcmp(style,"rigid") != 0 && strcmp(style,"rigid/nve") != 0)
|
|
error->all("Illegal fix rigid command");
|
|
langflag = 1;
|
|
t_start = atof(arg[iarg+1]);
|
|
t_stop = atof(arg[iarg+2]);
|
|
t_period = atof(arg[iarg+3]);
|
|
seed = atoi(arg[iarg+4]);
|
|
if (t_period <= 0.0)
|
|
error->all("Fix rigid langevin period must be > 0.0");
|
|
if (seed <= 0) error->all("Illegal fix rigid command");
|
|
iarg += 5;
|
|
|
|
} else if (strcmp(arg[iarg],"temp") == 0) {
|
|
if (iarg+4 > narg) error->all("Illegal fix rigid command");
|
|
if (strcmp(style,"rigid/nvt") != 0 && strcmp(style,"rigid/npt") != 0)
|
|
error->all("Illegal fix rigid command");
|
|
tempflag = 1;
|
|
t_start = atof(arg[iarg+1]);
|
|
t_stop = atof(arg[iarg+2]);
|
|
t_period = atof(arg[iarg+3]);
|
|
iarg += 4;
|
|
|
|
} else if (strcmp(arg[iarg],"press") == 0) {
|
|
if (iarg+4 > narg) error->all("Illegal fix rigid command");
|
|
if (strcmp(style,"rigid/npt") != 0)
|
|
error->all("Illegal fix rigid command");
|
|
pressflag = 1;
|
|
p_start = atof(arg[iarg+1]);
|
|
p_stop = atof(arg[iarg+2]);
|
|
p_period = atof(arg[iarg+3]);
|
|
iarg += 4;
|
|
|
|
} else if (strcmp(arg[iarg],"tparam") == 0) {
|
|
if (iarg+4 > narg) error->all("Illegal fix rigid command");
|
|
if (strcmp(style,"rigid/nvt") != 0)
|
|
error->all("Illegal fix rigid command");
|
|
t_chain = atoi(arg[iarg+1]);
|
|
t_iter = atoi(arg[iarg+2]);
|
|
t_order = atoi(arg[iarg+3]);
|
|
iarg += 4;
|
|
|
|
} else if (strcmp(arg[iarg],"pparam") == 0) {
|
|
if (iarg+2 > narg) error->all("Illegal fix rigid command");
|
|
if (strcmp(style,"rigid/npt") != 0)
|
|
error->all("Illegal fix rigid command");
|
|
p_chain = atoi(arg[iarg+1]);
|
|
iarg += 2;
|
|
|
|
} else error->all("Illegal fix rigid command");
|
|
}
|
|
|
|
// initialize Marsaglia RNG with processor-unique seed
|
|
|
|
if (langflag) random = new RanMars(lmp,seed + me);
|
|
else random = NULL;
|
|
|
|
// initialize vector output quantities in case accessed before run
|
|
|
|
for (i = 0; i < nbody; i++) {
|
|
xcm[i][0] = xcm[i][1] = xcm[i][2] = 0.0;
|
|
vcm[i][0] = vcm[i][1] = vcm[i][2] = 0.0;
|
|
fcm[i][0] = fcm[i][1] = fcm[i][2] = 0.0;
|
|
torque[i][0] = torque[i][1] = torque[i][2] = 0.0;
|
|
}
|
|
|
|
// nrigid[n] = # of atoms in Nth rigid body
|
|
// error if one or zero atoms
|
|
|
|
int *ncount = new int[nbody];
|
|
for (ibody = 0; ibody < nbody; ibody++) ncount[ibody] = 0;
|
|
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (i = 0; i < nlocal; i++)
|
|
if (body[i] >= 0) ncount[body[i]]++;
|
|
|
|
MPI_Allreduce(ncount,nrigid,nbody,MPI_INT,MPI_SUM,world);
|
|
delete [] ncount;
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
if (nrigid[ibody] <= 1) error->all("One or zero atoms in rigid body");
|
|
|
|
// set image flags for each rigid body to default values
|
|
// will be reset during init() based on xcm and then by pre_neighbor()
|
|
// set here, so image value will persist from run to run
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
imagebody[ibody] = (512 << 20) | (512 << 10) | 512;
|
|
|
|
// bitmasks for properties of extended particles
|
|
|
|
INERTIA_POINT = 1;
|
|
INERTIA_SPHERE = 2;
|
|
INERTIA_ELLIPSOID = 4;
|
|
ORIENT_DIPOLE = 8;
|
|
ORIENT_QUAT = 16;
|
|
OMEGA = 32;
|
|
ANGMOM = 64;
|
|
TORQUE = 128;
|
|
|
|
// atom style pointers to particles that store extra info
|
|
|
|
avec_ellipsoid = (AtomVecEllipsoid *) atom->style_match("ellipsoid");
|
|
|
|
// print statistics
|
|
|
|
int nsum = 0;
|
|
for (ibody = 0; ibody < nbody; ibody++) nsum += nrigid[ibody];
|
|
|
|
if (me == 0) {
|
|
if (screen) fprintf(screen,"%d rigid bodies with %d atoms\n",nbody,nsum);
|
|
if (logfile) fprintf(logfile,"%d rigid bodies with %d atoms\n",nbody,nsum);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixRigid::~FixRigid()
|
|
{
|
|
// unregister callbacks to this fix from Atom class
|
|
|
|
atom->delete_callback(id,0);
|
|
|
|
delete random;
|
|
|
|
// delete locally stored arrays
|
|
|
|
memory->destroy(body);
|
|
memory->destroy(displace);
|
|
memory->destroy(eflags);
|
|
memory->destroy(dorient);
|
|
memory->destroy(qorient);
|
|
|
|
// delete nbody-length arrays
|
|
|
|
memory->destroy(nrigid);
|
|
memory->destroy(masstotal);
|
|
memory->destroy(xcm);
|
|
memory->destroy(vcm);
|
|
memory->destroy(fcm);
|
|
memory->destroy(inertia);
|
|
memory->destroy(ex_space);
|
|
memory->destroy(ey_space);
|
|
memory->destroy(ez_space);
|
|
memory->destroy(angmom);
|
|
memory->destroy(omega);
|
|
memory->destroy(torque);
|
|
memory->destroy(quat);
|
|
memory->destroy(imagebody);
|
|
memory->destroy(fflag);
|
|
memory->destroy(tflag);
|
|
memory->destroy(langextra);
|
|
|
|
memory->destroy(sum);
|
|
memory->destroy(all);
|
|
memory->destroy(remapflag);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int FixRigid::setmask()
|
|
{
|
|
int mask = 0;
|
|
mask |= INITIAL_INTEGRATE;
|
|
mask |= FINAL_INTEGRATE;
|
|
if (langflag) mask |= POST_FORCE;
|
|
mask |= PRE_NEIGHBOR;
|
|
mask |= INITIAL_INTEGRATE_RESPA;
|
|
mask |= FINAL_INTEGRATE_RESPA;
|
|
return mask;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::init()
|
|
{
|
|
int i,ibody;
|
|
|
|
triclinic = domain->triclinic;
|
|
|
|
// warn if more than one rigid fix
|
|
|
|
int count = 0;
|
|
for (i = 0; i < modify->nfix; i++)
|
|
if (strcmp(modify->fix[i]->style,"rigid") == 0) count++;
|
|
if (count > 1 && me == 0) error->warning("More than one fix rigid");
|
|
|
|
// error if npt,nph fix comes before rigid fix
|
|
|
|
for (i = 0; i < modify->nfix; i++) {
|
|
if (strcmp(modify->fix[i]->style,"npt") == 0) break;
|
|
if (strcmp(modify->fix[i]->style,"nph") == 0) break;
|
|
}
|
|
if (i < modify->nfix) {
|
|
for (int j = i; j < modify->nfix; j++)
|
|
if (strcmp(modify->fix[j]->style,"rigid") == 0)
|
|
error->all("Rigid fix must come before NPT/NPH fix");
|
|
}
|
|
|
|
// timestep info
|
|
|
|
dtv = update->dt;
|
|
dtf = 0.5 * update->dt * force->ftm2v;
|
|
dtq = 0.5 * update->dt;
|
|
|
|
if (strstr(update->integrate_style,"respa"))
|
|
step_respa = ((Respa *) update->integrate)->step;
|
|
|
|
// extended = 1 if any particle in a rigid body is finite size
|
|
// or has a dipole moment
|
|
|
|
extended = dorientflag = qorientflag = 0;
|
|
|
|
AtomVecEllipsoid::Bonus *ebonus;
|
|
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
|
|
double **mu = atom->mu;
|
|
double *radius = atom->radius;
|
|
double *rmass = atom->rmass;
|
|
double *mass = atom->mass;
|
|
int *ellipsoid = atom->ellipsoid;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
if (atom->radius_flag || atom->ellipsoid_flag || atom->mu_flag) {
|
|
int flag = 0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
if (radius && radius[i] > 0.0) flag = 1;
|
|
if (ellipsoid && ellipsoid[i] >= 0) flag = 1;
|
|
if (mu && mu[i][3] > 0.0) flag = 1;
|
|
}
|
|
|
|
MPI_Allreduce(&flag,&extended,1,MPI_INT,MPI_MAX,world);
|
|
}
|
|
|
|
// grow extended arrays and set extended flags for each particle
|
|
// qorientflag = 1 if any particle stores quat orientation
|
|
// dorientflag = 1 if any particle stores dipole orientation
|
|
|
|
if (extended) {
|
|
if (atom->mu_flag) dorientflag = 1;
|
|
if (atom->ellipsoid_flag) qorientflag = 1;
|
|
grow_arrays(atom->nmax);
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
eflags[i] = 0;
|
|
if (body[i] < 0) continue;
|
|
|
|
// set INERTIA to POINT or SPHERE or ELLIPSOID
|
|
|
|
if (radius && radius[i] > 0.0) {
|
|
eflags[i] |= INERTIA_SPHERE;
|
|
eflags[i] |= OMEGA;
|
|
eflags[i] |= TORQUE;
|
|
} else if (ellipsoid && ellipsoid[i] >= 0) {
|
|
eflags[i] |= INERTIA_ELLIPSOID;
|
|
eflags[i] |= ORIENT_QUAT;
|
|
eflags[i] |= ANGMOM;
|
|
eflags[i] |= TORQUE;
|
|
} else eflags[i] |= INERTIA_POINT;
|
|
|
|
// set DIPOLE if atom->mu and mu[3] > 0.0
|
|
|
|
if (atom->mu_flag && mu[i][3] > 0.0)
|
|
eflags[i] |= ORIENT_DIPOLE;
|
|
}
|
|
}
|
|
|
|
// compute masstotal & center-of-mass of each rigid body
|
|
// error if image flag is not 0 in a non-periodic dim
|
|
|
|
double **x = atom->x;
|
|
int *image = atom->image;
|
|
|
|
int *periodicity = domain->periodicity;
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
double xy = domain->xy;
|
|
double xz = domain->xz;
|
|
double yz = domain->yz;
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
int xbox,ybox,zbox;
|
|
double massone,xunwrap,yunwrap,zunwrap;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
if ((xbox && !periodicity[0]) || (ybox && !periodicity[1]) ||
|
|
(zbox && !periodicity[2]))
|
|
error->one("Fix rigid atom has non-zero image flag "
|
|
"in a non-periodic dimension");
|
|
|
|
if (triclinic == 0) {
|
|
xunwrap = x[i][0] + xbox*xprd;
|
|
yunwrap = x[i][1] + ybox*yprd;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
} else {
|
|
xunwrap = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
yunwrap = x[i][1] + ybox*yprd + zbox*yz;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
sum[ibody][0] += xunwrap * massone;
|
|
sum[ibody][1] += yunwrap * massone;
|
|
sum[ibody][2] += zunwrap * massone;
|
|
sum[ibody][3] += massone;
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
masstotal[ibody] = all[ibody][3];
|
|
xcm[ibody][0] = all[ibody][0]/masstotal[ibody];
|
|
xcm[ibody][1] = all[ibody][1]/masstotal[ibody];
|
|
xcm[ibody][2] = all[ibody][2]/masstotal[ibody];
|
|
}
|
|
|
|
// remap the xcm of each body back into simulation box if needed
|
|
// only really necessary the 1st time a run is performed
|
|
|
|
pre_neighbor();
|
|
|
|
// compute 6 moments of inertia of each body
|
|
// dx,dy,dz = coords relative to center-of-mass
|
|
// symmetric 3x3 inertia tensor stored in Voigt notation as 6-vector
|
|
|
|
double dx,dy,dz;
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
if (triclinic == 0) {
|
|
xunwrap = x[i][0] + xbox*xprd;
|
|
yunwrap = x[i][1] + ybox*yprd;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
} else {
|
|
xunwrap = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
yunwrap = x[i][1] + ybox*yprd + zbox*yz;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
dx = xunwrap - xcm[ibody][0];
|
|
dy = yunwrap - xcm[ibody][1];
|
|
dz = zunwrap - xcm[ibody][2];
|
|
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
sum[ibody][0] += massone * (dy*dy + dz*dz);
|
|
sum[ibody][1] += massone * (dx*dx + dz*dz);
|
|
sum[ibody][2] += massone * (dx*dx + dy*dy);
|
|
sum[ibody][3] -= massone * dy*dz;
|
|
sum[ibody][4] -= massone * dx*dz;
|
|
sum[ibody][5] -= massone * dx*dy;
|
|
}
|
|
|
|
// extended particles may contribute extra terms to moments of inertia
|
|
|
|
if (extended) {
|
|
double ivec[6];
|
|
double *shape,*quatatom;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
massone = rmass[i];
|
|
|
|
if (eflags[i] & INERTIA_SPHERE) {
|
|
sum[ibody][0] += 0.4 * massone * radius[i]*radius[i];
|
|
sum[ibody][1] += 0.4 * massone * radius[i]*radius[i];
|
|
sum[ibody][2] += 0.4 * massone * radius[i]*radius[i];
|
|
} else if (eflags[i] & INERTIA_ELLIPSOID) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
MathExtra::inertia_ellipsoid(shape,quatatom,massone,ivec);
|
|
sum[ibody][0] += ivec[0];
|
|
sum[ibody][1] += ivec[1];
|
|
sum[ibody][2] += ivec[2];
|
|
sum[ibody][3] += ivec[3];
|
|
sum[ibody][4] += ivec[4];
|
|
sum[ibody][5] += ivec[5];
|
|
}
|
|
}
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// diagonalize inertia tensor for each body via Jacobi rotations
|
|
// inertia = 3 eigenvalues = principal moments of inertia
|
|
// evectors and exzy_space = 3 evectors = principal axes of rigid body
|
|
|
|
int ierror;
|
|
double cross[3];
|
|
double tensor[3][3],evectors[3][3];
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
tensor[0][0] = all[ibody][0];
|
|
tensor[1][1] = all[ibody][1];
|
|
tensor[2][2] = all[ibody][2];
|
|
tensor[1][2] = tensor[2][1] = all[ibody][3];
|
|
tensor[0][2] = tensor[2][0] = all[ibody][4];
|
|
tensor[0][1] = tensor[1][0] = all[ibody][5];
|
|
|
|
ierror = MathExtra::jacobi(tensor,inertia[ibody],evectors);
|
|
if (ierror) error->all("Insufficient Jacobi rotations for rigid body");
|
|
|
|
ex_space[ibody][0] = evectors[0][0];
|
|
ex_space[ibody][1] = evectors[1][0];
|
|
ex_space[ibody][2] = evectors[2][0];
|
|
ey_space[ibody][0] = evectors[0][1];
|
|
ey_space[ibody][1] = evectors[1][1];
|
|
ey_space[ibody][2] = evectors[2][1];
|
|
ez_space[ibody][0] = evectors[0][2];
|
|
ez_space[ibody][1] = evectors[1][2];
|
|
ez_space[ibody][2] = evectors[2][2];
|
|
|
|
// if any principal moment < scaled EPSILON, set to 0.0
|
|
|
|
double max;
|
|
max = MAX(inertia[ibody][0],inertia[ibody][1]);
|
|
max = MAX(max,inertia[ibody][2]);
|
|
|
|
if (inertia[ibody][0] < EPSILON*max) inertia[ibody][0] = 0.0;
|
|
if (inertia[ibody][1] < EPSILON*max) inertia[ibody][1] = 0.0;
|
|
if (inertia[ibody][2] < EPSILON*max) inertia[ibody][2] = 0.0;
|
|
|
|
// enforce 3 evectors as a right-handed coordinate system
|
|
// flip 3rd vector if needed
|
|
|
|
MathExtra::cross3(ex_space[ibody],ey_space[ibody],cross);
|
|
if (MathExtra::dot3(cross,ez_space[ibody]) < 0.0)
|
|
MathExtra::negate3(ez_space[ibody]);
|
|
|
|
// create initial quaternion
|
|
|
|
MathExtra::exyz_to_q(ex_space[ibody],ey_space[ibody],ez_space[ibody],
|
|
quat[ibody]);
|
|
}
|
|
|
|
// displace = initial atom coords in basis of principal axes
|
|
// set displace = 0.0 for atoms not in any rigid body
|
|
// for extended particles, set their orientation wrt to rigid body
|
|
|
|
double qc[4],delta[3];
|
|
double *quatatom;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) {
|
|
displace[i][0] = displace[i][1] = displace[i][2] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
ibody = body[i];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
if (triclinic == 0) {
|
|
xunwrap = x[i][0] + xbox*xprd;
|
|
yunwrap = x[i][1] + ybox*yprd;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
} else {
|
|
xunwrap = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
yunwrap = x[i][1] + ybox*yprd + zbox*yz;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
delta[0] = xunwrap - xcm[ibody][0];
|
|
delta[1] = yunwrap - xcm[ibody][1];
|
|
delta[2] = zunwrap - xcm[ibody][2];
|
|
MathExtra::transpose_matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],delta,displace[i]);
|
|
|
|
if (extended) {
|
|
if (eflags[i] & ORIENT_DIPOLE) {
|
|
MathExtra::transpose_matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],mu[i],dorient[i]);
|
|
MathExtra::snormalize3(mu[i][3],dorient[i],dorient[i]);
|
|
} else if (dorientflag)
|
|
dorient[i][0] = dorient[i][1] = dorient[i][2] = 0.0;
|
|
|
|
if (eflags[i] & ORIENT_QUAT) {
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
MathExtra::qconjugate(quat[ibody],qc);
|
|
MathExtra::quatquat(qc,quatatom,qorient[i]);
|
|
MathExtra::qnormalize(qorient[i]);
|
|
} else if (qorientflag)
|
|
qorient[i][0] = qorient[i][1] = qorient[i][2] = qorient[i][3] = 0.0;
|
|
}
|
|
}
|
|
|
|
// test for valid principal moments & axes
|
|
// recompute moments of inertia around new axes
|
|
// 3 diagonal moments should equal principal moments
|
|
// 3 off-diagonal moments should be 0.0
|
|
// extended particles may contribute extra terms to moments of inertia
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
sum[ibody][0] += massone *
|
|
(displace[i][1]*displace[i][1] + displace[i][2]*displace[i][2]);
|
|
sum[ibody][1] += massone *
|
|
(displace[i][0]*displace[i][0] + displace[i][2]*displace[i][2]);
|
|
sum[ibody][2] += massone *
|
|
(displace[i][0]*displace[i][0] + displace[i][1]*displace[i][1]);
|
|
sum[ibody][3] -= massone * displace[i][1]*displace[i][2];
|
|
sum[ibody][4] -= massone * displace[i][0]*displace[i][2];
|
|
sum[ibody][5] -= massone * displace[i][0]*displace[i][1];
|
|
}
|
|
|
|
if (extended) {
|
|
double ivec[6];
|
|
double *shape;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
massone = rmass[i];
|
|
|
|
if (eflags[i] & INERTIA_SPHERE) {
|
|
sum[ibody][0] += 0.4 * massone * radius[i]*radius[i];
|
|
sum[ibody][1] += 0.4 * massone * radius[i]*radius[i];
|
|
sum[ibody][2] += 0.4 * massone * radius[i]*radius[i];
|
|
} else if (eflags[i] & INERTIA_ELLIPSOID) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
MathExtra::inertia_ellipsoid(shape,qorient[i],massone,ivec);
|
|
sum[ibody][0] += ivec[0];
|
|
sum[ibody][1] += ivec[1];
|
|
sum[ibody][2] += ivec[2];
|
|
sum[ibody][3] += ivec[3];
|
|
sum[ibody][4] += ivec[4];
|
|
sum[ibody][5] += ivec[5];
|
|
}
|
|
}
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
double norm;
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
if (inertia[ibody][0] == 0.0) {
|
|
if (fabs(all[ibody][0]) > TOLERANCE)
|
|
error->all("Fix rigid: Bad principal moments");
|
|
} else {
|
|
if (fabs((all[ibody][0]-inertia[ibody][0])/inertia[ibody][0]) >
|
|
TOLERANCE) error->all("Fix rigid: Bad principal moments");
|
|
}
|
|
if (inertia[ibody][1] == 0.0) {
|
|
if (fabs(all[ibody][1]) > TOLERANCE)
|
|
error->all("Fix rigid: Bad principal moments");
|
|
} else {
|
|
if (fabs((all[ibody][1]-inertia[ibody][1])/inertia[ibody][1]) >
|
|
TOLERANCE) error->all("Fix rigid: Bad principal moments");
|
|
}
|
|
if (inertia[ibody][2] == 0.0) {
|
|
if (fabs(all[ibody][2]) > TOLERANCE)
|
|
error->all("Fix rigid: Bad principal moments");
|
|
} else {
|
|
if (fabs((all[ibody][2]-inertia[ibody][2])/inertia[ibody][2]) >
|
|
TOLERANCE) error->all("Fix rigid: Bad principal moments");
|
|
}
|
|
norm = (inertia[ibody][0] + inertia[ibody][1] + inertia[ibody][2]) / 3.0;
|
|
if (fabs(all[ibody][3]/norm) > TOLERANCE ||
|
|
fabs(all[ibody][4]/norm) > TOLERANCE ||
|
|
fabs(all[ibody][5]/norm) > TOLERANCE)
|
|
error->all("Fix rigid: Bad principal moments");
|
|
}
|
|
|
|
// temperature scale factor
|
|
|
|
double ndof = 0.0;
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
ndof += fflag[ibody][0] + fflag[ibody][1] + fflag[ibody][2];
|
|
ndof += tflag[ibody][0] + tflag[ibody][1] + tflag[ibody][2];
|
|
}
|
|
tfactor = force->mvv2e / (ndof * force->boltz);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::setup(int vflag)
|
|
{
|
|
int i,n,ibody;
|
|
double massone,radone;
|
|
|
|
// vcm = velocity of center-of-mass of each rigid body
|
|
// fcm = force on center-of-mass of each rigid body
|
|
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double *rmass = atom->rmass;
|
|
double *mass = atom->mass;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
sum[ibody][0] += v[i][0] * massone;
|
|
sum[ibody][1] += v[i][1] * massone;
|
|
sum[ibody][2] += v[i][2] * massone;
|
|
sum[ibody][3] += f[i][0];
|
|
sum[ibody][4] += f[i][1];
|
|
sum[ibody][5] += f[i][2];
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
vcm[ibody][0] = all[ibody][0]/masstotal[ibody];
|
|
vcm[ibody][1] = all[ibody][1]/masstotal[ibody];
|
|
vcm[ibody][2] = all[ibody][2]/masstotal[ibody];
|
|
fcm[ibody][0] = all[ibody][3];
|
|
fcm[ibody][1] = all[ibody][4];
|
|
fcm[ibody][2] = all[ibody][5];
|
|
}
|
|
|
|
// angmom = angular momentum of each rigid body
|
|
// torque = torque on each rigid body
|
|
|
|
int *image = atom->image;
|
|
double **x = atom->x;
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
double xy = domain->xy;
|
|
double xz = domain->xz;
|
|
double yz = domain->yz;
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
int xbox,ybox,zbox;
|
|
double xunwrap,yunwrap,zunwrap,dx,dy,dz;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
if (triclinic == 0) {
|
|
xunwrap = x[i][0] + xbox*xprd;
|
|
yunwrap = x[i][1] + ybox*yprd;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
} else {
|
|
xunwrap = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
yunwrap = x[i][1] + ybox*yprd + zbox*yz;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
dx = xunwrap - xcm[ibody][0];
|
|
dy = yunwrap - xcm[ibody][1];
|
|
dz = zunwrap - xcm[ibody][2];
|
|
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
|
|
sum[ibody][0] += dy * massone*v[i][2] - dz * massone*v[i][1];
|
|
sum[ibody][1] += dz * massone*v[i][0] - dx * massone*v[i][2];
|
|
sum[ibody][2] += dx * massone*v[i][1] - dy * massone*v[i][0];
|
|
sum[ibody][3] += dy * f[i][2] - dz * f[i][1];
|
|
sum[ibody][4] += dz * f[i][0] - dx * f[i][2];
|
|
sum[ibody][5] += dx * f[i][1] - dy * f[i][0];
|
|
}
|
|
|
|
// extended particles add their rotation/torque to angmom/torque of body
|
|
|
|
if (extended) {
|
|
double **omega_one = atom->omega;
|
|
double **angmom_one = atom->angmom;
|
|
double **torque_one = atom->torque;
|
|
double *radius = atom->radius;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
if (eflags[i] & OMEGA) {
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
radone = radius[i];
|
|
sum[ibody][0] += 0.4 * massone * radone*radone * omega_one[i][0];
|
|
sum[ibody][1] += 0.4 * massone * radone*radone * omega_one[i][1];
|
|
sum[ibody][2] += 0.4 * massone * radone*radone * omega_one[i][2];
|
|
}
|
|
|
|
if (eflags[i] & ANGMOM) {
|
|
sum[ibody][0] += angmom_one[i][0];
|
|
sum[ibody][1] += angmom_one[i][1];
|
|
sum[ibody][2] += angmom_one[i][2];
|
|
}
|
|
if (eflags[i] & TORQUE) {
|
|
sum[ibody][3] += torque_one[i][0];
|
|
sum[ibody][4] += torque_one[i][1];
|
|
sum[ibody][5] += torque_one[i][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
angmom[ibody][0] = all[ibody][0];
|
|
angmom[ibody][1] = all[ibody][1];
|
|
angmom[ibody][2] = all[ibody][2];
|
|
torque[ibody][0] = all[ibody][3];
|
|
torque[ibody][1] = all[ibody][4];
|
|
torque[ibody][2] = all[ibody][5];
|
|
}
|
|
|
|
// zero langextra in case Langevin thermostat not used
|
|
// no point to calling post_force() here since langextra
|
|
// is only added to fcm/torque in final_integrate()
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) langextra[ibody][i] = 0.0;
|
|
|
|
// virial setup before call to set_v
|
|
|
|
if (vflag) v_setup(vflag);
|
|
else evflag = 0;
|
|
|
|
// set velocities from angmom & omega
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
MathExtra::angmom_to_omega(angmom[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],inertia[ibody],omega[ibody]);
|
|
set_v();
|
|
|
|
// guesstimate virial as 2x the set_v contribution
|
|
|
|
if (vflag_global)
|
|
for (n = 0; n < 6; n++) virial[n] *= 2.0;
|
|
if (vflag_atom) {
|
|
for (i = 0; i < nlocal; i++)
|
|
for (n = 0; n < 6; n++)
|
|
vatom[i][n] *= 2.0;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::initial_integrate(int vflag)
|
|
{
|
|
double dtfm;
|
|
|
|
for (int ibody = 0; ibody < nbody; ibody++) {
|
|
|
|
// update vcm by 1/2 step
|
|
|
|
dtfm = dtf / masstotal[ibody];
|
|
vcm[ibody][0] += dtfm * fcm[ibody][0] * fflag[ibody][0];
|
|
vcm[ibody][1] += dtfm * fcm[ibody][1] * fflag[ibody][1];
|
|
vcm[ibody][2] += dtfm * fcm[ibody][2] * fflag[ibody][2];
|
|
|
|
// update xcm by full step
|
|
|
|
xcm[ibody][0] += dtv * vcm[ibody][0];
|
|
xcm[ibody][1] += dtv * vcm[ibody][1];
|
|
xcm[ibody][2] += dtv * vcm[ibody][2];
|
|
|
|
// update angular momentum by 1/2 step
|
|
|
|
angmom[ibody][0] += dtf * torque[ibody][0] * tflag[ibody][0];
|
|
angmom[ibody][1] += dtf * torque[ibody][1] * tflag[ibody][1];
|
|
angmom[ibody][2] += dtf * torque[ibody][2] * tflag[ibody][2];
|
|
|
|
// compute omega at 1/2 step from angmom at 1/2 step and current q
|
|
// update quaternion a full step via Richardson iteration
|
|
// returns new normalized quaternion, also updated omega at 1/2 step
|
|
// update ex,ey,ez to reflect new quaternion
|
|
|
|
MathExtra::angmom_to_omega(angmom[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],inertia[ibody],omega[ibody]);
|
|
MathExtra::richardson(quat[ibody],angmom[ibody],omega[ibody],
|
|
inertia[ibody],dtq);
|
|
MathExtra::q_to_exyz(quat[ibody],
|
|
ex_space[ibody],ey_space[ibody],ez_space[ibody]);
|
|
}
|
|
|
|
// virial setup before call to set_xv
|
|
|
|
if (vflag) v_setup(vflag);
|
|
else evflag = 0;
|
|
|
|
// set coords/orient and velocity/rotation of atoms in rigid bodies
|
|
// from quarternion and omega
|
|
|
|
set_xv();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
apply Langevin thermostat to all 6 DOF of rigid bodies
|
|
computed by proc 0, broadcast to other procs
|
|
unlike fix langevin, this stores extra force in extra arrays,
|
|
which are added in when final_integrate() calculates a new fcm/torque
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::post_force(int vflag)
|
|
{
|
|
if (me == 0) {
|
|
double gamma1,gamma2;
|
|
|
|
double delta = update->ntimestep - update->beginstep;
|
|
delta /= update->endstep - update->beginstep;
|
|
double t_target = t_start + delta * (t_stop-t_start);
|
|
double tsqrt = sqrt(t_target);
|
|
|
|
double boltz = force->boltz;
|
|
double dt = update->dt;
|
|
double mvv2e = force->mvv2e;
|
|
double ftm2v = force->ftm2v;
|
|
|
|
for (int i = 0; i < nbody; i++) {
|
|
gamma1 = -masstotal[i] / t_period / ftm2v;
|
|
gamma2 = sqrt(masstotal[i]) * tsqrt *
|
|
sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
|
|
langextra[i][0] = gamma1*vcm[i][0] + gamma2*(random->uniform()-0.5);
|
|
langextra[i][1] = gamma1*vcm[i][1] + gamma2*(random->uniform()-0.5);
|
|
langextra[i][2] = gamma1*vcm[i][2] + gamma2*(random->uniform()-0.5);
|
|
|
|
gamma1 = -1.0 / t_period / ftm2v;
|
|
gamma2 = tsqrt * sqrt(24.0*boltz/t_period/dt/mvv2e) / ftm2v;
|
|
langextra[i][3] = inertia[i][0]*gamma1*omega[i][0] +
|
|
sqrt(inertia[i][0])*gamma2*(random->uniform()-0.5);
|
|
langextra[i][4] = inertia[i][1]*gamma1*omega[i][1] +
|
|
sqrt(inertia[i][1])*gamma2*(random->uniform()-0.5);
|
|
langextra[i][5] = inertia[i][2]*gamma1*omega[i][2] +
|
|
sqrt(inertia[i][2])*gamma2*(random->uniform()-0.5);
|
|
}
|
|
}
|
|
|
|
MPI_Bcast(&langextra[0][0],6*nbody,MPI_DOUBLE,0,world);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::final_integrate()
|
|
{
|
|
int i,ibody;
|
|
double dtfm,xy,xz,yz;
|
|
|
|
// sum over atoms to get force and torque on rigid body
|
|
|
|
int *image = atom->image;
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
if (triclinic) {
|
|
xy = domain->xy;
|
|
xz = domain->xz;
|
|
yz = domain->yz;
|
|
}
|
|
|
|
int xbox,ybox,zbox;
|
|
double xunwrap,yunwrap,zunwrap,dx,dy,dz;
|
|
for (ibody = 0; ibody < nbody; ibody++)
|
|
for (i = 0; i < 6; i++) sum[ibody][i] = 0.0;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
sum[ibody][0] += f[i][0];
|
|
sum[ibody][1] += f[i][1];
|
|
sum[ibody][2] += f[i][2];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
if (triclinic == 0) {
|
|
xunwrap = x[i][0] + xbox*xprd;
|
|
yunwrap = x[i][1] + ybox*yprd;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
} else {
|
|
xunwrap = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
yunwrap = x[i][1] + ybox*yprd + zbox*yz;
|
|
zunwrap = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
dx = xunwrap - xcm[ibody][0];
|
|
dy = yunwrap - xcm[ibody][1];
|
|
dz = zunwrap - xcm[ibody][2];
|
|
|
|
sum[ibody][3] += dy*f[i][2] - dz*f[i][1];
|
|
sum[ibody][4] += dz*f[i][0] - dx*f[i][2];
|
|
sum[ibody][5] += dx*f[i][1] - dy*f[i][0];
|
|
}
|
|
|
|
// extended particles add their torque to torque of body
|
|
|
|
if (extended) {
|
|
double **torque_one = atom->torque;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
if (eflags[i] & TORQUE) {
|
|
sum[ibody][3] += torque_one[i][0];
|
|
sum[ibody][4] += torque_one[i][1];
|
|
sum[ibody][5] += torque_one[i][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
MPI_Allreduce(sum[0],all[0],6*nbody,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// update vcm and angmom
|
|
// include Langevin thermostat forces
|
|
// fflag,tflag = 0 for some dimensions in 2d
|
|
|
|
for (ibody = 0; ibody < nbody; ibody++) {
|
|
fcm[ibody][0] = all[ibody][0] + langextra[ibody][0];
|
|
fcm[ibody][1] = all[ibody][1] + langextra[ibody][1];
|
|
fcm[ibody][2] = all[ibody][2] + langextra[ibody][2];
|
|
torque[ibody][0] = all[ibody][3] + langextra[ibody][3];
|
|
torque[ibody][1] = all[ibody][4] + langextra[ibody][4];
|
|
torque[ibody][2] = all[ibody][5] + langextra[ibody][5];
|
|
|
|
// update vcm by 1/2 step
|
|
|
|
dtfm = dtf / masstotal[ibody];
|
|
vcm[ibody][0] += dtfm * fcm[ibody][0] * fflag[ibody][0];
|
|
vcm[ibody][1] += dtfm * fcm[ibody][1] * fflag[ibody][1];
|
|
vcm[ibody][2] += dtfm * fcm[ibody][2] * fflag[ibody][2];
|
|
|
|
// update angular momentum by 1/2 step
|
|
|
|
angmom[ibody][0] += dtf * torque[ibody][0] * tflag[ibody][0];
|
|
angmom[ibody][1] += dtf * torque[ibody][1] * tflag[ibody][1];
|
|
angmom[ibody][2] += dtf * torque[ibody][2] * tflag[ibody][2];
|
|
|
|
MathExtra::angmom_to_omega(angmom[ibody],ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],inertia[ibody],omega[ibody]);
|
|
}
|
|
|
|
// set velocity/rotation of atoms in rigid bodies
|
|
// virial is already setup from initial_integrate
|
|
|
|
set_v();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
apply evolution operators to quat, quat momentum
|
|
see Miller paper cited in fix rigid/nvt and fix rigid/npt
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::no_squish_rotate(int k, double *p, double *q,
|
|
double *inertia, double dt)
|
|
{
|
|
double phi,c_phi,s_phi,kp[4],kq[4];
|
|
|
|
// apply permuation operator on p and q, get kp and kq
|
|
|
|
if (k == 1) {
|
|
kq[0] = -q[1]; kp[0] = -p[1];
|
|
kq[1] = q[0]; kp[1] = p[0];
|
|
kq[2] = q[3]; kp[2] = p[3];
|
|
kq[3] = -q[2]; kp[3] = -p[2];
|
|
} else if (k == 2) {
|
|
kq[0] = -q[2]; kp[0] = -p[2];
|
|
kq[1] = -q[3]; kp[1] = -p[3];
|
|
kq[2] = q[0]; kp[2] = p[0];
|
|
kq[3] = q[1]; kp[3] = p[1];
|
|
} else if (k == 3) {
|
|
kq[0] = -q[3]; kp[0] = -p[3];
|
|
kq[1] = q[2]; kp[1] = p[2];
|
|
kq[2] = -q[1]; kp[2] = -p[1];
|
|
kq[3] = q[0]; kp[3] = p[0];
|
|
}
|
|
|
|
// obtain phi, cosines and sines
|
|
|
|
phi = p[0]*kq[0] + p[1]*kq[1] + p[2]*kq[2] + p[3]*kq[3];
|
|
if (fabs(inertia[k-1]) < 1e-6) phi *= 0.0;
|
|
else phi /= 4.0 * inertia[k-1];
|
|
c_phi = cos(dt * phi);
|
|
s_phi = sin(dt * phi);
|
|
|
|
// advance p and q
|
|
|
|
p[0] = c_phi*p[0] + s_phi*kp[0];
|
|
p[1] = c_phi*p[1] + s_phi*kp[1];
|
|
p[2] = c_phi*p[2] + s_phi*kp[2];
|
|
p[3] = c_phi*p[3] + s_phi*kp[3];
|
|
|
|
q[0] = c_phi*q[0] + s_phi*kq[0];
|
|
q[1] = c_phi*q[1] + s_phi*kq[1];
|
|
q[2] = c_phi*q[2] + s_phi*kq[2];
|
|
q[3] = c_phi*q[3] + s_phi*kq[3];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::initial_integrate_respa(int vflag, int ilevel, int iloop)
|
|
{
|
|
dtv = step_respa[ilevel];
|
|
dtf = 0.5 * step_respa[ilevel] * force->ftm2v;
|
|
dtq = 0.5 * step_respa[ilevel];
|
|
|
|
if (ilevel == 0) initial_integrate(vflag);
|
|
else final_integrate();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::final_integrate_respa(int ilevel, int iloop)
|
|
{
|
|
dtf = 0.5 * step_respa[ilevel] * force->ftm2v;
|
|
final_integrate();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
remap xcm of each rigid body back into periodic simulation box
|
|
done during pre_neighbor so will be after call to pbc()
|
|
and after fix_deform::pre_exchange() may have flipped box
|
|
use domain->remap() in case xcm is far away from box
|
|
due to 1st definition of rigid body or due to box flip
|
|
if don't do this, then atoms of a body which drifts far away
|
|
from a triclinic box will be remapped back into box
|
|
with huge displacements when the box tilt changes via set_x()
|
|
adjust image flag of body and image flags of all atoms in body
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::pre_neighbor()
|
|
{
|
|
int original,oldimage,newimage;
|
|
|
|
for (int ibody = 0; ibody < nbody; ibody++) {
|
|
original = imagebody[ibody];
|
|
domain->remap(xcm[ibody],imagebody[ibody]);
|
|
|
|
if (original == imagebody[ibody]) remapflag[ibody][3] = 0;
|
|
else {
|
|
oldimage = original & 1023;
|
|
newimage = imagebody[ibody] & 1023;
|
|
remapflag[ibody][0] = newimage - oldimage;
|
|
oldimage = (original >> 10) & 1023;
|
|
newimage = (imagebody[ibody] >> 10) & 1023;
|
|
remapflag[ibody][1] = newimage - oldimage;
|
|
oldimage = original >> 20;
|
|
newimage = imagebody[ibody] >> 20;
|
|
remapflag[ibody][2] = newimage - oldimage;
|
|
remapflag[ibody][3] = 1;
|
|
}
|
|
}
|
|
|
|
// adjust image flags of any atom in a rigid body whose xcm was remapped
|
|
|
|
int *image = atom->image;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int ibody,idim,otherdims;
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (body[i] == -1) continue;
|
|
if (remapflag[body[i]][3] == 0) continue;
|
|
ibody = body[i];
|
|
|
|
if (remapflag[ibody][0]) {
|
|
idim = image[i] & 1023;
|
|
otherdims = image[i] ^ idim;
|
|
idim -= remapflag[ibody][0];
|
|
idim &= 1023;
|
|
image[i] = otherdims | idim;
|
|
}
|
|
if (remapflag[ibody][1]) {
|
|
idim = (image[i] >> 10) & 1023;
|
|
otherdims = image[i] ^ (idim << 10);
|
|
idim -= remapflag[ibody][1];
|
|
idim &= 1023;
|
|
image[i] = otherdims | (idim << 10);
|
|
}
|
|
if (remapflag[ibody][2]) {
|
|
idim = image[i] >> 20;
|
|
otherdims = image[i] ^ (idim << 20);
|
|
idim -= remapflag[ibody][2];
|
|
idim &= 1023;
|
|
image[i] = otherdims | (idim << 20);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
count # of degrees-of-freedom removed by fix_rigid for atoms in igroup
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixRigid::dof(int igroup)
|
|
{
|
|
int groupbit = group->bitmask[igroup];
|
|
|
|
// nall = # of point particles in each rigid body
|
|
// mall = # of finite-size particles in each rigid body
|
|
// particles must also be in temperature group
|
|
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int *ncount = new int[nbody];
|
|
int *mcount = new int[nbody];
|
|
for (int ibody = 0; ibody < nbody; ibody++)
|
|
ncount[ibody] = mcount[ibody] = 0;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (body[i] >= 0 && mask[i] & groupbit) {
|
|
if (extended && eflags[i]) mcount[body[i]]++;
|
|
else ncount[body[i]]++;
|
|
}
|
|
|
|
int *nall = new int[nbody];
|
|
int *mall = new int[nbody];
|
|
MPI_Allreduce(ncount,nall,nbody,MPI_INT,MPI_SUM,world);
|
|
MPI_Allreduce(mcount,mall,nbody,MPI_INT,MPI_SUM,world);
|
|
|
|
// warn if nall+mall != nrigid for any body included in temperature group
|
|
|
|
int flag = 0;
|
|
for (int ibody = 0; ibody < nbody; ibody++) {
|
|
if (nall[ibody]+mall[ibody] > 0 &&
|
|
nall[ibody]+mall[ibody] != nrigid[ibody]) flag = 1;
|
|
}
|
|
if (flag && me == 0)
|
|
error->warning("Computing temperature of portions of rigid bodies");
|
|
|
|
// remove appropriate DOFs for each rigid body wholly in temperature group
|
|
// N = # of point particles in body
|
|
// M = # of finite-size particles in body
|
|
// 3d body has 3N + 6M dof to start with
|
|
// 2d body has 2N + 3M dof to start with
|
|
// 3d point-particle body with all non-zero I should have 6 dof, remove 3N-6
|
|
// 3d point-particle body (linear) with a 0 I should have 5 dof, remove 3N-5
|
|
// 2d point-particle body should have 3 dof, remove 2N-3
|
|
// 3d body with any finite-size M should have 6 dof, remove (3N+6M) - 6
|
|
// 2d body with any finite-size M should have 3 dof, remove (2N+3M) - 3
|
|
|
|
int n = 0;
|
|
if (domain->dimension == 3) {
|
|
for (int ibody = 0; ibody < nbody; ibody++)
|
|
if (nall[ibody]+mall[ibody] == nrigid[ibody]) {
|
|
n += 3*nall[ibody] + 6*mall[ibody] - 6;
|
|
if (inertia[ibody][0] == 0.0 || inertia[ibody][1] == 0.0 ||
|
|
inertia[ibody][2] == 0.0) n++;
|
|
}
|
|
} else if (domain->dimension == 2) {
|
|
for (int ibody = 0; ibody < nbody; ibody++)
|
|
if (nall[ibody]+mall[ibody] == nrigid[ibody])
|
|
n += 2*nall[ibody] + 3*mall[ibody] - 3;
|
|
}
|
|
|
|
delete [] ncount;
|
|
delete [] mcount;
|
|
delete [] nall;
|
|
delete [] mall;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
adjust xcm of each rigid body due to box deformation
|
|
called by various fixes that change box size/shape
|
|
flag = 0/1 means map from box to lamda coords or vice versa
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::deform(int flag)
|
|
{
|
|
if (flag == 0)
|
|
for (int ibody = 0; ibody < nbody; ibody++)
|
|
domain->x2lamda(xcm[ibody],xcm[ibody]);
|
|
else
|
|
for (int ibody = 0; ibody < nbody; ibody++)
|
|
domain->lamda2x(xcm[ibody],xcm[ibody]);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set space-frame coords and velocity of each atom in each rigid body
|
|
set orientation and rotation of extended particles
|
|
x = Q displace + Xcm, mapped back to periodic box
|
|
v = Vcm + (W cross (x - Xcm))
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::set_xv()
|
|
{
|
|
int ibody;
|
|
int xbox,ybox,zbox;
|
|
double x0,x1,x2,v0,v1,v2,fc0,fc1,fc2,massone;
|
|
double xy,xz,yz;
|
|
double ione[3],exone[3],eyone[3],ezone[3],vr[6],p[3][3];
|
|
|
|
int *image = atom->image;
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double *rmass = atom->rmass;
|
|
double *mass = atom->mass;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
|
|
if (triclinic) {
|
|
xy = domain->xy;
|
|
xz = domain->xz;
|
|
yz = domain->yz;
|
|
}
|
|
|
|
// set x and v of each atom
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
// save old positions and velocities for virial
|
|
|
|
if (evflag) {
|
|
if (triclinic == 0) {
|
|
x0 = x[i][0] + xbox*xprd;
|
|
x1 = x[i][1] + ybox*yprd;
|
|
x2 = x[i][2] + zbox*zprd;
|
|
} else {
|
|
x0 = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
x1 = x[i][1] + ybox*yprd + zbox*yz;
|
|
x2 = x[i][2] + zbox*zprd;
|
|
}
|
|
v0 = v[i][0];
|
|
v1 = v[i][1];
|
|
v2 = v[i][2];
|
|
}
|
|
|
|
// x = displacement from center-of-mass, based on body orientation
|
|
// v = vcm + omega around center-of-mass
|
|
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],displace[i],x[i]);
|
|
|
|
v[i][0] = omega[ibody][1]*x[i][2] - omega[ibody][2]*x[i][1] +
|
|
vcm[ibody][0];
|
|
v[i][1] = omega[ibody][2]*x[i][0] - omega[ibody][0]*x[i][2] +
|
|
vcm[ibody][1];
|
|
v[i][2] = omega[ibody][0]*x[i][1] - omega[ibody][1]*x[i][0] +
|
|
vcm[ibody][2];
|
|
|
|
// add center of mass to displacement
|
|
// map back into periodic box via xbox,ybox,zbox
|
|
// for triclinic, add in box tilt factors as well
|
|
|
|
if (triclinic == 0) {
|
|
x[i][0] += xcm[ibody][0] - xbox*xprd;
|
|
x[i][1] += xcm[ibody][1] - ybox*yprd;
|
|
x[i][2] += xcm[ibody][2] - zbox*zprd;
|
|
} else {
|
|
x[i][0] += xcm[ibody][0] - xbox*xprd - ybox*xy - zbox*xz;
|
|
x[i][1] += xcm[ibody][1] - ybox*yprd - zbox*yz;
|
|
x[i][2] += xcm[ibody][2] - zbox*zprd;
|
|
}
|
|
|
|
// virial = unwrapped coords dotted into body constraint force
|
|
// body constraint force = implied force due to v change minus f external
|
|
// assume f does not include forces internal to body
|
|
// 1/2 factor b/c final_integrate contributes other half
|
|
// assume per-atom contribution is due to constraint force on that atom
|
|
|
|
if (evflag) {
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
fc0 = massone*(v[i][0] - v0)/dtf - f[i][0];
|
|
fc1 = massone*(v[i][1] - v1)/dtf - f[i][1];
|
|
fc2 = massone*(v[i][2] - v2)/dtf - f[i][2];
|
|
|
|
vr[0] = 0.5*x0*fc0;
|
|
vr[1] = 0.5*x1*fc1;
|
|
vr[2] = 0.5*x2*fc2;
|
|
vr[3] = 0.5*x0*fc1;
|
|
vr[4] = 0.5*x0*fc2;
|
|
vr[5] = 0.5*x1*fc2;
|
|
|
|
v_tally(1,&i,1.0,vr);
|
|
}
|
|
}
|
|
|
|
// set orientation, omega, angmom of each extended particle
|
|
|
|
if (extended) {
|
|
double *shape,*quatatom;
|
|
|
|
AtomVecEllipsoid::Bonus *ebonus;
|
|
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
|
|
double **omega_one = atom->omega;
|
|
double **angmom_one = atom->angmom;
|
|
double **mu = atom->mu;
|
|
int *ellipsoid = atom->ellipsoid;
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
if (eflags[i] & ORIENT_DIPOLE) {
|
|
MathExtra::quat_to_mat(quat[ibody],p);
|
|
MathExtra::matvec(p,dorient[i],mu[i]);
|
|
MathExtra::snormalize3(mu[i][3],mu[i],mu[i]);
|
|
}
|
|
if (eflags[i] & ORIENT_QUAT) {
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
MathExtra::quatquat(quat[ibody],qorient[i],quatatom);
|
|
MathExtra::qnormalize(quatatom);
|
|
}
|
|
if (eflags[i] & OMEGA) {
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
}
|
|
if (eflags[i] & ANGMOM) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
ione[0] = 0.2*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
|
|
ione[1] = 0.2*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
|
|
ione[2] = 0.2*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,ione,
|
|
angmom_one[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set space-frame velocity of each atom in a rigid body
|
|
set omega and angmom of extended particles
|
|
v = Vcm + (W cross (x - Xcm))
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::set_v()
|
|
{
|
|
int ibody;
|
|
int xbox,ybox,zbox;
|
|
double x0,x1,x2,v0,v1,v2,fc0,fc1,fc2,massone;
|
|
double xy,xz,yz;
|
|
double ione[3],exone[3],eyone[3],ezone[3],delta[3],vr[6];
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double *rmass = atom->rmass;
|
|
double *mass = atom->mass;
|
|
int *type = atom->type;
|
|
int *image = atom->image;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
if (triclinic) {
|
|
xy = domain->xy;
|
|
xz = domain->xz;
|
|
yz = domain->yz;
|
|
}
|
|
|
|
// set v of each atom
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
MathExtra::matvec(ex_space[ibody],ey_space[ibody],
|
|
ez_space[ibody],displace[i],delta);
|
|
|
|
// save old velocities for virial
|
|
|
|
if (evflag) {
|
|
v0 = v[i][0];
|
|
v1 = v[i][1];
|
|
v2 = v[i][2];
|
|
}
|
|
|
|
v[i][0] = omega[ibody][1]*delta[2] - omega[ibody][2]*delta[1] +
|
|
vcm[ibody][0];
|
|
v[i][1] = omega[ibody][2]*delta[0] - omega[ibody][0]*delta[2] +
|
|
vcm[ibody][1];
|
|
v[i][2] = omega[ibody][0]*delta[1] - omega[ibody][1]*delta[0] +
|
|
vcm[ibody][2];
|
|
|
|
// virial = unwrapped coords dotted into body constraint force
|
|
// body constraint force = implied force due to v change minus f external
|
|
// assume f does not include forces internal to body
|
|
// 1/2 factor b/c initial_integrate contributes other half
|
|
// assume per-atom contribution is due to constraint force on that atom
|
|
|
|
if (evflag) {
|
|
if (rmass) massone = rmass[i];
|
|
else massone = mass[type[i]];
|
|
fc0 = massone*(v[i][0] - v0)/dtf - f[i][0];
|
|
fc1 = massone*(v[i][1] - v1)/dtf - f[i][1];
|
|
fc2 = massone*(v[i][2] - v2)/dtf - f[i][2];
|
|
|
|
xbox = (image[i] & 1023) - 512;
|
|
ybox = (image[i] >> 10 & 1023) - 512;
|
|
zbox = (image[i] >> 20) - 512;
|
|
|
|
if (triclinic == 0) {
|
|
x0 = x[i][0] + xbox*xprd;
|
|
x1 = x[i][1] + ybox*yprd;
|
|
x2 = x[i][2] + zbox*zprd;
|
|
} else {
|
|
x0 = x[i][0] + xbox*xprd + ybox*xy + zbox*xz;
|
|
x1 = x[i][1] + ybox*yprd + zbox*yz;
|
|
x2 = x[i][2] + zbox*zprd;
|
|
}
|
|
|
|
vr[0] = 0.5*x0*fc0;
|
|
vr[1] = 0.5*x1*fc1;
|
|
vr[2] = 0.5*x2*fc2;
|
|
vr[3] = 0.5*x0*fc1;
|
|
vr[4] = 0.5*x0*fc2;
|
|
vr[5] = 0.5*x1*fc2;
|
|
|
|
v_tally(1,&i,1.0,vr);
|
|
}
|
|
}
|
|
|
|
// set omega, angmom of each extended particle
|
|
|
|
if (extended) {
|
|
double *shape,*quatatom;
|
|
|
|
AtomVecEllipsoid::Bonus *ebonus;
|
|
if (avec_ellipsoid) ebonus = avec_ellipsoid->bonus;
|
|
double **omega_one = atom->omega;
|
|
double **angmom_one = atom->angmom;
|
|
int *ellipsoid = atom->ellipsoid;
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (body[i] < 0) continue;
|
|
ibody = body[i];
|
|
|
|
if (eflags[i] & OMEGA) {
|
|
omega_one[i][0] = omega[ibody][0];
|
|
omega_one[i][1] = omega[ibody][1];
|
|
omega_one[i][2] = omega[ibody][2];
|
|
}
|
|
if (eflags[i] & ANGMOM) {
|
|
shape = ebonus[ellipsoid[i]].shape;
|
|
quatatom = ebonus[ellipsoid[i]].quat;
|
|
ione[0] = 0.2*rmass[i] * (shape[1]*shape[1] + shape[2]*shape[2]);
|
|
ione[1] = 0.2*rmass[i] * (shape[0]*shape[0] + shape[2]*shape[2]);
|
|
ione[2] = 0.2*rmass[i] * (shape[0]*shape[0] + shape[1]*shape[1]);
|
|
MathExtra::q_to_exyz(quatatom,exone,eyone,ezone);
|
|
MathExtra::omega_to_angmom(omega[ibody],exone,eyone,ezone,ione,
|
|
angmom_one[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local atom-based arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
double FixRigid::memory_usage()
|
|
{
|
|
int nmax = atom->nmax;
|
|
double bytes = nmax * sizeof(int);
|
|
bytes += nmax*3 * sizeof(double);
|
|
bytes += maxvatom*6 * sizeof(double);
|
|
if (extended) {
|
|
bytes += nmax * sizeof(int);
|
|
if (dorientflag) bytes = nmax*3 * sizeof(double);
|
|
if (qorientflag) bytes = nmax*4 * sizeof(double);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate local atom-based arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::grow_arrays(int nmax)
|
|
{
|
|
memory->grow(body,nmax,"rigid:body");
|
|
memory->grow(displace,nmax,3,"rigid:displace");
|
|
if (extended) {
|
|
memory->grow(eflags,nmax,"rigid:eflags");
|
|
if (dorientflag) memory->grow(dorient,nmax,3,"rigid:dorient");
|
|
if (qorientflag) memory->grow(qorient,nmax,4,"rigid:qorient");
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
copy values within local atom-based arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::copy_arrays(int i, int j)
|
|
{
|
|
body[j] = body[i];
|
|
displace[j][0] = displace[i][0];
|
|
displace[j][1] = displace[i][1];
|
|
displace[j][2] = displace[i][2];
|
|
if (extended) {
|
|
eflags[j] = eflags[i];
|
|
if (dorientflag) {
|
|
dorient[j][0] = dorient[i][0];
|
|
dorient[j][1] = dorient[i][1];
|
|
dorient[j][2] = dorient[i][2];
|
|
}
|
|
if (qorientflag) {
|
|
qorient[j][0] = qorient[i][0];
|
|
qorient[j][1] = qorient[i][1];
|
|
qorient[j][2] = qorient[i][2];
|
|
qorient[j][3] = qorient[i][3];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
initialize one atom's array values, called when atom is created
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixRigid::set_arrays(int i)
|
|
{
|
|
body[i] = -1;
|
|
displace[i][0] = 0.0;
|
|
displace[i][1] = 0.0;
|
|
displace[i][2] = 0.0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
pack values in local atom-based arrays for exchange with another proc
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixRigid::pack_exchange(int i, double *buf)
|
|
{
|
|
buf[0] = body[i];
|
|
buf[1] = displace[i][0];
|
|
buf[2] = displace[i][1];
|
|
buf[3] = displace[i][2];
|
|
if (!extended) return 4;
|
|
|
|
int m = 4;
|
|
buf[m++] = eflags[i];
|
|
if (dorientflag) {
|
|
buf[m++] = dorient[i][0];
|
|
buf[m++] = dorient[i][1];
|
|
buf[m++] = dorient[i][2];
|
|
}
|
|
if (qorientflag) {
|
|
buf[m++] = qorient[i][0];
|
|
buf[m++] = qorient[i][1];
|
|
buf[m++] = qorient[i][2];
|
|
buf[m++] = qorient[i][3];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
unpack values in local atom-based arrays from exchange with another proc
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixRigid::unpack_exchange(int nlocal, double *buf)
|
|
{
|
|
body[nlocal] = static_cast<int> (buf[0]);
|
|
displace[nlocal][0] = buf[1];
|
|
displace[nlocal][1] = buf[2];
|
|
displace[nlocal][2] = buf[3];
|
|
if (!extended) return 4;
|
|
|
|
int m = 4;
|
|
eflags[nlocal] = static_cast<int> (buf[m++]);
|
|
if (dorientflag) {
|
|
dorient[nlocal][0] = buf[m++];
|
|
dorient[nlocal][0] = buf[m++];
|
|
dorient[nlocal][0] = buf[m++];
|
|
}
|
|
if (qorientflag) {
|
|
qorient[nlocal][0] = buf[m++];
|
|
qorient[nlocal][0] = buf[m++];
|
|
qorient[nlocal][0] = buf[m++];
|
|
qorient[nlocal][0] = buf[m++];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixRigid::reset_dt()
|
|
{
|
|
dtv = update->dt;
|
|
dtf = 0.5 * update->dt * force->ftm2v;
|
|
dtq = 0.5 * update->dt;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
return temperature of collection of rigid bodies
|
|
non-active DOF are removed by fflag/tflag and in tfactor
|
|
------------------------------------------------------------------------- */
|
|
|
|
double FixRigid::compute_scalar()
|
|
{
|
|
double wbody[3],rot[3][3];
|
|
|
|
double t = 0.0;
|
|
|
|
for (int i = 0; i < nbody; i++) {
|
|
t += masstotal[i] * (fflag[i][0]*vcm[i][0]*vcm[i][0] +
|
|
fflag[i][1]*vcm[i][1]*vcm[i][1] + \
|
|
fflag[i][2]*vcm[i][2]*vcm[i][2]);
|
|
|
|
// wbody = angular velocity in body frame
|
|
|
|
MathExtra::quat_to_mat(quat[i],rot);
|
|
MathExtra::transpose_matvec(rot,angmom[i],wbody);
|
|
if (inertia[i][0] == 0.0) wbody[0] = 0.0;
|
|
else wbody[0] /= inertia[i][0];
|
|
if (inertia[i][1] == 0.0) wbody[1] = 0.0;
|
|
else wbody[1] /= inertia[i][1];
|
|
if (inertia[i][2] == 0.0) wbody[2] = 0.0;
|
|
else wbody[2] /= inertia[i][2];
|
|
|
|
t += tflag[i][0]*inertia[i][0]*wbody[0]*wbody[0] +
|
|
tflag[i][1]*inertia[i][1]*wbody[1]*wbody[1] +
|
|
tflag[i][2]*inertia[i][2]*wbody[2]*wbody[2];
|
|
}
|
|
|
|
t *= tfactor;
|
|
return t;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
return attributes of a rigid body
|
|
15 values per body
|
|
xcm = 0,1,2; vcm = 3,4,5; fcm = 6,7,8; torque = 9,10,11; image = 12,13,14
|
|
------------------------------------------------------------------------- */
|
|
|
|
double FixRigid::compute_array(int i, int j)
|
|
{
|
|
if (j < 3) return xcm[i][j];
|
|
if (j < 6) return vcm[i][j-3];
|
|
if (j < 9) return fcm[i][j-6];
|
|
if (j < 12) return torque[i][j-9];
|
|
if (j == 12) return (imagebody[i] & 1023) - 512;
|
|
if (j == 13) return (imagebody[i] >> 10 & 1023) - 512;
|
|
return (imagebody[i] >> 20) - 512;
|
|
}
|