451 lines
13 KiB
C++
451 lines
13 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
www.cs.sandia.gov/~sjplimp/lammps.html
|
|
Steve Plimpton, sjplimp@sandia.gov, Sandia National Laboratories
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Paul Crozier (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "mpi.h"
|
|
#include "math.h"
|
|
#include "stdlib.h"
|
|
#include "dihedral_charmm.h"
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "neighbor.h"
|
|
#include "domain.h"
|
|
#include "force.h"
|
|
#include "pair_lj_charmm_coul_charmm.h"
|
|
#include "pair_lj_charmm_coul_charmm_implicit.h"
|
|
#include "pair_lj_charmm_coul_long.h"
|
|
#include "update.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
#define TOLERANCE 0.05
|
|
#define SMALL 0.001
|
|
|
|
/* ----------------------------------------------------------------------
|
|
free all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
DihedralCharmm::~DihedralCharmm()
|
|
{
|
|
if (allocated) {
|
|
memory->sfree(setflag);
|
|
memory->sfree(k);
|
|
memory->sfree(multiplicity);
|
|
memory->sfree(shift);
|
|
memory->sfree(cos_shift);
|
|
memory->sfree(sin_shift);
|
|
memory->sfree(weight);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::compute(int eflag, int vflag)
|
|
{
|
|
int i,m,n,i1,i2,i3,i4,type,factor;
|
|
double rfactor;
|
|
double vb1x,vb1y,vb1z,vb2x,vb2y;
|
|
double vb2z,vb2xm,vb2ym,vb2zm,vb3x,vb3y,vb3z;
|
|
double ax,ay,az,bx,by,bz,rasq,rbsq,rgsq,rg,rginv,ra2inv,rb2inv,rabinv;
|
|
double df,df1,ddf1,fg,hg,fga,hgb,gaa,gbb;
|
|
double dtfx,dtfy,dtfz,dtgx,dtgy,dtgz,dthx,dthy,dthz;
|
|
double c,s,p,sx1,sx2,sx12,sy1,sy2,sy12,sz1,sz2,sz12;
|
|
int itype,jtype;
|
|
double delx,dely,delz,rsq,r2inv,r6inv;
|
|
double fforce,forcecoul,forcelj,phicoul,philj;
|
|
|
|
energy = 0.0;
|
|
eng_coul = eng_vdwl = 0.0;
|
|
if (vflag) for (n = 0; n < 6; n++) virial[n] = 0.0;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double *q = atom->q;
|
|
int *atomtype = atom->type;
|
|
int **dihedrallist = neighbor->dihedrallist;
|
|
int ndihedrallist = neighbor->ndihedrallist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
double qqrd2e = force->qqrd2e;
|
|
|
|
for (n = 0; n < ndihedrallist; n++) {
|
|
|
|
i1 = dihedrallist[n][0];
|
|
i2 = dihedrallist[n][1];
|
|
i3 = dihedrallist[n][2];
|
|
i4 = dihedrallist[n][3];
|
|
type = dihedrallist[n][4];
|
|
|
|
if (newton_bond) factor = 4;
|
|
else {
|
|
factor = 0;
|
|
if (i1 < nlocal) factor++;
|
|
if (i2 < nlocal) factor++;
|
|
if (i3 < nlocal) factor++;
|
|
if (i4 < nlocal) factor++;
|
|
}
|
|
rfactor = 0.25 * factor;
|
|
|
|
// 1st bond
|
|
|
|
vb1x = x[i1][0] - x[i2][0];
|
|
vb1y = x[i1][1] - x[i2][1];
|
|
vb1z = x[i1][2] - x[i2][2];
|
|
domain->minimum_image(&vb1x,&vb1y,&vb1z);
|
|
|
|
// 2nd bond
|
|
|
|
vb2x = x[i3][0] - x[i2][0];
|
|
vb2y = x[i3][1] - x[i2][1];
|
|
vb2z = x[i3][2] - x[i2][2];
|
|
domain->minimum_image(&vb2x,&vb2y,&vb2z);
|
|
|
|
vb2xm = -vb2x;
|
|
vb2ym = -vb2y;
|
|
vb2zm = -vb2z;
|
|
domain->minimum_image(&vb2xm,&vb2ym,&vb2zm);
|
|
|
|
// 3rd bond
|
|
|
|
vb3x = x[i4][0] - x[i3][0];
|
|
vb3y = x[i4][1] - x[i3][1];
|
|
vb3z = x[i4][2] - x[i3][2];
|
|
domain->minimum_image(&vb3x,&vb3y,&vb3z);
|
|
|
|
ax = vb1y*vb2zm - vb1z*vb2ym;
|
|
ay = vb1z*vb2xm - vb1x*vb2zm;
|
|
az = vb1x*vb2ym - vb1y*vb2xm;
|
|
bx = vb3y*vb2zm - vb3z*vb2ym;
|
|
by = vb3z*vb2xm - vb3x*vb2zm;
|
|
bz = vb3x*vb2ym - vb3y*vb2xm;
|
|
|
|
rasq = ax*ax + ay*ay + az*az;
|
|
rbsq = bx*bx + by*by + bz*bz;
|
|
rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;
|
|
rg = sqrt(rgsq);
|
|
|
|
rginv = ra2inv = rb2inv = 0.0;
|
|
if (rg > 0) rginv = 1.0/rg;
|
|
if (rasq > 0) ra2inv = 1.0/rasq;
|
|
if (rbsq > 0) rb2inv = 1.0/rbsq;
|
|
rabinv = sqrt(ra2inv*rb2inv);
|
|
|
|
c = (ax*bx + ay*by + az*bz)*rabinv;
|
|
s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);
|
|
|
|
// error check
|
|
|
|
if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) {
|
|
int me;
|
|
MPI_Comm_rank(world,&me);
|
|
if (screen) {
|
|
fprintf(screen,"Dihedral problem: %d %d %d %d %d %d\n",
|
|
me,update->ntimestep,
|
|
atom->tag[i1],atom->tag[i2],atom->tag[i3],atom->tag[i4]);
|
|
fprintf(screen," 1st atom: %d %g %g %g\n",
|
|
me,x[i1][0],x[i1][1],x[i1][2]);
|
|
fprintf(screen," 2nd atom: %d %g %g %g\n",
|
|
me,x[i2][0],x[i2][1],x[i2][2]);
|
|
fprintf(screen," 3rd atom: %d %g %g %g\n",
|
|
me,x[i3][0],x[i3][1],x[i3][2]);
|
|
fprintf(screen," 4th atom: %d %g %g %g\n",
|
|
me,x[i4][0],x[i4][1],x[i4][2]);
|
|
}
|
|
}
|
|
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
m = multiplicity[type];
|
|
p = 1.0;
|
|
df1 = 0.0;
|
|
|
|
for (i = 0; i < m; i++) {
|
|
ddf1 = p*c - df1*s;
|
|
df1 = p*s + df1*c;
|
|
p = ddf1;
|
|
}
|
|
|
|
p = p*cos_shift[type] + df1*sin_shift[type];
|
|
df1 = df1*cos_shift[type] - ddf1*sin_shift[type];
|
|
df1 *= -m;
|
|
p += 1.0;
|
|
|
|
if (m == 0) {
|
|
p = 1.0 + cos_shift[type];
|
|
df1 = 0.0;
|
|
}
|
|
|
|
if (eflag) energy += rfactor * k[type] * p;
|
|
|
|
fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
|
|
hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm;
|
|
fga = fg*ra2inv*rginv;
|
|
hgb = hg*rb2inv*rginv;
|
|
gaa = -ra2inv*rg;
|
|
gbb = rb2inv*rg;
|
|
|
|
dtfx = gaa*ax;
|
|
dtfy = gaa*ay;
|
|
dtfz = gaa*az;
|
|
dtgx = fga*ax - hgb*bx;
|
|
dtgy = fga*ay - hgb*by;
|
|
dtgz = fga*az - hgb*bz;
|
|
dthx = gbb*bx;
|
|
dthy = gbb*by;
|
|
dthz = gbb*bz;
|
|
|
|
df = k[type] * df1;
|
|
|
|
sx1 = df*dtfx;
|
|
sy1 = df*dtfy;
|
|
sz1 = df*dtfz;
|
|
sx2 = -df*dtgx;
|
|
sy2 = -df*dtgy;
|
|
sz2 = -df*dtgz;
|
|
sx12 = df*dthx;
|
|
sy12 = df*dthy;
|
|
sz12 = df*dthz;
|
|
|
|
// apply force to each of 4 atoms
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] -= sx1;
|
|
f[i1][1] -= sy1;
|
|
f[i1][2] -= sz1;
|
|
}
|
|
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] += sx2 + sx1;
|
|
f[i2][1] += sy2 + sy1;
|
|
f[i2][2] += sz2 + sz1;
|
|
}
|
|
|
|
if (newton_bond || i3 < nlocal) {
|
|
f[i3][0] += sx12 - sx2;
|
|
f[i3][1] += sy12 - sy2;
|
|
f[i3][2] += sz12 - sz2;
|
|
}
|
|
|
|
if (newton_bond || i4 < nlocal) {
|
|
f[i4][0] -= sx12;
|
|
f[i4][1] -= sy12;
|
|
f[i4][2] -= sz12;
|
|
}
|
|
|
|
// virial contribution
|
|
|
|
if (vflag) {
|
|
virial[0] -= rfactor * (vb1x*sx1 + vb2x*sx2 + vb3x*sx12);
|
|
virial[1] -= rfactor * (vb1y*sy1 + vb2y*sy2 + vb3y*sy12);
|
|
virial[2] -= rfactor * (vb1z*sz1 + vb2z*sz2 + vb3z*sz12);
|
|
virial[3] -= rfactor * (vb1x*sy1 + vb2x*sy2 + vb3x*sy12);
|
|
virial[4] -= rfactor * (vb1x*sz1 + vb2x*sz2 + vb3x*sz12);
|
|
virial[5] -= rfactor * (vb1y*sz1 + vb2y*sz2 + vb3y*sz12);
|
|
}
|
|
|
|
// 1-4 LJ and Coulomb interactions
|
|
// force, energy, and virial
|
|
|
|
if (weight[type] > 0.0) {
|
|
|
|
itype = atomtype[i1];
|
|
jtype = atomtype[i4];
|
|
|
|
delx = x[i1][0] - x[i4][0];
|
|
dely = x[i1][1] - x[i4][1];
|
|
delz = x[i1][2] - x[i4][2];
|
|
domain->minimum_image(&delx,&dely,&delz);
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
r2inv = 1.0/rsq;
|
|
r6inv = r2inv*r2inv*r2inv;
|
|
|
|
if (implicitflag) forcecoul = qqrd2e * q[i1]*q[i4]*r2inv;
|
|
else forcecoul = qqrd2e * q[i1]*q[i4]*sqrt(r2inv);
|
|
forcelj = r6inv * (lj14_1[itype][jtype]*r6inv - lj14_2[itype][jtype]);
|
|
fforce = weight[type] * (forcelj+forcecoul)*r2inv;
|
|
|
|
if (eflag) {
|
|
phicoul = weight[type] * rfactor * forcecoul;
|
|
philj = r6inv * (lj14_3[itype][jtype]*r6inv - lj14_4[itype][jtype]);
|
|
philj = weight[type] * rfactor * philj;
|
|
eng_coul += phicoul;
|
|
eng_vdwl += philj;
|
|
}
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] += delx*fforce;
|
|
f[i1][1] += dely*fforce;
|
|
f[i1][2] += delz*fforce;
|
|
}
|
|
if (newton_bond || i4 < nlocal) {
|
|
f[i4][0] -= delx*fforce;
|
|
f[i4][1] -= dely*fforce;
|
|
f[i4][2] -= delz*fforce;
|
|
}
|
|
|
|
if (vflag) {
|
|
virial[0] += rfactor * delx*delx*fforce;
|
|
virial[1] += rfactor * dely*dely*fforce;
|
|
virial[2] += rfactor * delz*delz*fforce;
|
|
virial[3] += rfactor * delx*dely*fforce;
|
|
virial[4] += rfactor * delx*delz*fforce;
|
|
virial[5] += rfactor * dely*delz*fforce;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ndihedraltypes;
|
|
|
|
k = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:k");
|
|
multiplicity = (int *)
|
|
memory->smalloc((n+1)*sizeof(double),"dihedral:multiplicity");
|
|
shift = (int *)
|
|
memory->smalloc((n+1)*sizeof(double),"dihedral:shift");
|
|
cos_shift = (double *)
|
|
memory->smalloc((n+1)*sizeof(double),"dihedral:cos_shift");
|
|
sin_shift = (double *)
|
|
memory->smalloc((n+1)*sizeof(double),"dihedral:sin_shift");
|
|
weight = (double *) memory->smalloc((n+1)*sizeof(double),"dihedral:weight");
|
|
|
|
setflag = (int *) memory->smalloc((n+1)*sizeof(int),"dihedral:setflag");
|
|
for (int i = 1; i <= n; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one type
|
|
------------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::coeff(int which, int narg, char **arg)
|
|
{
|
|
if (which != 0) error->all("Invalid coeffs for this dihedral style");
|
|
if (narg != 5) error->all("Incorrect args for dihedral coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi;
|
|
force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi);
|
|
|
|
// require integer values of shift for backwards compatibility
|
|
// arbitrary phase angle shift could be allowed, but would break
|
|
// backwards compatibility and is probably not needed
|
|
|
|
double k_one = atof(arg[1]);
|
|
int multiplicity_one = atoi(arg[2]);
|
|
int shift_one = atoi(arg[3]);
|
|
double weight_one = atof(arg[4]);
|
|
|
|
if (multiplicity_one < 0)
|
|
error->all("Incorrect multiplicity arg for dihedral coefficients");
|
|
if (weight_one < 0.0 || weight_one > 1.0)
|
|
error->all("Incorrect weight arg for dihedral coefficients");
|
|
|
|
double PI = 4.0*atan(1.0);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
k[i] = k_one;
|
|
shift[i] = shift_one;
|
|
cos_shift[i] = cos(PI*shift_one/180.0);
|
|
sin_shift[i] = sin(PI*shift_one/180.0);
|
|
multiplicity[i] = multiplicity_one;
|
|
weight[i] = weight_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all("Incorrect args for dihedral coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
error check and initialize all values needed for force computation
|
|
------------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::init_style()
|
|
{
|
|
// set local ptrs to LJ 14 arrays setup by pair
|
|
|
|
Pair *anypair;
|
|
if (anypair = force->pair_match("lj/charmm/coul/charmm")) {
|
|
PairLJCharmmCoulCharmm *pair = (PairLJCharmmCoulCharmm *) anypair;
|
|
lj14_1 = pair->lj14_1;
|
|
lj14_2 = pair->lj14_2;
|
|
lj14_3 = pair->lj14_3;
|
|
lj14_4 = pair->lj14_4;
|
|
implicitflag = 0;
|
|
} else if (anypair = force->pair_match("lj/charmm/coul/charmm/implicit")) {
|
|
PairLJCharmmCoulCharmmImplicit *pair =
|
|
(PairLJCharmmCoulCharmmImplicit *) anypair;
|
|
lj14_1 = pair->lj14_1;
|
|
lj14_2 = pair->lj14_2;
|
|
lj14_3 = pair->lj14_3;
|
|
lj14_4 = pair->lj14_4;
|
|
implicitflag = 1;
|
|
} else if (anypair = force->pair_match("lj/charmm/coul/long")) {
|
|
PairLJCharmmCoulLong *pair = (PairLJCharmmCoulLong *) anypair;
|
|
lj14_1 = pair->lj14_1;
|
|
lj14_2 = pair->lj14_2;
|
|
lj14_3 = pair->lj14_3;
|
|
lj14_4 = pair->lj14_4;
|
|
implicitflag = 0;
|
|
} else error->all("Pair style is incompatible with DihedralCharmm");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&k[1],sizeof(double),atom->ndihedraltypes,fp);
|
|
fwrite(&multiplicity[1],sizeof(int),atom->ndihedraltypes,fp);
|
|
fwrite(&shift[1],sizeof(int),atom->ndihedraltypes,fp);
|
|
fwrite(&weight[1],sizeof(double),atom->ndihedraltypes,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void DihedralCharmm::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
fread(&k[1],sizeof(double),atom->ndihedraltypes,fp);
|
|
fread(&multiplicity[1],sizeof(int),atom->ndihedraltypes,fp);
|
|
fread(&shift[1],sizeof(int),atom->ndihedraltypes,fp);
|
|
fread(&weight[1],sizeof(double),atom->ndihedraltypes,fp);
|
|
}
|
|
MPI_Bcast(&k[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&multiplicity[1],atom->ndihedraltypes,MPI_INT,0,world);
|
|
MPI_Bcast(&shift[1],atom->ndihedraltypes,MPI_INT,0,world);
|
|
MPI_Bcast(&weight[1],atom->ndihedraltypes,MPI_DOUBLE,0,world);
|
|
|
|
double PI = 4.0*atan(1.0);
|
|
for (int i = 1; i <= atom->ndihedraltypes; i++) {
|
|
setflag[i] = 1;
|
|
cos_shift[i] = cos(PI*shift[i]/180.0);
|
|
sin_shift[i] = sin(PI*shift[i]/180.0);
|
|
}
|
|
}
|