Files
lammps/src/math_special.h
2022-09-10 03:29:32 -04:00

185 lines
5.8 KiB
C++

/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifndef LMP_MATH_SPECIAL_H
#define LMP_MATH_SPECIAL_H
#include <cmath>
namespace LAMMPS_NS {
namespace MathSpecial {
/*! Fast tabulated factorial function
*
* This function looks up pre-computed factorial values for arguments of n = 0
* to a maximum of 167, which is the maximal value representable by a double
* precision floating point number. For other values of n a NaN value is returned.
*
* \param n argument (valid: 0 <= n <= 167)
* \return value of n! as double precision number or NaN */
extern double factorial(const int n);
/*! Fast implementation of 2^x without argument checks for little endian CPUs
*
* This function implements an optimized version of pow(2.0, x) that does not
* check for valid arguments and thus may only be used where arguments are well
* behaved. The implementation makes assumptions about the layout of double
* precision floating point numbers in memory and thus will only work on little
* endian CPUs. If little endian cannot be safely detected, the result of
* calling pow(2.0, x) will be returned. This function also is the basis for
* the fast exponential fm_exp(x).
*
* \param x argument
* \return value of 2^x as double precision number */
extern double exp2_x86(double x);
/*! Fast implementation of exp(x) for little endian CPUs
*
* This function implements an optimized version of exp(x) for little endian CPUs.
* It calls the exp2_x86(x) function with a suitable prefactor to x to return exp(x).
* The implementation makes assumptions about the layout of double
* precision floating point numbers in memory and thus will only work on little
* endian CPUs. If little endian cannot be safely detected, the result of
* calling the exp(x) implementation in the standard math library will be returned.
*
* \param x argument
* \return value of e^x as double precision number */
extern double fm_exp(double x);
// support function for scaled error function complement
extern double erfcx_y100(const double y100);
/*! Fast scaled error function complement exp(x*x)*erfc(x) for coul/long styles
*
* This is a portable fast implementation of exp(x*x)*erfc(x) that can be used
* in coul/long pair styles as a replacement for the polynomial expansion that
* is/was widely used. Unlike the polynomial expansion, that is only accurate
* at the level of single precision floating point it provides full double precision
* accuracy, but at comparable speed (unlike the erfc() implementation shipped
* with GNU standard math library).
*
* \param x argument
* \return value of e^(x*x)*erfc(x) */
static inline double my_erfcx(const double x)
{
if (x >= 0.0)
return erfcx_y100(400.0 / (4.0 + x));
else
return 2.0 * exp(x * x) - erfcx_y100(400.0 / (4.0 - x));
}
/*! Fast implementation of exp(-x*x) for little endian CPUs for coul/long styles
*
* This function implements an optimized version of exp(-x*x) based on exp2_x86()
* for use with little endian CPUs. If little endian cannot be safely detected,
* the result of calling the exp(-x*x) implementation in the standard math
* library will be returned.
*
* \param x argument
* \return value of e^(-x*x) as double precision number */
static inline double expmsq(double x)
{
x *= x;
x *= 1.4426950408889634074; // log_2(e)
#if defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return (x < 1023.0) ? exp2_x86(-x) : 0.0;
#else
return (x < 1023.0) ? exp2(-x) : 0.0;
#endif
}
/*! Fast inline version of pow(x, 2.0)
*
* \param x argument
* \return x*x */
static inline double square(const double &x)
{
return x * x;
}
/*! Fast inline version of pow(x, 3.0)
*
* \param x argument
* \return x*x */
static inline double cube(const double &x)
{
return x * x * x;
}
/* Fast inline version of pow(-1.0, n)
*
* \param n argument (integer)
* \return -1 if n is odd, 1.0 if n is even */
static inline double powsign(const int n)
{
return (n & 1) ? -1.0 : 1.0;
}
/* Fast inline version of pow(x,n) for integer n
*
* This is a version of pow(x,n) optimized for n being integer.
* Speedups of up to 10x faster than pow(x,y) have been measured.
*
* \param n argument (integer)
* \return value of x^n */
static inline double powint(const double &x, const int n)
{
double yy, ww;
if (n == 0) return 1.0;
if (x == 0.0) return 0.0;
int nn = (n > 0) ? n : -n;
ww = x;
for (yy = 1.0; nn != 0; nn >>= 1, ww *= ww)
if (nn & 1) yy *= ww;
return (n > 0) ? yy : 1.0 / yy;
}
/* Fast inline version of (sin(x)/x)^n as used by PPPM kspace styles
*
* This is an optimized function to compute (sin(x)/x)^n as frequently used by PPPM.
*
* \param n argument (integer). Expected to be positive.
* \return value of (sin(x)/x)^n */
static inline double powsinxx(const double &x, int n)
{
double yy, ww;
if (x == 0.0) return 1.0;
ww = sin(x) / x;
for (yy = 1.0; n != 0; n >>= 1, ww *= ww)
if (n & 1) yy *= ww;
return yy;
}
} // namespace MathSpecial
} // namespace LAMMPS_NS
#endif