Files
lammps/lib/kokkos/algorithms/unit_tests/TestStdAlgorithmsCommon.hpp
2025-03-28 15:29:14 -06:00

749 lines
26 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_ALGORITHMS_UNITTESTS_TEST_STD_ALGOS_COMMON_HPP
#define KOKKOS_ALGORITHMS_UNITTESTS_TEST_STD_ALGOS_COMMON_HPP
#include <gtest/gtest.h>
#include <Kokkos_Core.hpp>
#include <Kokkos_StdAlgorithms.hpp>
#include <Kokkos_Random.hpp>
#include <TestStdAlgorithmsHelperFunctors.hpp>
#include <utility>
#include <numeric>
#include <random>
namespace Test {
namespace stdalgos {
using exespace = Kokkos::DefaultExecutionSpace;
//
// tags
//
struct DynamicTag {};
struct DynamicLayoutLeftTag {};
struct DynamicLayoutRightTag {};
// these are for rank-1
struct StridedTwoTag {};
struct StridedThreeTag {};
// these are for rank-2
struct StridedTwoRowsTag {};
struct StridedThreeRowsTag {};
#ifndef _WIN32
const std::vector<int> teamSizesToTest = {1, 2, 23, 77, 123};
#else
// avoid timeouts in AppVeyor CI
const std::vector<int> teamSizesToTest = {1, 2, 23};
#endif
// map of scenarios where the key is a description
// and the value is the extent
const std::map<std::string, std::size_t> default_scenarios = {
{"empty", 0}, {"one-element", 1}, {"two-elements-a", 2},
{"two-elements-b", 2}, {"small-a", 9}, {"small-b", 13},
{"medium-a", 1003}, {"medium-b", 1003}, {"large-a", 101513},
{"large-b", 101513}};
// see cpp file for these functions
std::string view_tag_to_string(DynamicTag);
std::string view_tag_to_string(DynamicLayoutLeftTag);
std::string view_tag_to_string(DynamicLayoutRightTag);
std::string view_tag_to_string(StridedTwoTag);
std::string view_tag_to_string(StridedThreeTag);
std::string view_tag_to_string(StridedTwoRowsTag);
std::string view_tag_to_string(StridedThreeRowsTag);
//
// overload set for create_view for rank1
//
// dynamic
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicTag, std::size_t ext, const std::string label) {
using view_t = Kokkos::View<ValueType*, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicTag{}), ext};
return view;
}
// dynamic layout left
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicLayoutLeftTag, std::size_t ext,
const std::string label) {
using view_t = Kokkos::View<ValueType*, Kokkos::LayoutLeft, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicLayoutLeftTag{}), ext};
return view;
}
// dynamic layout right
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicLayoutRightTag, std::size_t ext,
const std::string label) {
using view_t = Kokkos::View<ValueType*, Kokkos::LayoutRight, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicLayoutRightTag{}), ext};
return view;
}
// stride2
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(StridedTwoTag, std::size_t ext, const std::string label) {
using view_t = Kokkos::View<ValueType*, Kokkos::LayoutStride, MemSpace>;
Kokkos::LayoutStride layout{ext, 2};
view_t view{label + "_" + view_tag_to_string(StridedTwoTag{}), layout};
return view;
}
// stride3
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(StridedThreeTag, std::size_t ext, const std::string label) {
using view_t = Kokkos::View<ValueType*, Kokkos::LayoutStride, MemSpace>;
Kokkos::LayoutStride layout{ext, 3};
view_t view{label + "_" + view_tag_to_string(StridedThreeTag{}), layout};
return view;
}
//
// overload set for create_view for rank2
//
// dynamic
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicTag, std::size_t ext0, std::size_t ext1,
const std::string label) {
using view_t = Kokkos::View<ValueType**, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicTag{}), ext0, ext1};
return view;
}
// dynamic layout left
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicLayoutLeftTag, std::size_t ext0, std::size_t ext1,
const std::string label) {
using view_t = Kokkos::View<ValueType**, Kokkos::LayoutLeft, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicLayoutLeftTag{}), ext0,
ext1};
return view;
}
// dynamic layout right
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(DynamicLayoutRightTag, std::size_t ext0, std::size_t ext1,
const std::string label) {
using view_t = Kokkos::View<ValueType**, Kokkos::LayoutRight, MemSpace>;
view_t view{label + "_" + view_tag_to_string(DynamicLayoutRightTag{}), ext0,
ext1};
return view;
}
// stride2rows
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(StridedTwoRowsTag, std::size_t ext0, std::size_t ext1,
const std::string label) {
using view_t = Kokkos::View<ValueType**, Kokkos::LayoutStride, MemSpace>;
Kokkos::LayoutStride layout{ext0, 2, ext1, ext0 * 2};
view_t view{label + "_" + view_tag_to_string(StridedTwoRowsTag{}), layout};
return view;
}
// stride3rows
template <class ValueType,
class MemSpace = typename Kokkos::DefaultExecutionSpace::memory_space>
auto create_view(StridedThreeRowsTag, std::size_t ext0, std::size_t ext1,
const std::string label) {
using view_t = Kokkos::View<ValueType**, Kokkos::LayoutStride, MemSpace>;
Kokkos::LayoutStride layout{ext0, 3, ext1, ext0 * 3};
view_t view{label + "_" + view_tag_to_string(StridedThreeRowsTag{}), layout};
return view;
}
template <class ViewType>
auto create_deep_copyable_compatible_view_with_same_extent(ViewType view) {
using view_value_type = typename ViewType::value_type;
using view_exespace = typename ViewType::execution_space;
const std::size_t ext0 = view.extent(0);
if constexpr (ViewType::rank == 1) {
using view_deep_copyable_t = Kokkos::View<view_value_type*, view_exespace>;
return view_deep_copyable_t{"view_dc", ext0};
} else {
static_assert(ViewType::rank == 2, "Only rank 1 or 2 supported.");
using view_deep_copyable_t = Kokkos::View<view_value_type**, view_exespace>;
const std::size_t ext1 = view.extent(1);
return view_deep_copyable_t{"view_dc", ext0, ext1};
}
// this is needed for intel to avoid
// error #1011: missing return statement at end of non-void function
#if defined(KOKKOS_COMPILER_NVCC) && KOKKOS_COMPILER_NVCC >= 1130 && \
!defined(KOKKOS_COMPILER_MSVC)
__builtin_unreachable();
#endif
}
template <class ViewType>
auto create_deep_copyable_compatible_clone(ViewType view) {
auto view_dc = create_deep_copyable_compatible_view_with_same_extent(view);
using view_dc_t = decltype(view_dc);
using exe_space = typename view_dc_t::execution_space;
if constexpr (ViewType::rank == 1) {
CopyFunctor<ViewType, view_dc_t> F1(view, view_dc);
Kokkos::RangePolicy<exe_space> policy(0, view.extent(0));
Kokkos::parallel_for("copy", policy, F1);
} else {
static_assert(ViewType::rank == 2, "Only rank 1 or 2 supported.");
CopyFunctorRank2<ViewType, view_dc_t> F1(view, view_dc);
Kokkos::RangePolicy<exe_space> policy(0, view.extent(0) * view.extent(1));
Kokkos::parallel_for("copy", policy, F1);
}
return view_dc;
}
//
// others
//
template <class TeamHandleType, class ValueType1, class ValueType2>
KOKKOS_FUNCTION bool team_members_have_matching_result(
const TeamHandleType& teamHandle, const ValueType1 memberValueIn,
const ValueType2 targetIn) {
using T = std::common_type_t<ValueType1, ValueType2>;
const T memberValue = memberValueIn;
const T target = targetIn;
// set accum to 1 if a mismach is found
const bool mismatch = memberValue != target;
int accum = static_cast<int>(mismatch);
teamHandle.team_reduce(Kokkos::Sum<int>(accum));
return (accum == 0);
}
template <class ValueType1, class ValueType2>
auto make_bounds(const ValueType1& lower, const ValueType2 upper) {
return Kokkos::pair<ValueType1, ValueType2>{lower, upper};
}
// libstdc++ as provided by GCC 8 does not have reduce, transform_reduce,
// exclusive_scan, inclusive_scan, transform_exclusive_scan,
// transform_inclusive_scan and for GCC 9.1, 9.2 fails to compile them for
// missing overload not accepting policy so use here simplified versions of
// them, only for testing purpose
#if defined(_GLIBCXX_RELEASE) && (_GLIBCXX_RELEASE <= 9)
template <class InputIterator, class ValueType, class BinaryOp>
ValueType testing_reduce(InputIterator first, InputIterator last,
ValueType initIn, BinaryOp binOp) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
while (last - first >= 4) {
ValueType v1 = binOp(first[0], first[1]);
ValueType v2 = binOp(first[2], first[3]);
ValueType v3 = binOp(v1, v2);
init = binOp(init, v3);
first += 4;
}
for (; first != last; ++first) {
init = binOp(init, *first);
}
return init;
}
template <class InputIterator, class ValueType>
ValueType testing_reduce(InputIterator first, InputIterator last,
ValueType init) {
return testing_reduce(
first, last, init,
[](const ValueType& lhs, const ValueType& rhs) { return lhs + rhs; });
}
template <class InputIterator>
auto testing_reduce(InputIterator first, InputIterator last) {
using ValueType = typename InputIterator::value_type;
return testing_reduce(
first, last, ValueType{},
[](const ValueType& lhs, const ValueType& rhs) { return lhs + rhs; });
}
template <class InputIterator1, class InputIterator2, class ValueType,
class BinaryJoiner, class BinaryTransform>
ValueType testing_transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, ValueType initIn,
BinaryJoiner binJoiner,
BinaryTransform binTransform) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
while (last1 - first1 >= 4) {
ValueType v1 = binJoiner(binTransform(first1[0], first2[0]),
binTransform(first1[1], first2[1]));
ValueType v2 = binJoiner(binTransform(first1[2], first2[2]),
binTransform(first1[3], first2[3]));
ValueType v3 = binJoiner(v1, v2);
init = binJoiner(init, v3);
first1 += 4;
first2 += 4;
}
for (; first1 != last1; ++first1, ++first2) {
init = binJoiner(init, binTransform(*first1, *first2));
}
return init;
}
template <class InputIterator1, class InputIterator2, class ValueType>
ValueType testing_transform_reduce(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, ValueType init) {
return testing_transform_reduce(
first1, last1, first2, init,
[](const ValueType& lhs, const ValueType& rhs) { return lhs + rhs; },
[](const ValueType& lhs, const ValueType& rhs) { return lhs * rhs; });
}
template <class InputIterator, class ValueType, class BinaryJoiner,
class UnaryTransform>
ValueType testing_transform_reduce(InputIterator first, InputIterator last,
ValueType initIn, BinaryJoiner binJoiner,
UnaryTransform unaryTransform) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
while (last - first >= 4) {
ValueType v1 =
binJoiner(unaryTransform(first[0]), unaryTransform(first[1]));
ValueType v2 =
binJoiner(unaryTransform(first[2]), unaryTransform(first[3]));
ValueType v3 = binJoiner(v1, v2);
init = binJoiner(init, v3);
first += 4;
}
for (; first != last; ++first) {
init = binJoiner(init, unaryTransform(*first));
}
return init;
}
/*
EXCLUSIVE_SCAN
*/
template <class InputIterator, class OutputIterator, class ValueType,
class BinaryOp>
OutputIterator testing_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, ValueType initIn,
BinaryOp binOp) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
while (first != last) {
auto v = init;
init = binOp(init, *first);
++first;
*result++ = v;
}
return result;
}
template <class InputIterator, class OutputIterator, class ValueType>
OutputIterator testing_exclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, ValueType init) {
return testing_exclusive_scan(
first, last, result, init,
[](const ValueType& lhs, const ValueType& rhs) { return lhs + rhs; });
}
/*
INCLUSIVE_SCAN
*/
template <class InputIterator, class OutputIterator, class BinaryOp,
class ValueType>
OutputIterator testing_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, BinaryOp binOp,
ValueType initIn) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
for (; first != last; ++first) {
init = binOp(init, *first);
*result++ = init;
}
return result;
}
template <class InputIterator, class OutputIterator, class BinaryOp>
OutputIterator testing_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result, BinaryOp bop) {
if (first != last) {
auto init = *first;
*result++ = init;
++first;
if (first != last) {
result = testing_inclusive_scan(first, last, result, bop, init);
}
}
return result;
}
template <class InputIterator, class OutputIterator>
OutputIterator testing_inclusive_scan(InputIterator first, InputIterator last,
OutputIterator result) {
using ValueType = typename InputIterator::value_type;
return testing_inclusive_scan(
first, last, result,
[](const ValueType& lhs, const ValueType& rhs) { return lhs + rhs; });
}
/*
TRANSFORM_EXCLUSIVE_SCAN
*/
template <class InputIterator, class OutputIterator, class ValueType,
class BinaryOp, class UnaryOp>
OutputIterator testing_transform_exclusive_scan(
InputIterator first, InputIterator last, OutputIterator result,
ValueType initIn, BinaryOp binOp, UnaryOp unaryOp) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
while (first != last) {
auto v = init;
init = binOp(init, unaryOp(*first));
++first;
*result++ = v;
}
return result;
}
template <class InputIterator, class OutputIterator, class BinaryOp,
class UnaryOp, class ValueType>
OutputIterator testing_transform_inclusive_scan(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryOp binOp, UnaryOp unaryOp,
ValueType initIn) {
using value_type = std::remove_const_t<ValueType>;
value_type init = initIn;
for (; first != last; ++first) {
init = binOp(init, unaryOp(*first));
*result++ = init;
}
return result;
}
template <class InputIterator, class OutputIterator, class BinaryOp,
class UnaryOp>
OutputIterator testing_transform_inclusive_scan(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryOp binOp,
UnaryOp unaryOp) {
if (first != last) {
auto init = unaryOp(*first);
*result++ = init;
++first;
if (first != last) {
result = testing_transform_inclusive_scan(first, last, result, binOp,
unaryOp, init);
}
}
return result;
}
#endif
template <class LayoutTagType, class ValueType>
auto create_random_view_and_host_clone(
LayoutTagType LayoutTag, std::size_t numRows, std::size_t numCols,
Kokkos::pair<ValueType, ValueType> bounds, const std::string& label,
std::size_t seedIn = 12371) {
// construct in memory space associated with default exespace
auto dataView = create_view<ValueType>(LayoutTag, numRows, numCols, label);
// dataView might not deep copyable (e.g. strided layout) so to
// randomize it, we make a new view that is for sure deep copyable,
// modify it on the host, deep copy to device and then launch
// a kernel to copy to dataView
auto dataView_dc =
create_deep_copyable_compatible_view_with_same_extent(dataView);
auto dataView_dc_h = create_mirror_view(Kokkos::HostSpace(), dataView_dc);
// randomly fill the view
Kokkos::Random_XorShift64_Pool<Kokkos::DefaultHostExecutionSpace> pool(
seedIn);
Kokkos::fill_random(dataView_dc_h, pool, bounds.first, bounds.second);
// copy to dataView_dc and then to dataView
Kokkos::deep_copy(dataView_dc, dataView_dc_h);
// use CTAD
CopyFunctorRank2 F1(dataView_dc, dataView);
Kokkos::parallel_for("copy", dataView.extent(0) * dataView.extent(1), F1);
return std::make_pair(dataView, dataView_dc_h);
}
template <class ViewType>
auto create_host_space_copy(ViewType view) {
auto view_dc = create_deep_copyable_compatible_clone(view);
return create_mirror_view_and_copy(Kokkos::HostSpace(), view_dc);
}
// fill the views with sequentially increasing values
template <class ViewType, class ViewHostType>
void fill_views_inc(ViewType view, ViewHostType host_view) {
namespace KE = Kokkos::Experimental;
Kokkos::parallel_for(view.extent(0), AssignIndexFunctor<ViewType>(view));
std::iota(KE::begin(host_view), KE::end(host_view), 0);
// compare_views(expected, view);
}
template <class ValueType, class ViewType>
std::enable_if_t<!std::is_same_v<typename ViewType::traits::array_layout,
Kokkos::LayoutStride>>
verify_values(ValueType expected, const ViewType view) {
static_assert(std::is_same_v<ValueType, typename ViewType::value_type>,
"Non-matching value types of view and reference value");
auto view_h = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), view);
for (std::size_t i = 0; i < view_h.extent(0); i++) {
ASSERT_EQ(expected, view_h(i));
}
}
template <class ValueType, class ViewType>
std::enable_if_t<std::is_same_v<typename ViewType::traits::array_layout,
Kokkos::LayoutStride>>
verify_values(ValueType expected, const ViewType view) {
static_assert(std::is_same_v<ValueType, typename ViewType::value_type>,
"Non-matching value types of view and reference value");
using non_strided_view_t = Kokkos::View<typename ViewType::value_type*>;
non_strided_view_t tmpView("tmpView", view.extent(0));
Kokkos::parallel_for(
"_std_algo_copy", view.extent(0),
CopyFunctor<ViewType, non_strided_view_t>(view, tmpView));
auto view_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), tmpView);
for (std::size_t i = 0; i < view_h.extent(0); i++) {
ASSERT_EQ(expected, view_h(i));
}
}
template <class ViewType1, class ViewType2>
std::enable_if_t<!std::is_same_v<typename ViewType2::traits::array_layout,
Kokkos::LayoutStride>>
compare_views(ViewType1 expected, const ViewType2 actual) {
static_assert(std::is_same_v<typename ViewType1::value_type,
typename ViewType2::value_type>,
"Non-matching value types of expected and actual view");
auto expected_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), expected);
auto actual_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), actual);
for (std::size_t i = 0; i < expected_h.extent(0); i++) {
ASSERT_EQ(expected_h(i), actual_h(i));
}
}
template <class ViewType1, class ViewType2>
std::enable_if_t<std::is_same_v<typename ViewType2::traits::array_layout,
Kokkos::LayoutStride>>
compare_views(ViewType1 expected, const ViewType2 actual) {
static_assert(std::is_same_v<typename ViewType1::value_type,
typename ViewType2::value_type>,
"Non-matching value types of expected and actual view");
using non_strided_view_t = Kokkos::View<typename ViewType2::value_type*>;
non_strided_view_t tmp_view("tmp_view", actual.extent(0));
Kokkos::parallel_for(
"_std_algo_copy", actual.extent(0),
CopyFunctor<ViewType2, non_strided_view_t>(actual, tmp_view));
auto actual_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), tmp_view);
auto expected_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), expected);
for (std::size_t i = 0; i < expected_h.extent(0); i++) {
ASSERT_EQ(expected_h(i), actual_h(i));
}
}
template <class ViewType1, class ViewType2>
void expect_equal_host_views(ViewType1 A, const ViewType2 B) {
static_assert(
ViewType1::rank == 2 && ViewType2::rank == 2 &&
std::is_same_v<typename ViewType1::memory_space, Kokkos::HostSpace> &&
std::is_same_v<typename ViewType2::memory_space, Kokkos::HostSpace>,
"Expected 2-dimensional host view.");
ASSERT_EQ(A.extent(0), B.extent(0));
ASSERT_EQ(A.extent(1), B.extent(1));
constexpr bool values_are_floast =
std::is_floating_point_v<typename ViewType1::value_type> ||
std::is_floating_point_v<typename ViewType2::value_type>;
for (std::size_t i = 0; i < A.extent(0); i++) {
for (std::size_t j = 0; j < A.extent(1); j++) {
if constexpr (values_are_floast) {
EXPECT_FLOAT_EQ(A(i, j), B(i, j));
} else {
ASSERT_EQ(A(i, j), B(i, j));
}
}
}
}
template <class ViewType>
void fill_zero(ViewType a) {
const auto functor = FillZeroFunctor<ViewType>(a);
::Kokkos::parallel_for(a.extent(0), std::move(functor));
}
template <class ViewType1, class ViewType2>
void fill_zero(ViewType1 a, ViewType2 b) {
fill_zero(a);
fill_zero(b);
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// helpers for testing small views (extent = 10)
// prefer `default_scenarios` map for creating new tests
using value_type = double;
struct std_algorithms_test : public ::testing::Test {
static constexpr size_t extent = 10;
using static_view_t = Kokkos::View<value_type[extent]>;
static_view_t m_static_view{"std-algo-test-1D-contiguous-view-static"};
using dyn_view_t = Kokkos::View<value_type*>;
dyn_view_t m_dynamic_view{"std-algo-test-1D-contiguous-view-dynamic", extent};
using strided_view_t = Kokkos::View<value_type*, Kokkos::LayoutStride>;
Kokkos::LayoutStride layout{extent, 2};
strided_view_t m_strided_view{"std-algo-test-1D-strided-view", layout};
using view_host_space_t = Kokkos::View<value_type[10], Kokkos::HostSpace>;
template <class ViewFromType>
void copyInputViewToFixtureViews(ViewFromType view) {
CopyFunctor<ViewFromType, static_view_t> F1(view, m_static_view);
Kokkos::parallel_for("_std_algo_copy1", view.extent(0), F1);
CopyFunctor<ViewFromType, dyn_view_t> F2(view, m_dynamic_view);
Kokkos::parallel_for("_std_algo_copy2", view.extent(0), F2);
CopyFunctor<ViewFromType, strided_view_t> F3(view, m_strided_view);
Kokkos::parallel_for("_std_algo_copy3", view.extent(0), F3);
}
};
struct CustomValueType {
KOKKOS_INLINE_FUNCTION
CustomValueType(){};
KOKKOS_INLINE_FUNCTION
CustomValueType(value_type val) : value(val){};
KOKKOS_INLINE_FUNCTION
CustomValueType(const CustomValueType& other) { this->value = other.value; }
KOKKOS_INLINE_FUNCTION
explicit operator value_type() const { return value; }
KOKKOS_INLINE_FUNCTION
value_type& operator()() { return value; }
KOKKOS_INLINE_FUNCTION
const value_type& operator()() const { return value; }
KOKKOS_INLINE_FUNCTION
CustomValueType& operator+=(const CustomValueType& other) {
this->value += other.value;
return *this;
}
KOKKOS_INLINE_FUNCTION
CustomValueType& operator=(const CustomValueType& other) {
this->value = other.value;
return *this;
}
KOKKOS_INLINE_FUNCTION
CustomValueType operator+(const CustomValueType& other) const {
CustomValueType result;
result.value = this->value + other.value;
return result;
}
KOKKOS_INLINE_FUNCTION
CustomValueType operator-(const CustomValueType& other) const {
CustomValueType result;
result.value = this->value - other.value;
return result;
}
KOKKOS_INLINE_FUNCTION
CustomValueType operator*(const CustomValueType& other) const {
CustomValueType result;
result.value = this->value * other.value;
return result;
}
KOKKOS_INLINE_FUNCTION
bool operator==(const CustomValueType& other) const {
return this->value == other.value;
}
private:
friend std::ostream& operator<<(std::ostream& os,
const CustomValueType& custom_value_type) {
return os << custom_value_type.value;
}
value_type value = {};
};
} // namespace stdalgos
} // namespace Test
#endif