Files
lammps/examples/mliap/mliap_numpy_Ta06A.py

102 lines
2.3 KiB
Python

before_loading =\
"""# Demonstrate MLIAP/PyTorch interface to linear SNAP potential
# Initialize simulation
variable nsteps index 100
variable nrep equal 4
variable a equal 3.316
units metal
# generate the box and atom positions using a BCC lattice
variable nx equal ${nrep}
variable ny equal ${nrep}
variable nz equal ${nrep}
boundary p p p
lattice bcc $a
region box block 0 ${nx} 0 ${ny} 0 ${nz}
create_box 1 box
create_atoms 1 box
mass 1 180.88
# choose potential
# DATE: 2014-09-05 UNITS: metal CONTRIBUTOR: Aidan Thompson athomps@sandia.gov CITATION: Thompson, Swiler, Trott, Foiles and Tucker, arxiv.org, 1409.3880 (2014)
# Definition of SNAP potential Ta_Cand06A
# Assumes 1 LAMMPS atom type
variable zblcutinner equal 4
variable zblcutouter equal 4.8
variable zblz equal 73
# Specify hybrid with SNAP, ZBL
pair_style hybrid/overlay &
zbl ${zblcutinner} ${zblcutouter} &
mliap model mliappy LATER &
descriptor sna Ta06A.mliap.descriptor
pair_coeff 1 1 zbl ${zblz} ${zblz}
pair_coeff * * mliap Ta
"""
after_loading =\
"""
# Setup output
compute eatom all pe/atom
compute energy all reduce sum c_eatom
compute satom all stress/atom NULL
compute str all reduce sum c_satom[1] c_satom[2] c_satom[3]
variable press equal (c_str[1]+c_str[2]+c_str[3])/(3*vol)
thermo_style custom step temp epair c_energy etotal press v_press
thermo 10
thermo_modify norm yes
# Set up NVE run
timestep 0.5e-3
neighbor 1.0 bin
neigh_modify once no every 1 delay 0 check yes
# Run MD
velocity all create 300.0 4928459 loop geom
fix 1 all nve
run ${nsteps}
"""
import numpy as np
class LinearModel():
def __init__(self,file):
coeffs = np.genfromtxt(file,skip_header=6)
self.bias = coeffs[0]
self.weights = coeffs[1:]
self.n_params = len(coeffs)
self.n_descriptors = len(self.weights)
self.n_elements = 1
def __call__(self,elems,bispectrum,beta,energy):
energy[:] = bispectrum @ self.weights + self.bias
beta[:] = self.weights
mymodel = LinearModel("Ta06A.mliap.model")
import lammps
lmp = lammps.lammps(cmdargs=['-echo','both'])
import lammps.mliap
lammps.mliap.activate_mliappy(lmp)
lmp.commands_string(before_loading)
lammps.mliap.load_model(mymodel)
lmp.commands_string(after_loading)
lmp.close()
lmp.finalize()